Search results for: long-term bridge repair schedule
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1870

Search results for: long-term bridge repair schedule

1720 Design and Production of Thin-Walled UHPFRC Footbridge

Authors: P. Tej, P. Kněž, M. Blank

Abstract:

The paper presents design and production of thin-walled U-profile footbridge made of UHPFRC. The main structure of the bridge is one prefabricated shell structure made of UHPFRC with dispersed steel fibers without any conventional reinforcement. The span of the bridge structure is 10 m and the clear width of 1.5 m. The thickness of the UHPFRC shell structure oscillated in an interval of 30-45 mm. Several calculations were made during the bridge design and compared with the experiments. For the purpose of verifying the calculations, a segment of 1.5 m was first produced, followed by the whole footbridge for testing. After the load tests were done, the design was optimized to cast the final footbridge.

Keywords: footbridge, non-linear analysis, shell structure, UHPFRC, Ultra-High Performance Fibre Reinforced Concrete

Procedia PDF Downloads 232
1719 Use of Waste Tire Rubber Alkali-Activated-Based Mortars in Repair of Concrete Structures

Authors: Mohammad Ebrahim Kianifar, Ehsan Ahmadi

Abstract:

Reinforced concrete structures experience local defects such as cracks over their lifetime under various environmental loadings. Consequently, they are repaired by mortars to avoid detrimental effects such as corrosion of reinforcement, which in long-term may lead to strength loss of a member or collapse of structures. However, repaired structures may need multiple repairs due to changes in load distribution, and thus, lack of compatibility between mortar and substrate concrete. On the other hand, waste tire rubber alkali-activated (WTRAA)-based materials have very high potential to be used as repair mortars because of their ductility and flexibility, which may delay the failure of repair mortar and thus, provide sufficient compatibility. Hence, this work presents a pioneering study on suitability of WTRAA-based materials as mortars for the repair of concrete structures through an experimental program. To this end, WTRAA mortars with 15% aggregate replacement, alkali-activated (AA) mortars, and ordinary mortars are made to repair a number of concrete beams. The WTRAA mortars are composed of slag as base material, sodium hydroxide as an alkaline activator, and different gradations of waste tire rubber (fine and coarse gradations). Flexural tests are conducted on the concrete beams repaired by the ordinary, AA, and WTRAA mortars. It is found that, despite having lower compressive strength and modulus of elasticity, the WTRAA and AA mortars increase the flexural strength of the repaired beams, give compatible failures, and provide sufficient mortar-concrete interface bondings. The ordinary mortars, however, show incompatible failure modes. This study demonstrates the promising application of WTRAA mortars in the practical repairs of concrete structures.

Keywords: alkali-activated mortars, concrete repair, mortar compatibility, flexural strength, waste tire rubber

Procedia PDF Downloads 155
1718 Performance Analysis of Different Power Electronics Structures for Electric Vehicles (EVs)

Authors: Sekkak Abdelmalek

Abstract:

The aim of this paper is to establish an energy balance of the drivetrain of a low power electric vehicle (around ten kilowatts). The study is based on two topologies of power electronics converter, the voltage source inverter and cascaded H-Bridge inverter. For each of these solutions, two voltage levels are studied for the drivetrain. At first a discussion of cascaded H-Bridge inverters will be performed on the potential benefits of this structure for its use to other functions such as macroscopic batteries management system. In a second step, the performances of the traction chain are compared according to the structure of the power converter and the voltage level of the traction chain.

Keywords: power electronics, static converters, cascaded H-Bridge, traction chain, efficiency, losses, batteries balancing

Procedia PDF Downloads 512
1717 Outcome Analysis of Various Management Strategies for Ileal Perforation

Authors: Ashvamedh, Chandra Bhushan Singh, Anil Kumar Sarda

Abstract:

Introduction: Ileal perforation is a common cause for peritonitis in developing countries. Surgery is the ideal treatment as it eliminates soilage of peritoneal cavity in an effort to lessen the toxaemia and enhance the recovery of the patient. However, there is no uniformity of standardized operative procedure that is most effective for management. Material and method: The study was conducted on 66 patients of perforation peritonitis from November 2013 to February 2015 in Lok Nayak Hospital. Data of each patient were recorded on a pre-determined proforma. The methods used for repair were Primary repair, Resection anastomosis (RA) and Ileostomy. Result: Male preponderance was noticed among the patients with majority in their third decade. Of all perforations 40.9% were tubercular and 34.8% were typhoid. Amongst operated cases 27.3% underwent primary repair, RA was performed in 45.5%, Ileostomy in 27.3%patients. The average time taken for RA and ileostomy was more than primary repair. The type of repair bear no significance to size or no of perforation but was significant statistically for distance from I/C valve(P=.005) and edema of bowel wall(p=.002) when analysed for post op complications. Wound infection, dehiscence, intra-abdominal collections were complications observed bearing no significance to type of repair. Ileostomy per se has its own complications peristomal skin excoriation seen in 83.3%, electrolyte imbalance in 33.3%, duration for closure averaged 188 days (median 150 days, range 85-400 days). Conclusion: Primary closure is preferable in patients with single, small perforations. RA is advocated in patients with multiple or large perforation, perforation proximal to stricture. Ileostomy should not be considered as primary definitive procedure and reserved only for moribund patients as a lifesaving procedure. It has more morbidity and requires a second surgery for closure increasing the cost of treatment as well.

Keywords: ileal perforation, ileostomy, perforation peritonitis, typhoid perforation management

Procedia PDF Downloads 252
1716 Optimal Continuous Scheduled Time for a Cumulative Damage System with Age-Dependent Imperfect Maintenance

Authors: Chin-Chih Chang

Abstract:

Many manufacturing systems suffer failures due to complex degradation processes and various environment conditions such as random shocks. Consider an operating system is subject to random shocks and works at random times for successive jobs. When successive jobs often result in production losses and performance deterioration, it would be better to do maintenance or replacement at a planned time. A preventive replacement (PR) policy is presented to replace the system before a failure occurs at a continuous time T. In such a policy, the failure characteristics of the system are designed as follows. Each job would cause a random amount of additive damage to the system, and the system fails when the cumulative damage has exceeded a failure threshold. Suppose that the deteriorating system suffers one of the two types of shocks with age-dependent probabilities: type-I (minor) shock is rectified by a minimal repair, or type-II (catastrophic) shock causes the system to fail. A corrective replacement (CR) is performed immediately when the system fails. In summary, a generalized maintenance model to scheduling replacement plan for an operating system is presented below. PR is carried out at time T, whereas CR is carried out when any type-II shock occurs and the total damage exceeded a failure level. The main objective is to determine the optimal continuous schedule time of preventive replacement through minimizing the mean cost rate function. The existence and uniqueness of optimal replacement policy are derived analytically. It can be seen that the present model is a generalization of the previous models, and the policy with preventive replacement outperforms the one without preventive replacement.

Keywords: preventive replacement, working time, cumulative damage model, minimal repair, imperfect maintenance, optimization

Procedia PDF Downloads 363
1715 Evaluation of Reliability Indices Using Monte Carlo Simulation Accounting Time to Switch

Authors: Sajjad Asefi, Hossein Afrakhte

Abstract:

This paper presents the evaluation of reliability indices of an electrical distribution system using Monte Carlo simulation technique accounting Time To Switch (TTS) for each section. In this paper, the distribution system has been assumed by accounting random repair time omission. For simplicity, we have assumed the reliability analysis to be based on exponential law. Each segment has a specified rate of failure (λ) and repair time (r) which will give us the mean up time and mean down time of each section in distribution system. After calculating the modified mean up time (MUT) in years, mean down time (MDT) in hours and unavailability (U) in h/year, TTS have been added to the time which the system is not available, i.e. MDT. In this paper, we have assumed the TTS to be a random variable with Log-Normal distribution.

Keywords: distribution system, Monte Carlo simulation, reliability, repair time, time to switch (TTS)

Procedia PDF Downloads 427
1714 The Effect of Traffic Load on the Maximum Response of a Cable-Stayed Bridge under Blast Loads

Authors: S. K. Hashemi, M. A. Bradford, H. R. Valipour

Abstract:

The Recent collapse of bridges has raised the awareness about safety and robustness of bridges subjected to extreme loading scenarios such as intentional/unintentional blast loads. The air blast generated by the explosion of bombs or fuel tankers leads to high-magnitude short-duration loading scenarios that can cause severe structural damage and loss of critical structural members. Hence, more attentions need to put towards bridge structures to develop guidelines to increase the resistance of such structures against the probable blast. Recent advancements in numerical methods have brought about the viable and cost effective facilities to simulate complicated blast scenarios and subsequently provide useful reference for safeguarding design of critical infrastructures. In the previous studies common bridge responses to blast load, the traffic load is sometimes not included in the analysis. Including traffic load will increase the axial compression in bridge piers especially when the axial load is relatively small. Traffic load also can reduce the uplift of girders and deck when the bridge experiences under deck explosion. For more complicated structures like cable-stayed or suspension bridges, however, the effect of traffic loads can be completely different. The tension in the cables increase and progressive collapse is likely to happen while traffic loads exist. Accordingly, this study is an attempt to simulate the effect of traffic load cases on the maximum local and global response of an entire cable-stayed bridge subjected to blast loadings using LS-DYNA explicit finite element code. The blast loads ranged from small to large explosion placed at different positions above the deck. Furthermore, the variation of the traffic load factor in the load combination and its effect on the dynamic response of the bridge under blast load is investigated.

Keywords: blast, cable-stayed bridge, LS-DYNA, numerical, traffic load

Procedia PDF Downloads 332
1713 Time-Domain Expressions for Bridge Self-Excited Aerodynamic Forces by Modified Particle Swarm Optimizer

Authors: Hao-Su Liu, Jun-Qing Lei

Abstract:

This study introduces the theory of modified particle swarm optimizer and its application in time-domain expressions for bridge self-excited aerodynamic forces. Based on the indicial function expression and the rational function expression in time-domain expression for bridge self-excited aerodynamic forces, the characteristics of the two methods, i.e. the modified particle swarm optimizer and conventional search method, are compared in flutter derivatives’ fitting process. Theoretical analysis and numerical results indicate that adopting whether the indicial function expression or the rational function expression, the fitting flutter derivatives obtained by modified particle swarm optimizer have better goodness of fit with ones obtained from experiment. As to the flutter derivatives which have higher nonlinearity, the self-excited aerodynamic forces, using the flutter derivatives obtained through modified particle swarm optimizer fitting process, are much closer to the ones simulated by the experimental. The modified particle swarm optimizer was used to recognize the parameters of time-domain expressions for flutter derivatives of an actual long-span highway-railway truss bridge with double decks at the wind attack angle of 0°, -3° and +3°. It was found that this method could solve the bounded problems of attenuation coefficient effectively in conventional search method, and had the ability of searching in unboundedly area. Accordingly, this study provides a method for engineering industry to frequently and efficiently obtain the time-domain expressions for bridge self-excited aerodynamic forces.

Keywords: time-domain expressions, bridge self-excited aerodynamic forces, modified particle swarm optimizer, long-span highway-railway truss bridge

Procedia PDF Downloads 314
1712 Predicting Bridge Pier Scour Depth with SVM

Authors: Arun Goel

Abstract:

Prediction of maximum local scour is necessary for the safety and economical design of the bridges. A number of equations have been developed over the years to predict local scour depth using laboratory data and a few pier equations have also been proposed using field data. Most of these equations are empirical in nature as indicated by the past publications. In this paper, attempts have been made to compute local depth of scour around bridge pier in dimensional and non-dimensional form by using linear regression, simple regression and SVM (Poly and Rbf) techniques along with few conventional empirical equations. The outcome of this study suggests that the SVM (Poly and Rbf) based modeling can be employed as an alternate to linear regression, simple regression and the conventional empirical equations in predicting scour depth of bridge piers. The results of present study on the basis of non-dimensional form of bridge pier scour indicates the improvement in the performance of SVM (Poly and Rbf) in comparison to dimensional form of scour.

Keywords: modeling, pier scour, regression, prediction, SVM (Poly and Rbf kernels)

Procedia PDF Downloads 451
1711 Radial Distribution Network Reliability Improvement by Using Imperialist Competitive Algorithm

Authors: Azim Khodadadi, Sahar Sadaat Vakili, Ebrahim Babaei

Abstract:

This study presents a numerical method to optimize the failure rate and repair time of a typical radial distribution system. Failure rate and repair time are effective parameters in customer and energy based indices of reliability. Decrease of these parameters improves reliability indices. Thus, system stability will be boost. The penalty functions indirectly reflect the cost of investment which spent to improve these indices. Constraints on customer and energy based indices, i.e. SAIFI, SAIDI, CAIDI and AENS have been considered by using a new method which reduces optimization algorithm controlling parameters. Imperialist Competitive Algorithm (ICA) used as main optimization technique and particle swarm optimization (PSO), simulated annealing (SA) and differential evolution (DE) has been applied for further investigation. These algorithms have been implemented on a test system by MATLAB. Obtained results have been compared with each other. The optimized values of repair time and failure rate are much lower than current values which this achievement reduced investment cost and also ICA gives better answer than the other used algorithms.

Keywords: imperialist competitive algorithm, failure rate, repair time, radial distribution network

Procedia PDF Downloads 668
1710 Study on the Evaluation and Utilization of Space Renewal Potential under Bridge in Chongqing

Authors: Qin Xvelian

Abstract:

organic renewal" based on the development of existing resources in high-density urban areas has become the mainstream of urban development in the new era. As an important stock resource of public space in high-density urban areas, promoting its value remodeling is an effective way to alleviate the shortage of public space resources. However, due to the lack of evaluation links in the process of underpass space renewal, a large number of underpass space resources have been left idle, facing the problems of low space conversion efficiency, lack of accuracy in development decision-making, and low adaptability of functional positioning to citizens' needs. Therefore, it is of great practical significance to construct the evaluation system of under-bridge space renewal potential and explore the renewal mode. In this paper, some of the under-bridge spaces in the main urban area of Chongqing are selected as the research object. Through the questionnaire interviews with the users of the built excellent space under the bridge, three types of six levels and twenty-two potential evaluation indexes of "objective demand factor, construction feasibility factor and construction suitability factor" are selected, including six levels of land resources, infrastructure, accessibility, safety, space quality and ecological environment. The analytical hierarchy process and expert scoring method are used to determine the index weight, construct the potential evaluation system of the space under the bridge in high-density urban areas of Chongqing, and explore the direction of renewal and utilization of its suitability. To provide feasible theoretical basis and scientific decision support for the use of under bridge space in the future.

Keywords: high density urban area, potential evaluation, space under bridge, updated using

Procedia PDF Downloads 67
1709 Prioritization in a Maintenance, Repair and Overhaul (MRO) System Based on Fuzzy Logic at Iran Khodro (IKCO)

Authors: Izadi Banafsheh, Sedaghat Reza

Abstract:

Maintenance, Repair, and Overhaul (MRO) of machinery are a key recent issue concerning the automotive industry. It has always been a debated question what order or priority should be adopted for the MRO of machinery. This study attempts to examine several criteria including process sensitivity, average time between machine failures, average duration of repair, availability of parts, availability of maintenance personnel and workload through a literature review and experts survey so as to determine the condition of the machine. According to the mentioned criteria, the machinery were ranked in four modes below: A) Need for inspection, B) Need for minor repair, C) Need for part replacement, and D) Need for major repair. The Fuzzy AHP was employed to determine the weighting of criteria. At the end, the obtained weights were ranked through the AHP for each criterion, three groups were specified: shaving machines, assembly and painting in four modes. The statistical population comprises the elite in the Iranian automotive industry at IKCO covering operation managers, CEOs and maintenance professionals who are highly specialized in MRO and perfectly knowledgeable in how the machinery function. The information required for this study were collected from both desk research and field review, which eventually led to construction of a questionnaire handed out to the sample respondents in order to collect information on the subject matter. The results of the AHP for weighting the criteria revealed that the availability of maintenance personnel was the top priority at coefficient of 0.206, while the process sensitivity took the last priority at coefficient of 0.066. Furthermore, the results of TOPSIS for prioritizing the IKCO machinery suggested that at the mode where there is need for inspection, the assembly machines took the top priority while paining machines took the third priority. As for the mode where there is need for minor repairs, the assembly machines took the top priority while the third priority belonged to the shaving machines. As for the mode where there is need for parts replacement, the assembly machines took the top priority while the third belonged to the paining machinery. Finally, as for the mode where there is need for major repair, the assembly machines took the top priority while the third belonged to the paining machinery.

Keywords: maintenance, repair, overhaul, MRO, prioritization of machinery, fuzzy logic, AHP, TOPSIS

Procedia PDF Downloads 286
1708 Schedule a New Production Plan by Heuristic Methods

Authors: Hanife Merve Öztürk, Sıdıka Dalgan

Abstract:

In this project, a capacity analysis study is done at TAT A. Ş. Maret Plant. Production capacity of products which generate 80% of sales amount are determined. Obtained data entered the LEKIN Scheduling Program and we get production schedules by using heuristic methods. Besides heuristic methods, as mathematical model, disjunctive programming formulation is adapted to flexible job shop problems by adding a new constraint to find optimal schedule solution.

Keywords: scheduling, flexible job shop problem, shifting bottleneck heuristic, mathematical modelling

Procedia PDF Downloads 401
1707 Comparison of Dynamic Characteristics of Railway Bridge Spans to Know the Health of Elastomeric Bearings Using Tri Axial Accelerometer Sensors

Authors: Narayanakumar Somasundaram, Venkat Nihit Chirivella, Venkata Dilip Kumar Pasupuleti

Abstract:

Ajakool, India, has a multi-span bridge that is constructed for rail transport with a maximum operating speed of 100 km/hr. It is a standard RDSO design of a PSC box girder carrying a single railway track. The Structural Health Monitoring System (SHM) is designed and installed to compare and analyze the vibrations and displacements on the bridge due to different live loads from moving trains. The study is conducted for three different spans of the same bridge to understand the health of the elastomeric bearings. Also, to validate the same, a three-dimensional finite element model is developed, and modal analysis is carried out. The proposed methodology can help in detecting deteriorated elastomeric bearings using only wireless tri-accelerometer sensors. Detailed analysis and results are presented in terms of mode shapes, accelerations, displacements, and their importance to each other. This can be implemented with a lot of ease and can be more accurate.

Keywords: dynamic effects, vibration analysis, accelerometer sensors, finite element analysis, structural health monitoring, elastomeric bearing

Procedia PDF Downloads 136
1706 The Utilization of Particle Swarm Optimization Method to Solve Nurse Scheduling Problem

Authors: Norhayati Mohd Rasip, Abd. Samad Hasan Basari , Nuzulha Khilwani Ibrahim, Burairah Hussin

Abstract:

The allocation of working schedule especially for shift environment is hard to fulfill its fairness among them. In the case of nurse scheduling, to set up the working time table for them is time consuming and complicated, which consider many factors including rules, regulation and human factor. The scenario is more complicated since most nurses are women which have personnel constraints and maternity leave factors. The undesirable schedule can affect the nurse productivity, social life and the absenteeism can significantly as well affect patient's life. This paper aimed to enhance the scheduling process by utilizing the particle swarm optimization in order to solve nurse scheduling problem. The result shows that the generated multiple initial schedule is fulfilled the requirements and produces the lowest cost of constraint violation.

Keywords: nurse scheduling, particle swarm optimisation, nurse rostering, hard and soft constraint

Procedia PDF Downloads 373
1705 Research on the Renewal and Utilization of Space under the Bridge in Chongqing Based on Spatial Potential Evaluation

Authors: Xvelian Qin

Abstract:

Urban "organic renewal" based on the development of existing resources in high-density urban areas has become the mainstream of urban development in the new era. As an important stock resource of public space in high-density urban areas, promoting its value remodeling is an effective way to alleviate the shortage of public space resources. However, due to the lack of evaluation links in the process of underpass space renewal, a large number of underpass space resources have been left idle, facing the problems of low space conversion efficiency, lack of accuracy in development decision-making, and low adaptability of functional positioning to citizens' needs. Therefore, it is of great practical significance to construct the evaluation system of under-bridge space renewal potential and explore the renewal mode. In this paper, some of the under-bridge spaces in the main urban area of Chongqing are selected as the research object. Through the questionnaire interviews with the users of the built excellent space under the bridge, three types of six levels and twenty-two potential evaluation indexes of "objective demand factor, construction feasibility factor and construction suitability factor" are selected, including six levels of land resources, infrastructure, accessibility, safety, space quality and ecological environment. The analytical hierarchy process and expert scoring method are used to determine the index weight, construct the potential evaluation system of the space under the bridge in high-density urban areas of Chongqing, and explore the direction of renewal and utilization of its suitability. To provide feasible theoretical basis and scientific decision support for the use of under bridge space in the future.

Keywords: high density urban area, potential evaluation, space under bridge, updated using

Procedia PDF Downloads 70
1704 Damage Assessment and Repair for Older Brick Buildings

Authors: Tim D. Sass

Abstract:

The experience of engineers and architects practicing today is typically limited to current building code requirements and modern construction methods and materials. However, many cities have a mix of new and old buildings with many buildings constructed over one hundred years ago when building codes and construction methods were much different. When a brick building sustains damage, a structural engineer is often hired to determine the cause of damage as well as determine the necessary repairs. Forensic studies of dozens of brick buildings shows an appreciation of historical building methods and materials is needed to correctly identify the cause of damage and design an appropriate repair. Damage on an older, brick building can be mistakenly attributed to storms or seismic events when the real source of the damage is deficient original construction. Assessing and remediating damaged brickwork on older brick buildings requires an understanding of the original construction, an understanding of older repair methods, and, an understanding of current building code requirements.

Keywords: brick, damage, deterioration, facade

Procedia PDF Downloads 227
1703 Repair of Thermoplastic Composites for Structural Applications

Authors: Philippe Castaing, Thomas Jollivet

Abstract:

As a result of their advantages, i.e. recyclability, weld-ability, environmental compatibility, long (continuous) fiber thermoplastic composites (LFTPC) are increasingly used in many industrial sectors (mainly automotive and aeronautic) for structural applications. Indeed, in the next ten years, the environmental rules will put the pressure on the use of new structural materials like composites. In aerospace, more than 50% of the damage are due to stress impact and 85% of damage are repaired on the fuselage (fuselage skin panels and around doors). With the arrival of airplanes mainly of composite materials, replacement of sections or panels seems difficult economically speaking and repair becomes essential. The objective of the present study is to propose a solution of repair to prevent the replacement the damaged part in thermoplastic composites in order to recover the initial mechanical properties. The classification of impact damage is not so not easy : talking about low energy impact (less than 35 J) can be totally wrong when high speed or weak thicknesses as well as thermoplastic resins are considered. Crash and perforation with higher energy create important damages and the structures are replaced without repairing, so we just consider here damages due to impacts at low energy that are as follows for laminates : − Transverse cracking; − Delamination; − Fiber rupture. At low energy, the damages are barely visible but can nevertheless reduce significantly the mechanical strength of the part due to resin cracks while few fiber rupture is observed. The patch repair solution remains the standard one but may lead to the rupture of fibers and consequently creates more damages. That is the reason why we investigate the repair of thermoplastic composites impacted at low energy. Indeed, thermoplastic resins are interesting as they absorb impact energy through plastic strain. The methodology is as follows: - impact tests at low energy on thermoplastic composites; - identification of the damage by micrographic observations; - evaluation of the harmfulness of the damage; - repair by reconsolidation according to the extent of the damage ; -validation of the repair by mechanical characterization (compression). In this study, the impacts tests are performed at various levels of energy on thermoplastic composites (PA/C, PEEK/C and PPS/C woven 50/50 and unidirectional) to determine the level of impact energy creating damages in the resin without fiber rupture. We identify the extent of the damage by US inspection and micrographic observations in the plane part thickness. The samples were in addition characterized in compression to evaluate the loss of mechanical properties. Then the strategy of repair consists in reconsolidating the damaged parts by thermoforming, and after reconsolidation the laminates are characterized in compression for validation. To conclude, the study demonstrates the feasibility of the repair for low energy impact on thermoplastic composites as the samples recover their properties. At a first step of the study, the “repair” is made by reconsolidation on a thermoforming press but we could imagine a process in situ to reconsolidate the damaged parts.

Keywords: aerospace, automotive, composites, compression, damages, repair, structural applications, thermoplastic

Procedia PDF Downloads 304
1702 Sensitivity Parameter Analysis of Negative Moment Dynamic Load Allowance of Continuous T-Girder Bridge

Authors: Fan Yang, Ye-Lu Wang, Yang Zhao

Abstract:

The dynamic load allowance, as an application result of the vehicle-bridge coupled vibration theory, is an important parameter for bridge design and evaluation. Based on the coupled vehicle-bridge vibration theory, the current work establishes a full girder model of a dynamic load allowance, selects a planar five-degree-of-freedom three-axis vehicle model, solves the coupled vehicle-bridge dynamic response using the APDL language in the spatial finite element program ANSYS, selects the pivot point 2 sections as the representative of the negative moment section, and analyzes the effects of parameters such as travel speed, unevenness, vehicle frequency, span diameter, span number and forced displacement of the support on the negative moment dynamic load allowance through orthogonal tests. The influence of parameters such as vehicle speed, unevenness, vehicle frequency, span diameter, span number, and forced displacement of the support on the negative moment dynamic load allowance is analyzed by orthogonal tests, and the influence law of each influencing parameter is summarized. It is found that the effects of vehicle frequency, unevenness, and speed on the negative moment dynamic load allowance are significant, among which vehicle frequency has the greatest effect on the negative moment dynamic load allowance; the effects of span number and span diameter on the negative moment dynamic load allowance are relatively small; the effects of forced displacement of the support on the negative moment dynamic load allowance are negligible.

Keywords: continuous T-girder bridge, dynamic load allowance, sensitivity analysis, vehicle-bridge coupling

Procedia PDF Downloads 159
1701 Influence of Pier Modification Techniques for Reducing Scour around Bridge Piers

Authors: Rashid Farooq, Abdul Razzaq Ghumman, Hashim Nisar Hashmi

Abstract:

Bridge piers often fail all over the world and the whole structure may be endangered due to scouring phenomena. Scouring has been linked to catastrophic failures that lead into the loss of human lives. Various techniques have been employed to extenuate the scouring process in order to assist the bridge designs. Pier modifications plays vital role to control scouring at the vicinity of the pier. This experimental study aims at monitoring the effectiveness of pier modification and temporal development of scour depth around a bridge pier by providing a collar, a cable or openings under the same flow conditions. Provision of a collar around the octagonal pier reduced more scour depth than that for other two configurations. Providing a collar around the octagonal pier found to be the best in reducing scour. The scour depth in front of pier was found to be 19.5% less than that at the octagonal pier without any modifications. Similarly, the scour depth around the octagonal pier having provision of a cable was less than that at pier with provision of openings. The scour depth around an octagonal pier was also compared with a plain circular pier and found to be 9.1% less.

Keywords: Scour, octagonal pier, collar, cable

Procedia PDF Downloads 265
1700 Optimizing Bridge Deck Construction: A Deep Neural Network Approach for Limiting Exterior Grider Rotation

Authors: Li Hui, Riyadh Hindi

Abstract:

In the United States, bridge construction often employs overhang brackets to support the deck overhang, the weight of fresh concrete, and loads from construction equipment. This approach, however, can lead to significant torsional moments on the exterior girders, potentially causing excessive girder rotation. Such rotations can result in various safety and maintenance issues, including thinning of the deck, reduced concrete cover, and cracking during service. Traditionally, these issues are addressed by installing temporary lateral bracing systems and conducting comprehensive torsional analysis through detailed finite element analysis for the construction of bridge deck overhang. However, this process is often intricate and time-intensive, with the spacing between temporary lateral bracing systems usually relying on the field engineers’ expertise. In this study, a deep neural network model is introduced to limit exterior girder rotation during bridge deck construction. The model predicts the optimal spacing between temporary bracing systems. To train this model, over 10,000 finite element models were generated in SAP2000, incorporating varying parameters such as girder dimensions, span length, and types and spacing of lateral bracing systems. The findings demonstrate that the deep neural network provides an effective and efficient alternative for limiting the exterior girder rotation for bridge deck construction. By reducing dependence on extensive finite element analyses, this approach stands out as a significant advancement in improving safety and maintenance effectiveness in the construction of bridge decks.

Keywords: bridge deck construction, exterior girder rotation, deep learning, finite element analysis

Procedia PDF Downloads 62
1699 An Exploration of Renewal Utilization of Under-bridge Space Based on Spatial Potential Evaluation - Taking Chongqing Municipality as an Example

Authors: Xuelian Qin

Abstract:

Urban "organic renewal" based on the development of existing resources in high-density urban areas has become the mainstream of urban development in the new era. As an important stock resource of public space in high-density urban areas, promoting its value remodeling is an effective way to alleviate the shortage of public space resources. However, due to the lack of evaluation links in the process of underpass space renewal, a large number of underpass space resources have been left idle, facing the problems of low space conversion efficiency, lack of accuracy in development decision-making, and low adaptability of functional positioning to citizens' needs. Therefore, it is of great practical significance to construct the evaluation system of under-bridge space renewal potential and explore the renewal mode. In this paper, some of the under-bridge spaces in the main urban area of Chongqing are selected as the research object. Through the questionnaire interviews with the users of the built excellent space under the bridge, three types of six levels and twenty-two potential evaluation indexes of "objective demand factor, construction feasibility factor and construction suitability factor" are selected, including six levels of land resources, infrastructure, accessibility, safety, space quality and ecological environment. The analytical hierarchy process and expert scoring method are used to determine the index weight, construct the potential evaluation system of the space under the bridge in high-density urban areas of Chongqing, and explore the direction of renewal and utilization of its suitability. To provide feasible theoretical basis and scientific decision support for the use of under bridge space in the future.

Keywords: high density urban area, potential evaluation, space under bridge, updated using

Procedia PDF Downloads 95
1698 Translational and Rotational Effect of Earthquake Ground Motion on a Bridge Substructure

Authors: Tauhidur Rahman, Gitartha Kalita

Abstract:

In this study a four span box girder bridge is considered and effect of the rotational and translational earthquake ground motion have been thoroughly investigated. This study is motivated by the fact that in many countries the translational and rotational components of earthquake ground motion, especially rocking, is not adequately considered in analysing the overall response of the structures subjected to earthquake ground excitations. Much consideration is given to only the horizontal components of the earthquake ground motion during the response analysis of structures. In the present research work, P waves, SV waves and Rayleigh wave excitations are considered for different angle of incidence. In the present paper, the four span bridge is model considering the effects of vertical and rocking components of P, SV and Rayleigh wave excitations. Ground responses namely displacement, velocity and acceleration of the substructures of the bridge have been considered for rotational and translational effects in addition to the horizontal ground motion due to earthquake and wind.

Keywords: ground motion, response, rotational effects, translational effects

Procedia PDF Downloads 447
1697 Knowledge-Based Virtual Community System (KBVCS) for Enhancing Knowledge Sharing in Mechatronics System Diagnostic and Repair: A Case of Automobile

Authors: Adedeji W. Oyediran, Yekini N. Asafe

Abstract:

Mechatronics is synergistic integration of mechanical engineering, with electronics and intelligent computer control in the design and manufacturing of industrial products and processes. Automobile (auto car, motor car or car is a wheeled motor vehicle used for transporting passengers, which also carries its own engine or motor) is a mechatronic system which served as major means of transportation around the world. Virtually all community has a need for automobile. This makes automobile issues as related to diagnostic and repair interesting to all communities. Consequent to the diversification of skill in diagnosing automobile faults and approaches in solving some problems and innovation in automobile industry. It is appropriate to say that repair and diagnostic of automobile will be better enhanced if community has opportunity of sharing knowledge and idea globally. This paper discussed the desirable elements in automobile as mechatronics system and present conceptual framework of virtual community model for automobile users.

Keywords: automobile, automobile users, knowledge sharing, mechatronics system, virtual community

Procedia PDF Downloads 508
1696 A Topology-Based Dynamic Repair Strategy for Enhancing Urban Road Network Resilience under Flooding

Authors: Xuhui Lin, Qiuchen Lu, Yi An, Tao Yang

Abstract:

As global climate change intensifies, extreme weather events such as floods increasingly threaten urban infrastructure, making the vulnerability of urban road networks a pressing issue. Existing static repair strategies fail to adapt to the rapid changes in road network conditions during flood events, leading to inefficient resource allocation and suboptimal recovery. The main research gap lies in the lack of repair strategies that consider both the dynamic characteristics of networks and the progression of flood propagation. This paper proposes a topology-based dynamic repair strategy that adjusts repair priorities based on real-time changes in flood propagation and traffic demand. Specifically, a novel method is developed to assess and enhance the resilience of urban road networks during flood events. The method combines road network topological analysis, flood propagation modelling, and traffic flow simulation, introducing a local importance metric to dynamically evaluate the significance of road segments across different spatial and temporal scales. Using London's road network and rainfall data as a case study, the effectiveness of this dynamic strategy is compared to traditional and Transport for London (TFL) strategies. The most significant highlight of the research is that the dynamic strategy substantially reduced the number of stranded vehicles across different traffic demand periods, improving efficiency by up to 35.2%. The advantage of this method lies in its ability to adapt in real-time to changes in network conditions, enabling more precise resource allocation and more efficient repair processes. This dynamic strategy offers significant value to urban planners, traffic management departments, and emergency response teams, helping them better respond to extreme weather events like floods, enhance overall urban resilience, and reduce economic losses and social impacts.

Keywords: Urban resilience, road networks, flood response, dynamic repair strategy, topological analysis

Procedia PDF Downloads 35
1695 Influence of Prestress Loss on Mechanical Performance of Fabricated Girder Bridge

Authors: Wu Xiaoguang, Liu Jiaxin, Fang Miaomiao, Wei Saidong

Abstract:

There are many prestressed concrete prefabricated girder Bridges with small and medium span and the damage is serious. This paper mainly study the effect of prestress loss of prefabricated bridge bearing performance, through the establishment of ANSYS finite element model, from the condition of different prestress loss research, get the stress and strain data, draw curve, finally get the following conclusion: loss of prestress can reduce the ultimate bearing capacity of Bridges, the side span across the deflection value than the influence of times side span, the influence of the deflection in the midspan cross value. Therefore, the prestress loss and the effective prestress should be strictly considered in the design and construction process.

Keywords: across the deflection, loss of prestress, prefabricated girder bridge, the main tensile stress

Procedia PDF Downloads 148
1694 Comparison of Double Unit Tunnel Form Building before and after Repair and Retrofit under in-Plane Cyclic Loading

Authors: S. A. Anuar, N. H. Hamid, M. H. Hashim, S. M. D. Salleh

Abstract:

This paper present the experimental work on the seismic performance of double unit tunnel form building (TFB) subjected to in-plane lateral cyclic loading. A one third scale of 3-storey double unit of TFB is tested at ±0.01%, ±0.1%, ±0.25%, ±0.5%, ±0.75% and ±1.0% drifts until the structure achieves its strength degradation. After that, the TFB is repaired and retrofitted using additional shear wall, steel angle and CFRP sheet. A similar testing approach is applied to the specimen after repair and retrofit. The crack patterns, lateral strength, stiffness, ductility and equivalent viscous damping (EVD) were analyzed and compared before and after repair and retrofit. The result indicates that the lateral strength increases by 22 in pushing direction and 27% in pulling direction. Moreover, the stiffness and ductility obtained before and after retrofit increase tremendously by 87.87% and 39.66%, respectively. Meanwhile, the energy absorption measured by equivalent viscous damping obtained after retrofit increase by 12.34% in pulling direction. It can be concluded that the proposed retrofit method is capable to increase the lateral strength capacity, stiffness and energy absorption of double unit TFB.

Keywords: tunnel form building, in-plane lateral cyclic loading, crack pattern, lateral strength, stiffness, ductility, equivalent viscous damping, repair and retrofit

Procedia PDF Downloads 352
1693 Enzymatic Repair Prior To DNA Barcoding, Aspirations, and Restraints

Authors: Maxime Merheb, Rachel Matar

Abstract:

Retrieving ancient DNA sequences which in return permit the entire genome sequencing from fossils have extraordinarily improved in recent years, thanks to sequencing technology and other methodological advances. In any case, the quest to search for ancient DNA is still obstructed by the damage inflicted on DNA which accumulates after the death of a living organism. We can characterize this damage into three main categories: (i) Physical abnormalities such as strand breaks which lead to the presence of short DNA fragments. (ii) Modified bases (mainly cytosine deamination) which cause errors in the sequence due to an incorporation of a false nucleotide during DNA amplification. (iii) DNA modifications referred to as blocking lesions, will halt the PCR extension which in return will also affect the amplification and sequencing process. We can clearly see that the issues arising from breakage and coding errors were significantly decreased in recent years. Fast sequencing of short DNA fragments was empowered by platforms for high-throughput sequencing, most of the coding errors were uncovered to be the consequences of cytosine deamination which can be easily removed from the DNA using enzymatic treatment. The methodology to repair DNA sequences is still in development, it can be basically explained by the process of reintroducing cytosine rather than uracil. This technique is thus restricted to amplified DNA molecules. To eliminate any type of damage (particularly those that block PCR) is a process still pending the complete repair methodologies; DNA detection right after extraction is highly needed. Before using any resources into extensive, unreasonable and uncertain repair techniques, it is vital to distinguish between two possible hypotheses; (i) DNA is none existent to be amplified to begin with therefore completely un-repairable, (ii) the DNA is refractory to PCR and it is worth to be repaired and amplified. Hence, it is extremely important to develop a non-enzymatic technique to detect the most degraded DNA.

Keywords: ancient DNA, DNA barcodong, enzymatic repair, PCR

Procedia PDF Downloads 400
1692 A Comprehensive Approach to Scour Depth Estimation Through HEC-RAS 2D and Physical Modeling

Authors: Ashvinie Thembiliyagoda, Kasun De Silva, Nimal Wijayaratna

Abstract:

The lowering of the riverbed level as a result of water erosion is termed as scouring. This phenomenon remarkably undermines the potential stability of the bridge pier, causing a threat of failure or collapse. The formation of vortices in the vicinity of bridges due to the obstruction caused by river flow is the main reason behind this pursuit. Scouring is aggravated by factors including high flow rates, bridge pier geometry, sediment configuration etc. Tackling scour-related problems when they become severe is more costly and disruptive compared to implementing preventive measures based on predicted scour depths. This paper presents a comprehensive investigation of the development of a numerical model that could reproduce the scouring effect around bridge piers and estimate the scour depth. The numerical model was developed for one selected bridge in Sri Lanka, the Kelanisiri Bridge. HEC-RAS two-dimensional (2D) modeling approach was utilized for the development of the model and was calibrated and validated with field data. To further enhance the reliability of the model, a physical model was developed, allowing for additional validation. Results from the numerical model were compared with those obtained from the physical model, revealing a strong correlation between the two methods and confirming the numerical model's accuracy in predicting scour depths. The findings from this study underscore the ability of the HEC-RAS two-dimensional modeling approach for the estimation of scour depth around bridge piers. The developed model is able to estimate the scour depth under varying flow conditions, and its flexibility allows it to be adapted for application to other bridges with similar hydraulic and geomorphological conditions, providing a robust tool for widespread use in scour estimation. The developed two-dimensional model not only offers reliable predictions for the case study bridge but also holds significant potential for broader implementation, contributing to the improved design and maintenance of bridge structures in diverse environments.

Keywords: piers, scouring, HEC-RAS, physical model

Procedia PDF Downloads 14
1691 Visual and Clinical Outcome in Patients with Corneal Lacerations

Authors: Avantika Verma

Abstract:

In industrialized nations, corneal lacerations are one of the most common reason for hospitalization. This study was designed to study visual and clinical outcome in patients presenting with full thickness corneal lacerations in Indian population and to ascertain the impact of various preoperative and operative factors influencing prognosis after repair of corneal lacerations. Males in third decade with injuries at work with metallic objects were common. Lens damage, hyphema, vitreous hemorrhage, retinal detachment and endophthalmitis were seen. All the patients underwent primary repair within first 24 hours of presentation. At 3 months, 74.3% had a good visual outcome. About 5.7% of patients had no perception of light.In conclusion, various demographic and preoperative factors like age, time of presentation, vision at presentation, length of corneal wound, involvement of visual axis, associated ocular features like hyphaema, lenticular changes, vitreous haemorrhage and retinal detachment are significant prognostic indicators for final visual outcome.

Keywords: corneal laceration, corneal wound repair, injury, visual outcome

Procedia PDF Downloads 357