Search results for: logic modeling
4400 Dynamic Modeling of Energy Systems Adapted to Low Energy Buildings in Lebanon
Authors: Nadine Yehya, Chantal Maatouk
Abstract:
Low energy buildings have been developed to achieve global climate commitments in reducing energy consumption. They comprise energy efficient buildings, zero energy buildings, positive buildings and passive house buildings. The reduced energy demands in Low Energy buildings call for advanced building energy modeling that focuses on studying active building systems such as heating, cooling and ventilation, improvement of systems performances, and development of control systems. Modeling and building simulation have expanded to cover different modeling approach i.e.: detailed physical model, dynamic empirical models, and hybrid approaches, which are adopted by various simulation tools. This paper uses DesignBuilder with EnergyPlus simulation engine in order to; First, study the impact of efficiency measures on building energy behavior by comparing Low energy residential model to a conventional one in Beirut-Lebanon. Second, choose the appropriate energy systems for the studied case characterized by an important cooling demand. Third, study dynamic modeling of Variable Refrigerant Flow (VRF) system in EnergyPlus that is chosen due to its advantages over other systems and its availability in the Lebanese market. Finally, simulation of different energy systems models with different modeling approaches is necessary to confront the different modeling approaches and to investigate the interaction between energy systems and building envelope that affects the total energy consumption of Low Energy buildings.Keywords: physical model, variable refrigerant flow heat pump, dynamic modeling, EnergyPlus, the modeling approach
Procedia PDF Downloads 2224399 Consensus-Oriented Analysis Model for Knowledge Management Failure Evaluation in Uncertain Environment
Authors: Amir Ghasem Norouzi, Mahdi Zowghi
Abstract:
This study propose a framework based on the fuzzy T-Norms, T-conorm, a novel operator, and multi-expert approach to help organizations build awareness of the critical influential factors on the success of knowledge management (KM) implementation, analysis the failure of knowledge management. This study considers the complex uncertainty concept that is in knowledge management implementing capability (KMIC) and it is used by fuzzy logic for this reason. The contribution of our paper is shown with an empirical study in a nonprofit educational organization evaluation.Keywords: fuzzy logic, knowledge management, multi expert analysis, consensus oriented average operator
Procedia PDF Downloads 6284398 Multiple Negative-Differential Resistance Regions Based on AlN/GaN Resonant Tunneling Structures by the Vertical Growth of Molecular Beam Epitaxy
Authors: Yao Jiajia, Wu Guanlin, LIU Fang, Xue Junshuai, Zhang Jincheng, Hao Yue
Abstract:
Resonant tunneling diodes (RTDs) based on GaN have been extensively studied. However, no results of multiple logic states achieved by RTDs were reported by the methods of epitaxy in the GaN materials. In this paper, the multiple negative-differential resistance regions by combining two discrete double-barrier RTDs in series have been first demonstrated. Plasma-assisted molecular beam epitaxy (PA-MBE) was used to grow structures consisting of two vertical RTDs. The substrate was a GaN-on-sapphire template. Each resonant tunneling structure was composed of a double barrier of AlN and a single well of GaN with undoped 4-nm space layers of GaN on each side. The AlN barriers were 1.5 nm thick, and the GaN well was 2 nm thick. The resonant tunneling structures were separated from each other by 30-nm thick n+ GaN layers. The bottom and top layers of the structures, grown neighboring to the spacer layers that consist of 200-nm-thick n+ GaN. These devices with two tunneling structures exhibited uniform peaks and valleys current and also had two negative differential resistance NDR regions equally spaced in bias voltage. The current-voltage (I-V) characteristics of resonant tunneling structures with diameters of 1 and 2 μm were analyzed in this study. These structures exhibit three stable operating points, which are investigated in detail. This research demonstrates that using molecular beam epitaxy MBE to vertically grow multiple resonant tunneling structures is a promising method for achieving multiple negative differential resistance regions and stable logic states. These findings have significant implications for the development of digital circuits capable of multi-value logic, which can be achieved with a small number of devices.Keywords: GaN, AlN, RTDs, MBE, logic state
Procedia PDF Downloads 924397 Fuzzy Inference Based Modelling of Perception Reaction Time of Drivers
Authors: U. Chattaraj, K. Dhusiya, M. Raviteja
Abstract:
Perception reaction time of drivers is an outcome of human thought process, which is vague and approximate in nature and also varies from driver to driver. So, in this study a fuzzy logic based model for prediction of the same has been presented, which seems suitable. The control factors, like, age, experience, intensity of driving of the driver, speed of the vehicle and distance of stimulus have been considered as premise variables in the model, in which the perception reaction time is the consequence variable. Results show that the model is able to explain the impacts of the control factors on perception reaction time properly.Keywords: driver, fuzzy logic, perception reaction time, premise variable
Procedia PDF Downloads 3054396 A Comparative Study of the Maximum Power Point Tracking Methods for PV Systems Using Boost Converter
Authors: M. Doumi, A. Miloudi, A.G. Aissaoui, K. Tahir, C. Belfedal, S. Tahir
Abstract:
The studies on the photovoltaic system are extensively increasing because of a large, secure, essentially exhaustible and broadly available resource as a future energy supply. However, the output power induced in the photovoltaic modules is influenced by an intensity of solar cell radiation, temperature of the solar cells and so on. Therefore, to maximize the efficiency of the photovoltaic system, it is necessary to track the maximum power point of the PV array, for this Maximum Power Point Tracking (MPPT) technique is used. These algorithms are based on the Perturb-Observe, Conductance-Increment and the Fuzzy Logic methods. These techniques vary in many aspects as: simplicity, convergence speed, digital or analogical implementation, sensors required, cost, range of effectiveness, and in other aspects. This paper presents a comparative study of three widely-adopted MPPT algorithms; their performance is evaluated on the energy point of view, by using the simulation tool Simulink®, considering different solar irradiance variations. MPPT using fuzzy logic shows superior performance and more reliable control to the other methods for this application.Keywords: photovoltaic system, MPPT, perturb and observe (P&O), incremental conductance (INC), Fuzzy Logic (FLC)
Procedia PDF Downloads 4114395 Use of Fuzzy Logic in the Corporate Reputation Assessment: Stock Market Investors’ Perspective
Authors: Tomasz L. Nawrocki, Danuta Szwajca
Abstract:
The growing importance of reputation in building enterprise value and achieving long-term competitive advantage creates the need for its measurement and evaluation for the management purposes (effective reputation and its risk management). The paper presents practical application of self-developed corporate reputation assessment model from the viewpoint of stock market investors. The model has a pioneer character and example analysis performed for selected industry is a form of specific test for this tool. In the proposed solution, three aspects - informational, financial and development, as well as social ones - were considered. It was also assumed that the individual sub-criteria will be based on public sources of information, and as the calculation apparatus, capable of obtaining synthetic final assessment, fuzzy logic will be used. The main reason for developing this model was to fulfill the gap in the scope of synthetic measure of corporate reputation that would provide higher degree of objectivity by relying on "hard" (not from surveys) and publicly available data. It should be also noted that results obtained on the basis of proposed corporate reputation assessment method give possibilities of various internal as well as inter-branch comparisons and analysis of corporate reputation impact.Keywords: corporate reputation, fuzzy logic, fuzzy model, stock market investors
Procedia PDF Downloads 2484394 The Targeting Logic of Terrorist Groups in the Sahel
Authors: Mathieu Bere
Abstract:
Al-Qaeda and Islamic State-affiliated groups such as Ja’amat Nusra al Islam Wal Muslimim (JNIM) and the Islamic State-Greater Sahara Faction, which is now part of the Boko Haram splinter group, Islamic State in West Africa, were responsible, between 2018 and 2020, for at least 1.333 violent incidents against both military and civilian targets, including the assassination and kidnapping for ransom of Western citizens in Mali, Burkina Faso and Niger, the Central Sahel. Protecting civilians from the terrorist violence that is now spreading from the Sahel to the coastal countries of West Africa has been very challenging, mainly because of the many unknowns that surround the perpetrators. To contribute to a better protection of civilians in the region, this paper aims to shed light on the motivations and targeting logic of jihadist perpetrators of terrorist violence against civilians in the central Sahel region. To that end, it draws on relevant secondary data retrieved from datasets, the media, and the existing literature, but also on primary data collected through interviews and surveys in Burkina Faso. An analysis of the data with the support of qualitative and statistical analysis software shows that military and rational strategic motives, more than purely ideological or religious motives, have been the main drivers of terrorist violence that strategically targeted government symbols and representatives as well as local leaders in the central Sahel. Behind this targeting logic, the jihadist grand strategy emerges: wiping out the Western-inspired legal, education and governance system in order to replace it with an Islamic, sharia-based political, legal, and educational system.Keywords: terrorism, jihadism, Sahel, targeting logic
Procedia PDF Downloads 884393 Applying Neural Networks for Solving Record Linkage Problem via Fuzzy Description Logics
Authors: Mikheil Kalmakhelidze
Abstract:
Record linkage (RL) problem has become more and more important in recent years due to the growing interest towards big data analysis. The problem can be formulated in a very simple way: Given two entries a and b of a database, decide whether they represent the same object or not. There are two classical deterministic and probabilistic ways of solving the RL problem. Using simple Bayes classifier in many cases produces useful results but sometimes they show to be poor. In recent years several successful approaches have been made towards solving specific RL problems by neural network algorithms including single layer perception, multilayer back propagation network etc. In our work, we model the RL problem for specific dataset of student applications in fuzzy description logic (FDL) where linkage of specific pair (a,b) depends on the truth value of corresponding formula A(a,b) in a canonical FDL model. As a main result, we build neural network for deciding truth value of FDL formulas in a canonical model and thus link RL problem to machine learning. We apply the approach to dataset with 10000 entries and also compare to classical RL solving approaches. The results show to be more accurate than standard probabilistic approach.Keywords: description logic, fuzzy logic, neural networks, record linkage
Procedia PDF Downloads 2744392 Parametric Appraisal of Robotic Arc Welding of Mild Steel Material by Principal Component Analysis-Fuzzy with Taguchi Technique
Authors: Amruta Rout, Golak Bihari Mahanta, Gunji Bala Murali, Bibhuti Bhusan Biswal, B. B. V. L. Deepak
Abstract:
The use of industrial robots for performing welding operation is one of the chief sign of contemporary welding in these days. The weld joint parameter and weld process parameter modeling is one of the most crucial aspects of robotic welding. As weld process parameters affect the weld joint parameters differently, a multi-objective optimization technique has to be utilized to obtain optimal setting of weld process parameter. In this paper, a hybrid optimization technique, i.e., Principal Component Analysis (PCA) combined with fuzzy logic has been proposed to get optimal setting of weld process parameters like wire feed rate, welding current. Gas flow rate, welding speed and nozzle tip to plate distance. The weld joint parameters considered for optimization are the depth of penetration, yield strength, and ultimate strength. PCA is a very efficient multi-objective technique for converting the correlated and dependent parameters into uncorrelated and independent variables like the weld joint parameters. Also in this approach, no need for checking the correlation among responses as no individual weight has been assigned to responses. Fuzzy Inference Engine can efficiently consider these aspects into an internal hierarchy of it thereby overcoming various limitations of existing optimization approaches. At last Taguchi method is used to get the optimal setting of weld process parameters. Therefore, it has been concluded the hybrid technique has its own advantages which can be used for quality improvement in industrial applications.Keywords: robotic arc welding, weld process parameters, weld joint parameters, principal component analysis, fuzzy logic, Taguchi method
Procedia PDF Downloads 1804391 Fuzzy Time Series- Markov Chain Method for Corn and Soybean Price Forecasting in North Carolina Markets
Authors: Selin Guney, Andres Riquelme
Abstract:
Among the main purposes of optimal and efficient forecasts of agricultural commodity prices is to guide the firms to advance the economic decision making process such as planning business operations and marketing decisions. Governments are also the beneficiaries and suppliers of agricultural price forecasts. They use this information to establish a proper agricultural policy, and hence, the forecasts affect social welfare and systematic errors in forecasts could lead to a misallocation of scarce resources. Various empirical approaches have been applied to forecast commodity prices that have used different methodologies. Most commonly-used approaches to forecast commodity sectors depend on classical time series models that assume values of the response variables are precise which is quite often not true in reality. Recently, this literature has mostly evolved to a consideration of fuzzy time series models that provide more flexibility in terms of the classical time series models assumptions such as stationarity, and large sample size requirement. Besides, fuzzy modeling approach allows decision making with estimated values under incomplete information or uncertainty. A number of fuzzy time series models have been developed and implemented over the last decades; however, most of them are not appropriate for forecasting repeated and nonconsecutive transitions in the data. The modeling scheme used in this paper eliminates this problem by introducing Markov modeling approach that takes into account both the repeated and nonconsecutive transitions. Also, the determination of length of interval is crucial in terms of the accuracy of forecasts. The problem of determining the length of interval arbitrarily is overcome and a methodology to determine the proper length of interval based on the distribution or mean of the first differences of series to improve forecast accuracy is proposed. The specific purpose of this paper is to propose and investigate the potential of a new forecasting model that integrates methodologies for determining the proper length of interval based on the distribution or mean of the first differences of series and Fuzzy Time Series- Markov Chain model. Moreover, the accuracy of the forecasting performance of proposed integrated model is compared to different univariate time series models and the superiority of proposed method over competing methods in respect of modelling and forecasting on the basis of forecast evaluation criteria is demonstrated. The application is to daily corn and soybean prices observed at three commercially important North Carolina markets; Candor, Cofield and Roaring River for corn and Fayetteville, Cofield and Greenville City for soybeans respectively. One main conclusion from this paper is that using fuzzy logic improves the forecast performance and accuracy; the effectiveness and potential benefits of the proposed model is confirmed with small selection criteria value such MAPE. The paper concludes with a discussion of the implications of integrating fuzzy logic and nonarbitrary determination of length of interval for the reliability and accuracy of price forecasts. The empirical results represent a significant contribution to our understanding of the applicability of fuzzy modeling in commodity price forecasts.Keywords: commodity, forecast, fuzzy, Markov
Procedia PDF Downloads 2184390 Analysis of Genomics Big Data in Cloud Computing Using Fuzzy Logic
Authors: Mohammad Vahed, Ana Sadeghitohidi, Majid Vahed, Hiroki Takahashi
Abstract:
In the genomics field, the huge amounts of data have produced by the next-generation sequencers (NGS). Data volumes are very rapidly growing, as it is postulated that more than one billion bases will be produced per year in 2020. The growth rate of produced data is much faster than Moore's law in computer technology. This makes it more difficult to deal with genomics data, such as storing data, searching information, and finding the hidden information. It is required to develop the analysis platform for genomics big data. Cloud computing newly developed enables us to deal with big data more efficiently. Hadoop is one of the frameworks distributed computing and relies upon the core of a Big Data as a Service (BDaaS). Although many services have adopted this technology, e.g. amazon, there are a few applications in the biology field. Here, we propose a new algorithm to more efficiently deal with the genomics big data, e.g. sequencing data. Our algorithm consists of two parts: First is that BDaaS is applied for handling the data more efficiently. Second is that the hybrid method of MapReduce and Fuzzy logic is applied for data processing. This step can be parallelized in implementation. Our algorithm has great potential in computational analysis of genomics big data, e.g. de novo genome assembly and sequence similarity search. We will discuss our algorithm and its feasibility.Keywords: big data, fuzzy logic, MapReduce, Hadoop, cloud computing
Procedia PDF Downloads 3004389 An Online 3D Modeling Method Based on a Lossless Compression Algorithm
Authors: Jiankang Wang, Hongyang Yu
Abstract:
This paper proposes a portable online 3D modeling method. The method first utilizes a depth camera to collect data and compresses the depth data using a frame-by-frame lossless data compression method. The color image is encoded using the H.264 encoding format. After the cloud obtains the color image and depth image, a 3D modeling method based on bundlefusion is used to complete the 3D modeling. The results of this study indicate that this method has the characteristics of portability, online, and high efficiency and has a wide range of application prospects.Keywords: 3D reconstruction, bundlefusion, lossless compression, depth image
Procedia PDF Downloads 824388 Study of Two MPPTs for Photovoltaic Systems Using Controllers Based in Fuzzy Logic and Sliding Mode
Authors: N. Ould cherchali, M. S. Boucherit, L. Barazane, A. Morsli
Abstract:
Photovoltaic power is widely used to supply isolated or unpopulated areas (lighting, pumping, etc.). Great advantage is that this source is inexhaustible, it offers great safety in use and it is clean. But the dynamic models used to describe a photovoltaic system are complicated and nonlinear and due to nonlinear I-V and P–V characteristics of photovoltaic generators, a maximum power point tracking technique (MPPT) is required to maximize the output power. In this paper, two online techniques of maximum power point tracking using robust controller for photovoltaic systems are proposed, the first technique use fuzzy logic controller (FLC) and the second use sliding mode controller (SMC) for photovoltaic systems. The two maximum power point tracking controllers receive the partial derivative of power as inputs, and the output is the duty cycle corresponding to maximum power. A Photovoltaic generator with Boost converter is developed using MATLAB/Simulink to verify the preferences of the proposed techniques. SMC technique provides a good tracking speed in fast changing irradiation and when the irradiation changes slowly or is constant the panel power of FLC technique presents a much smoother signal with less fluctuations.Keywords: fuzzy logic controller, maximum power point, photovoltaic system, tracker, sliding mode controller
Procedia PDF Downloads 5484387 Systems Versioning: A Features-Based Meta-Modeling Approach
Authors: Ola A. Younis, Said Ghoul
Abstract:
Systems running these days are huge, complex and exist in many versions. Controlling these versions and tracking their changes became a very hard process as some versions are created using meaningless names or specifications. Many versions of a system are created with no clear difference between them. This leads to mismatching between a user’s request and the version he gets. In this paper, we present a system versions meta-modeling approach that produces versions based on system’s features. This model reduced the number of steps needed to configure a release and gave each version its unique specifications. This approach is applicable for systems that use features in its specification.Keywords: features, meta-modeling, semantic modeling, SPL, VCS, versioning
Procedia PDF Downloads 4464386 Object-Oriented Programming for Modeling and Simulation of Systems in Physiology
Authors: J. Fernandez de Canete
Abstract:
Object-oriented modeling is spreading in the current simulation of physiological systems through the use of the individual components of the model and its interconnections to define the underlying dynamic equations. In this paper, we describe the use of both the SIMSCAPE and MODELICA simulation environments in the object-oriented modeling of the closed-loop cardiovascular system. The performance of the controlled system was analyzed by simulation in light of the existing hypothesis and validation tests previously performed with physiological data. The described approach represents a valuable tool in the teaching of physiology for graduate medical students.Keywords: object-oriented modeling, SIMSCAPE simulation language, MODELICA simulation language, cardiovascular system
Procedia PDF Downloads 5074385 Modeling of the Attitude Control Reaction Wheels of a Spacecraft in Software in the Loop Test Bed
Authors: Amr AbdelAzim Ali, G. A. Elsheikh, Moutaz M. Hegazy
Abstract:
Reaction wheels (RWs) are generally used as main actuator in the attitude control system (ACS) of spacecraft (SC) for fast orientation and high pointing accuracy. In order to achieve the required accuracy for the RWs model, the main characteristics of the RWs that necessitate analysis during the ACS design phase include: technical features, sequence of operating and RW control logic are included in function (behavior) model. A mathematical model is developed including the various errors source. The errors in control torque including relative, absolute, and error due to time delay. While the errors in angular velocity due to differences between average and real speed, resolution error, loose in installation of angular sensor, and synchronization errors. The friction torque is presented in the model include the different feature of friction phenomena: steady velocity friction, static friction and break-away torque, and frictional lag. The model response is compared with the experimental torque and frequency-response characteristics of tested RWs. Based on the created RW model, some criteria of optimization based control torque allocation problem can be recommended like: avoiding the zero speed crossing, bias angular velocity, or preventing wheel from running on the same angular velocity.Keywords: friction torque, reaction wheels modeling, software in the loop, spacecraft attitude control
Procedia PDF Downloads 2664384 Impact of Mathematical Modeling on Mathematics Achievement, Attitude, and Interest of Pre-Service Teachers in Niger State, Nigeria
Authors: Mohammed Abubakar Ndanusa, A. A. Hassan, R. W. Gimba, A. M. Alfa, M. T. Abari
Abstract:
This study investigated the Impact of Mathematical Modeling on Mathematics Achievement, Attitude and Interest of Pre-Service Teachers in Niger States, Nigeria. It was an attempt to ease students’ difficulties in comprehending mathematics. The study used randomized pretest, posttest control group design. Two Colleges of Education were purposively selected from Niger State with a sample size of eighty-four 84 students. Three research instruments used are Mathematical Modeling Achievement Test (MMAT), Attitudes Towards Mathematical Modeling Questionnaire (ATMMQ) and Mathematical Modeling Students Interest Questionnaire (MMSIQ). Pearson Product Moment Correlation (PPMC) formula was used for MMAT and Alpha Cronbach was used for ATMMQ and MMSIQ to determine their reliability coefficient and the values the following values were obtained respectively 0.76, 0.75 and 0.73. Independent t-test statistics was used to test hypothesis One while Mann Whitney U-test was used to test hypothesis Two and Three. Findings revealed that students taught Mathematics using Mathematical Modeling performed better than their counterparts taught using lecture method. However, there was a significant difference in the attitude and interest of pre-service mathematics teachers after being exposed to mathematical modeling. The strategy, therefore, was recommended to be used by Mathematics teachers with a view to improving students’ attitude and interest towards Mathematics. Also, modeling should be taught at NCE level in order to prepare pre-service teachers towards real task in the field of Mathematics.Keywords: achievement, attitude, interest, mathematical modeling, pre-service teachers
Procedia PDF Downloads 3054383 Factors Impacting Geostatistical Modeling Accuracy and Modeling Strategy of Fluvial Facies Models
Authors: Benbiao Song, Yan Gao, Zhuo Liu
Abstract:
Geostatistical modeling is the key technic for reservoir characterization, the quality of geological models will influence the prediction of reservoir performance greatly, but few studies have been done to quantify the factors impacting geostatistical reservoir modeling accuracy. In this study, 16 fluvial prototype models have been established to represent different geological complexity, 6 cases range from 16 to 361 wells were defined to reproduce all those 16 prototype models by different methodologies including SIS, object-based and MPFS algorithms accompany with different constraint parameters. Modeling accuracy ratio was defined to quantify the influence of each factor, and ten realizations were averaged to represent each accuracy ratio under the same modeling condition and parameters association. Totally 5760 simulations were done to quantify the relative contribution of each factor to the simulation accuracy, and the results can be used as strategy guide for facies modeling in the similar condition. It is founded that data density, geological trend and geological complexity have great impact on modeling accuracy. Modeling accuracy may up to 90% when channel sand width reaches up to 1.5 times of well space under whatever condition by SIS and MPFS methods. When well density is low, the contribution of geological trend may increase the modeling accuracy from 40% to 70%, while the use of proper variogram may have very limited contribution for SIS method. It can be implied that when well data are dense enough to cover simple geobodies, few efforts were needed to construct an acceptable model, when geobodies are complex with insufficient data group, it is better to construct a set of robust geological trend than rely on a reliable variogram function. For object-based method, the modeling accuracy does not increase obviously as SIS method by the increase of data density, but kept rational appearance when data density is low. MPFS methods have the similar trend with SIS method, but the use of proper geological trend accompany with rational variogram may have better modeling accuracy than MPFS method. It implies that the geological modeling strategy for a real reservoir case needs to be optimized by evaluation of dataset, geological complexity, geological constraint information and the modeling objective.Keywords: fluvial facies, geostatistics, geological trend, modeling strategy, modeling accuracy, variogram
Procedia PDF Downloads 2644382 Structural Equation Modeling Semiparametric in Modeling the Accuracy of Payment Time for Customers of Credit Bank in Indonesia
Authors: Adji Achmad Rinaldo Fernandes
Abstract:
The research was conducted to apply semiparametric SEM modeling to the timeliness of paying credit. Semiparametric SEM is structural modeling in which two combined approaches of parametric and nonparametric approaches are used. The analysis method in this research is semiparametric SEM with a nonparametric approach using a truncated spline. The data in the study were obtained through questionnaires distributed to Bank X mortgage debtors and are confidential. The study used 3 variables consisting of one exogenous variable, one intervening endogenous variable, and one endogenous variable. The results showed that (1) the effect of capacity and willingness to pay variables on timeliness of payment is significant, (2) modeling the capacity variable on willingness to pay also produces a significant estimate, (3) the effect of the capacity variable on the timeliness of payment variable is not influenced by the willingness to pay variable as an intervening variable, (4) the R^2 value of 0.763 or 76.33% indicates that the model has good predictive relevance.Keywords: structural equation modeling semiparametric, credit bank, accuracy of payment time, willingness to pay
Procedia PDF Downloads 474381 Modeling and Shape Prediction for Elastic Kinematic Chains
Authors: Jiun Jeon, Byung-Ju Yi
Abstract:
This paper investigates modeling and shape prediction of elastic kinematic chains such as colonoscopy. 2D and 3D models of elastic kinematic chains are suggested and their behaviors are demonstrated through simulation. To corroborate the effectiveness of those models, experimental work is performed using a magnetic sensor system.Keywords: elastic kinematic chain, shape prediction, colonoscopy, modeling
Procedia PDF Downloads 6064380 Modeling and Simulation of Standalone Photovoltaic Charging Stations for Electric Vehicles
Authors: R. Mkahl, A. Nait-Sidi-Moh, M. Wack
Abstract:
Batteries of electric vehicles (BEV) are becoming more attractive with the advancement of new battery technologies and promotion of electric vehicles. BEV batteries are recharged on board vehicles using either the grid (G2V for Grid to Vehicle) or renewable energies in a stand-alone application (H2V for Home to Vehicle). This paper deals with the modeling, sizing and control of a photo voltaic stand-alone application that can charge the BEV at home. The modeling approach and developed mathematical models describing the system components are detailed. Simulation and experimental results are presented and commented.Keywords: electric vehicles, photovoltaic energy, lead-acid batteries, charging process, modeling, simulation, experimental tests
Procedia PDF Downloads 4454379 Geometric Design to Improve the Temperature
Authors: H. Ghodbane, A. A. Taleb, O. Kraa
Abstract:
This paper presents geometric design of induction heating system. The objective of this design is to improve the temperature distribution in the load. The study of such a device requires the use of models or modeling representation, physical, mathematical, and numerical. This modeling is the basis of the understanding, the design, and optimization of these systems. The optimization technique is to find values of variables that maximize or minimize the objective function.Keywords: optimization, modeling, geometric design system, temperature increase
Procedia PDF Downloads 5304378 Review of Transportation Modeling Software
Authors: Hassan M. Al-Ahmadi, Hamad Bader Almobayedh
Abstract:
Planning for urban transportation is essential for developing effective and sustainable transportation networks that meet the needs of various communities. Advanced modeling software is required for effective transportation planning, management, and optimization. This paper compares PTV VISUM, Aimsun, TransCAD, and Emme, four industry-leading software tools for transportation planning and modeling. Each software has strengths and limitations, and the project's needs, financial constraints, and level of technical expertise influence the choice of software. Transportation experts can design and improve urban transportation systems that are effective, sustainable, and meet the changing needs of their communities by utilizing these software tools.Keywords: PTV VISUM, Aimsun, TransCAD, transportation modeling software
Procedia PDF Downloads 334377 Logic Programming and Artificial Neural Networks in Pharmacological Screening of Schinus Essential Oils
Authors: José Neves, M. Rosário Martins, Fátima Candeias, Diana Ferreira, Sílvia Arantes, Júlio Cruz-Morais, Guida Gomes, Joaquim Macedo, António Abelha, Henrique Vicente
Abstract:
Some plants of genus Schinus have been used in the folk medicine as topical antiseptic, digestive, purgative, diuretic, analgesic or antidepressant, and also for respiratory and urinary infections. Chemical composition of essential oils of S. molle and S. terebinthifolius had been evaluated and presented high variability according with the part of the plant studied and with the geographic and climatic regions. The pharmacological properties, namely antimicrobial, anti-tumoural and anti-inflammatory activities are conditioned by chemical composition of essential oils. Taking into account the difficulty to infer the pharmacological properties of Schinus essential oils without hard experimental approach, this work will focus on the development of a decision support system, in terms of its knowledge representation and reasoning procedures, under a formal framework based on Logic Programming, complemented with an approach to computing centered on Artificial Neural Networks and the respective Degree-of-Confidence that one has on such an occurrence.Keywords: artificial neuronal networks, essential oils, knowledge representation and reasoning, logic programming, Schinus molle L., Schinus terebinthifolius Raddi
Procedia PDF Downloads 5454376 An Implementation of Fuzzy Logic Technique for Prediction of the Power Transformer Faults
Authors: Omar M. Elmabrouk., Roaa Y. Taha., Najat M. Ebrahim, Sabbreen A. Mohammed
Abstract:
Power transformers are the most crucial part of power electrical system, distribution and transmission grid. This part is maintained using predictive or condition-based maintenance approach. The diagnosis of power transformer condition is performed based on Dissolved Gas Analysis (DGA). There are five main methods utilized for analyzing these gases. These methods are International Electrotechnical Commission (IEC) gas ratio, Key Gas, Roger gas ratio, Doernenburg, and Duval Triangle. Moreover, due to the importance of the transformers, there is a need for an accurate technique to diagnose and hence predict the transformer condition. The main objective of this technique is to avoid the transformer faults and hence to maintain the power electrical system, distribution and transmission grid. In this paper, the DGA was utilized based on the data collected from the transformer records available in the General Electricity Company of Libya (GECOL) which is located in Benghazi-Libya. The Fuzzy Logic (FL) technique was implemented as a diagnostic approach based on IEC gas ratio method. The FL technique gave better results and approved to be used as an accurate prediction technique for power transformer faults. Also, this technique is approved to be a quite interesting for the readers and the concern researchers in the area of FL mathematics and power transformer.Keywords: dissolved gas-in-oil analysis, fuzzy logic, power transformer, prediction
Procedia PDF Downloads 1464375 Method of Successive Approximations for Modeling of Distributed Systems
Authors: A. Torokhti
Abstract:
A new method of mathematical modeling of the distributed nonlinear system is developed. The system is represented by a combination of the set of spatially distributed sensors and the fusion center. Its mathematical model is obtained from the iterative procedure that converges to the model which is optimal in the sense of minimizing an associated cost function.Keywords: mathematical modeling, non-linear system, spatially distributed sensors, fusion center
Procedia PDF Downloads 3834374 An Optimization Tool-Based Design Strategy Applied to Divide-by-2 Circuits with Unbalanced Loads
Authors: Agord M. Pinto Jr., Yuzo Iano, Leandro T. Manera, Raphael R. N. Souza
Abstract:
This paper describes an optimization tool-based design strategy for a Current Mode Logic CML divide-by-2 circuit. Representing a building block for output frequency generation in a RFID protocol based-frequency synthesizer, the circuit was designed to minimize the power consumption for driving of multiple loads with unbalancing (at transceiver level). Implemented with XFAB XC08 180 nm technology, the circuit was optimized through MunEDA WiCkeD tool at Cadence Virtuoso Analog Design Environment ADE.Keywords: divide-by-2 circuit, CMOS technology, PLL phase locked-loop, optimization tool, CML current mode logic, RF transceiver
Procedia PDF Downloads 4644373 Knowledge-Driven Decision Support System Based on Knowledge Warehouse and Data Mining by Improving Apriori Algorithm with Fuzzy Logic
Authors: Pejman Hosseinioun, Hasan Shakeri, Ghasem Ghorbanirostam
Abstract:
In recent years, we have seen an increasing importance of research and study on knowledge source, decision support systems, data mining and procedure of knowledge discovery in data bases and it is considered that each of these aspects affects the others. In this article, we have merged information source and knowledge source to suggest a knowledge based system within limits of management based on storing and restoring of knowledge to manage information and improve decision making and resources. In this article, we have used method of data mining and Apriori algorithm in procedure of knowledge discovery one of the problems of Apriori algorithm is that, a user should specify the minimum threshold for supporting the regularity. Imagine that a user wants to apply Apriori algorithm for a database with millions of transactions. Definitely, the user does not have necessary knowledge of all existing transactions in that database, and therefore cannot specify a suitable threshold. Our purpose in this article is to improve Apriori algorithm. To achieve our goal, we tried using fuzzy logic to put data in different clusters before applying the Apriori algorithm for existing data in the database and we also try to suggest the most suitable threshold to the user automatically.Keywords: decision support system, data mining, knowledge discovery, data discovery, fuzzy logic
Procedia PDF Downloads 3364372 Modeling of the Pores Form Influence on the Hydraulic Resistance of Membranes and Their Permeability
Authors: Zhanat Umarova
Abstract:
Until the present time, modeling of the pores form influence on the hydraulic resistance of membranes and their permeability has not been analyzed. The aim of the given work is the theoretical consideration of the issue on the productivity of polymer membranes with the profile pores and determination of the optimum form of pores.Keywords: modeling, polymer membranes, permeability, pore’s density
Procedia PDF Downloads 3954371 Developing Fuzzy Logic Model for Reliability Estimation: Case Study
Authors: Soroor K. H. Al-Khafaji, Manal Mohammad Abed
Abstract:
The research aim of this paper is to evaluate the reliability of a complex engineering system and to design a fuzzy model for the reliability estimation. The designed model has been applied on Vegetable Oil Purification System (neutralization system) to help the specialist user based on the concept of FMEA (Failure Mode and Effect Analysis) to estimate the reliability of the repairable system at the vegetable oil industry. The fuzzy model has been used to predict the system reliability for a future time period, depending on a historical database for the two past years. The model can help to specify the system malfunctions and to predict its reliability during a future period in more accurate and reasonable results compared with the results obtained by the traditional method of reliability estimation.Keywords: fuzzy logic, reliability, repairable systems, FMEA
Procedia PDF Downloads 616