Search results for: indoor pollution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2216

Search results for: indoor pollution

2066 Status of the European Atlas of Natural Radiation

Authors: G. Cinelli, T. Tollefsen, P. Bossew, V. Gruber, R. Braga, M. A. Hernández-Ceballos, M. De Cort

Abstract:

In 2006, the Joint Research Centre (JRC) of the European Commission started the project of the 'European Atlas of Natural Radiation'. The Atlas aims at preparing a collection of maps of Europe displaying the levels of natural radioactivity caused by different sources (indoor and outdoor radon, cosmic radiation, terrestrial radionuclides, terrestrial gamma radiation, etc). The overall goal of the project is to estimate, in geographical resolution, the annual dose that the public may receive from natural radioactivity, combining all the information from the different radiation components. The first map which has been developed is the European map of indoor radon (Rn) since in most cases Rn is the most important contribution to exposure. New versions of the map are realised when new countries join the project or when already participating countries send new data. We show the latest status of this map which currently includes 25 European countries. Second, the JRC has undertaken to map a variable which measures 'what earth delivers' in terms of Rn. The corresponding quantity is called geogenic radon potential (RP). Due to the heterogeneity of data sources across the Europe there is need to develop a harmonized quantity which at the one hand adequately measures or classifies the RP, and on the other hand is suited to accommodate the variety of input data used to estimate this target quantity. Candidates for input quantities which may serve as predictors of the RP, and for which data are available across Europe, to different extent, are Uranium (U) concentration in rocks and soils, soil gas radon and soil permeability, terrestrial gamma dose rate, geological information and indoor data from ground floor. The European Geogenic Radon Map gives the possibility to characterize areas, on European geographical scale, for radon hazard where indoor radon measurements are not available. Parallel to ongoing work on the European Indoor Radon, Geogenic Radon and Cosmic Radiation Maps, we made progress in the development of maps of terrestrial gamma radiation and U, Th and K concentrations in soil and bedrock. We show the first, preliminary map of the terrestrial gamma dose rate, estimated using the data of ambient dose equivalent rate available from the EURDEP system (about 5000 fixed monitoring stations across Europe). Also, the first maps of U, Th, and K concentrations in soil and bedrock are shown in the present work.

Keywords: Europe, natural radiation, mapping, indoor radon

Procedia PDF Downloads 272
2065 A Power Management System for Indoor Micro-Drones in GPS-Denied Environments

Authors: Yendo Hu, Xu-Yu Wu, Dylan Oh

Abstract:

GPS-Denied drones open the possibility of indoor applications, including dynamic arial surveillance, inspection, safety enforcement, and discovery. Indoor swarming further enhances these applications in accuracy, robustness, operational time, and coverage. For micro-drones, power management becomes a critical issue, given the battery payload restriction. This paper proposes an application enabling battery replacement solution that extends the micro-drone active phase without human intervention. First, a framework to quantify the effectiveness of a power management solution for a drone fleet is proposed. The operation-to-non-operation ratio, ONR, gives one a quantitative benchmark to measure the effectiveness of a power management solution. Second, a survey was carried out to evaluate the ONR performance for the various solutions. Third, through analysis, this paper proposes a solution tailored to the indoor micro-drone, suitable for swarming applications. The proposed automated battery replacement solution, along with a modified micro-drone architecture, was implemented along with the associated micro-drone. Fourth, the system was tested and compared with the various solutions within the industry. Results show that the proposed solution achieves an ONR value of 31, which is a 1-fold improvement of the best alternative option. The cost analysis shows a manufacturing cost of $25, which makes this approach viable for cost-sensitive markets (e.g., consumer). Further challenges remain in the area of drone design for automated battery replacement, landing pad/drone production, high-precision landing control, and ONR improvements.

Keywords: micro-drone, battery swap, battery replacement, battery recharge, landing pad, power management

Procedia PDF Downloads 74
2064 Transport Related Air Pollution Modeling Using Artificial Neural Network

Authors: K. D. Sharma, M. Parida, S. S. Jain, Anju Saini, V. K. Katiyar

Abstract:

Air quality models form one of the most important components of an urban air quality management plan. Various statistical modeling techniques (regression, multiple regression and time series analysis) have been used to predict air pollution concentrations in the urban environment. These models calculate pollution concentrations due to observed traffic, meteorological and pollution data after an appropriate relationship has been obtained empirically between these parameters. Artificial neural network (ANN) is increasingly used as an alternative tool for modeling the pollutants from vehicular traffic particularly in urban areas. In the present paper, an attempt has been made to model traffic air pollution, specifically CO concentration using neural networks. In case of CO concentration, two scenarios were considered. First, with only classified traffic volume input and the second with both classified traffic volume and meteorological variables. The results showed that CO concentration can be predicted with good accuracy using artificial neural network (ANN).

Keywords: air quality management, artificial neural network, meteorological variables, statistical modeling

Procedia PDF Downloads 493
2063 Ray Tracing Modified 3D Image Method Simulation of Picocellular Propagation Channel Environment

Authors: Fathi Alwafie

Abstract:

In this paper we present the simulation of the propagation characteristics of the picocellular propagation channel environment. The first aim has been to find a correct description of the environment for received wave. The result of the first investigations is that the environment of the indoor wave significantly changes as we change the electric parameters of material constructions. A modified 3D ray tracing image method tool has been utilized for the coverage prediction. A detailed analysis of the dependence of the indoor wave on the wide-band characteristics of the channel: Root Mean Square (RMS) delay spread characteristics and mean excess delay, is also investigated.

Keywords: propagation, ray tracing, network, mobile computing

Procedia PDF Downloads 372
2062 Measurements of Environmental Pollution in Chemical Fertilizer Industrial Area Using Magnetic Susceptibility Method

Authors: Ramadhani Yasyfi Cysela, Adinda Syifa Azhari, Eleonora Agustine

Abstract:

The World Health Organization (WHO) estimates that about a quarter of the diseases facing mankind today occur due to environmental pollution. The soil is a part of environment that have a widespread problem. The contaminated soil should no longer be used to grow food because the chemicals can leech into the food and harm people who eat it. The chemical fertilizer industry gives specific effect due to soil pollution. To determine ammonia and urea emissions from fertilizer industry, we can use physical characteristic of soil, which is magnetic susceptibility. Rock magnetism is used as a proxy indicator to determine changes in physical properties. Magnetic susceptibilities of samples in low and high frequency have been measured by Bartington MS2B magnetic susceptibility measurement device. The sample was taken from different area which located closer by pollution source and far from the pollution source. The susceptibility values of polluted samples in topsoil were quite low, with range from 187.1- 494.8 [x 10-8 m3 kg-1] when free polluted area’s sample has high values (1188.7- 2237.8 [x 10-8 m3 kg-1 ]). From this studies shows that susceptibility values in areas of the fertilizer industry are lower than the free polluted area.

Keywords: environmental, magnetic susceptibility, rock magnetism, soil pollution

Procedia PDF Downloads 319
2061 Basic Study on a Thermal Model for Evaluating The Environment of Infant Facilities

Authors: Xin Yuan, Yuji Ryu

Abstract:

The indoor environment has a significant impact on occupants and a suitable indoor thermal environment can improve the children’s physical health and study efficiency during school hours. In this study, we explored the thermal environment in infant facilities classrooms for infants and children aged 1-5 and evaluated their thermal comfort. An infant facility in Fukuoka, Japan was selected for a case study to capture the infant and children’s thermal comfort characteristics in summer and winter from August 2019 to February 2020. Previous studies have pointed out using PMV indices to evaluate the thermal comfort for children could create errors that may lead to misleading results. Thus, to grasp the actual thermal environment and thermal comfort characteristics of infants and children, we retrieved the operative temperature of each child through the thermal model, based on the sensible heat transfer from the skin to the environment, and the measured classroom indoor temperature, relative humidity, and pocket temperature of children’s shorts. The statistical and comparative analysis of the results shows that (1) the operative temperature showed a large individual difference among children, with the maximum reached 6.25 °C. (2) The children might feel slightly cold in the classrooms in summer, with the frequencies of operative temperature within the interval of 26-28 ºC were only 5.33% and 16.6% for children respectively. (3) The thermal environment around children is more complicated in winter the operative temperature could exceed or fail to reach the thermal comfort temperature zone (20-23 ºC interval). (4) The environmental conditions surrounding the children may account for the reduction of their thermal comfort. The findings contribute to improving the understanding of the infant and children’s thermal comfort and provide valuable information for designers and governments to develop effective strategies for the indoor thermal environment considering the perspective of children.

Keywords: infant and children, thermal environment, thermal model, operative temperature.

Procedia PDF Downloads 88
2060 Dust Holding Capacity of Some Selected Road Side Tree Species

Authors: Jitin Rahul, Manish Kumar Jain

Abstract:

Dust pollution refers to the various locations, activities, or factors which are responsible for the releasing of pollutants into the atmosphere. The sources of dust can be classified into two major categories anthropogenic sources (man-made sources) and natural sources. Dust kicked up by heavy vehicles (Bus, Truck, Loaders, Tankers, car etc.) travelling on highways may make up approximately 33-40% of air pollution. Plants naturally cleanse the atmosphere by absorbing gases and particulate matter plants (Leaves). Plants are very good pollution indicator and also very good for dust capturing (Dust controlling). Many types tree species like Azadirachta indica A. juss, Butea monosperma (Lam.) Kuntz., Ficus bengalensis (Linn)., Pterocarpus marspium (Roxb.), Terminalia arjuna (Roxb, exDC.), Dalbergia sissoo roxb., and Ficus religiosa (Linn.) generally occur in roadside. These selected tree spiciness can control the dust pollution or dust capturing. It is well known that plants absorb particulate pollutants and help in dust controlling. Some tree species like (Ficus bengalensis, Ficus religiosa and Azadirachta indica) are very effective and natural means for controlling air pollution.

Keywords: dust, pollution, road, tree species

Procedia PDF Downloads 303
2059 Multi-Stage Optimization of Local Environmental Quality by Comprehensive Computer Simulated Person as Sensor for Air Conditioning Control

Authors: Sung-Jun Yoo, Kazuhide Ito

Abstract:

In this study, a comprehensive computer simulated person (CSP) that integrates computational human model (virtual manikin) and respiratory tract model (virtual airway), was applied for estimation of indoor environmental quality. Moreover, an inclusive prediction method was established by integrating computational fluid dynamics (CFD) analysis with advanced CSP which is combined with physiologically-based pharmacokinetic (PBPK) model, unsteady thermoregulation model for analysis targeting micro-climate around human body and respiratory area with high accuracy. This comprehensive method can estimate not only the contaminant inhalation but also constant interaction in the contaminant transfer between indoor spaces, i.e., a target area for indoor air quality (IAQ) assessment, and respiratory zone for health risk assessment. This study focused on the usage of the CSP as an air/thermal quality sensor in indoors, which means the application of comprehensive model for assessment of IAQ and thermal environmental quality. Demonstrative analysis was performed in order to examine the applicability of the comprehensive model to the heating, ventilation, air conditioning (HVAC) control scheme. CSP was located at the center of the simple model room which has dimension of 3m×3m×3m. Formaldehyde which is generated from floor material was assumed as a target contaminant, and flow field, sensible/latent heat and contaminant transfer analysis in indoor space were conducted by using CFD simulation coupled with CSP. In this analysis, thermal comfort was evaluated by thermoregulatory analysis, and respiratory exposure risks represented by adsorption flux/concentration at airway wall surface were estimated by PBPK-CFD hybrid analysis. These Analysis results concerning IAQ and thermal comfort will be fed back to the HVAC control and could be used to find a suitable ventilation rate and energy requirement for air conditioning system.

Keywords: CFD simulation, computer simulated person, HVAC control, indoor environmental quality

Procedia PDF Downloads 325
2058 Decision Support System in Air Pollution Using Data Mining

Authors: E. Fathallahi Aghdam, V. Hosseini

Abstract:

Environmental pollution is not limited to a specific region or country; that is why sustainable development, as a necessary process for improvement, pays attention to issues such as destruction of natural resources, degradation of biological system, global pollution, and climate change in the world, especially in the developing countries. According to the World Health Organization, as a developing city, Tehran (capital of Iran) is one of the most polluted cities in the world in terms of air pollution. In this study, three pollutants including particulate matter less than 10 microns, nitrogen oxides, and sulfur dioxide were evaluated in Tehran using data mining techniques and through Crisp approach. The data from 21 air pollution measuring stations in different areas of Tehran were collected from 1999 to 2013. Commercial softwares Clementine was selected for this study. Tehran was divided into distinct clusters in terms of the mentioned pollutants using the software. As a data mining technique, clustering is usually used as a prologue for other analyses, therefore, the similarity of clusters was evaluated in this study through analyzing local conditions, traffic behavior, and industrial activities. In fact, the results of this research can support decision-making system, help managers improve the performance and decision making, and assist in urban studies.

Keywords: data mining, clustering, air pollution, crisp approach

Procedia PDF Downloads 404
2057 Indoor Environment Quality and Occupant Resilience Toward Climate Change: A Case Study from Gold Coast, Australia

Authors: Soheil Roumi, Fan Zhang, Rodney Stewart

Abstract:

Indoor environmental quality (IEQ) indexes represented the suitability of a place to study, work, and live. Many indexes have been introduced based on the physical measurement or occupant surveys in commercial buildings. The earlier studies did not elaborate on the relationship between energy consumption and IEQ in office buildings. Such a relationship can provide a comprehensive overview of the building's performance. Also, it would find the potential of already constructed buildings under the upcoming climate change. A commercial building in southeast Queensland, Australia, was evaluated in this study. Physical measurements of IEQ and Energy areconducted, and their relationship will be determined using statistical analysis. The case study building is modelled in TRNSys software, and it will be validatedusingthe actual building's BMS data. Then, the modelled buildingwill be simulated by predicted weather data developed by the commonwealth scientific and industrial research organisation of Australia to investigate the occupant resilience and energy consumption. Finally, recommendations will be presented to consume less energy while providinga proper indoor environment for office occupants.

Keywords: IEQ, office buildings, thermal comfort, occupant resilience

Procedia PDF Downloads 84
2056 Optimizing Resource Allocation and Indoor Location Using Bluetooth Low Energy

Authors: Néstor Álvarez-Díaz, Pino Caballero-Gil, Héctor Reboso-Morales, Francisco Martín-Fernández

Abstract:

The recent tendency of "Internet of Things" (IoT) has developed in the last years, causing the emergence of innovative communication methods among multiple devices. The appearance of Bluetooth Low Energy (BLE) has allowed a push to IoT in relation to smartphones. In this moment, a set of new applications related to several topics like entertainment and advertisement has begun to be developed but not much has been done till now to take advantage of the potential that these technologies can offer on many business areas and in everyday tasks. In the present work, the application of BLE technology and smartphones is proposed on some business areas related to the optimization of resource allocation in huge facilities like airports. An indoor location system has been developed through triangulation methods with the use of BLE beacons. The described system can be used to locate all employees inside the building in such a way that any task can be automatically assigned to a group of employees. It should be noted that this system cannot only be used to link needs with employees according to distances, but it also takes into account other factors like occupation level or category. In addition, it has been endowed with a security system to manage business and personnel sensitive data. The efficiency of communications is another essential characteristic that has been taken into account in this work.

Keywords: bluetooth low energy, indoor location, resource assignment, smartphones

Procedia PDF Downloads 365
2055 Pollution Associated with Combustion in Stove to Firewood (Eucalyptus) and Pellet (Radiate Pine): Effect of UVA Irradiation

Authors: Y. Vásquez, F. Reyes, P. Oyola, M. Rubio, J. Muñoz, E. Lissi

Abstract:

In several cities in Chile, there is significant urban pollution, particularly in Santiago and in cities in the south where biomass is used as fuel in heating and cooking in a large proportion of homes. This has generated interest in knowing what factors can be modulated to control the level of pollution. In this project was conditioned and set up a photochemical chamber (14m3) equipped with gas monitors e.g. CO, NOX, O3, others and PM monitors e.g. dustrack, DMPS, Harvard impactors, etc. This volume could be exposed to UVA lamps, producing a spectrum similar to that generated by the sun. In this chamber, PM and gas emissions associated with biomass burning were studied in the presence and absence of radiation. From the comparative analysis of wood stove (eucalyptus globulus) and pellet (radiata pine), it can be concluded that, in the first approximation, 9-nitroanthracene, 4-nitropyrene, levoglucosan, water soluble potassium and CO present characteristics of the tracers. However, some of them show properties that interfere with this possibility. For example, levoglucosan is decomposed by radiation. The 9-nitroanthracene, 4-nitropyrene are emitted and formed under radiation. The 9-nitroanthracene has a vapor pressure that involves a partition involving the gas phase and particulate matter. From this analysis, it can be concluded that K+ is compound that meets the properties known to be tracer. The PM2.5 emission measured in the automatic pellet stove that was used in this thesis project was two orders of magnitude smaller than that registered by the manual wood stove. This has led to encouraging the use of pellet stoves in indoor heating, particularly in south-central Chile. However, it should be considered, while the use of pellet is not without problems, due to pellet stove generate high concentrations of Nitro-HAP's (secondary organic contaminants). In particular, 4-nitropyrene, compound of high toxicity, also primary and secondary particulate matter, associated with pellet burning produce a decrease in the size distribution of the PM, which leads to a depth penetration of the particles and their toxic components in the respiratory system.

Keywords: biomass burning, photochemical chamber, particulate matter, tracers

Procedia PDF Downloads 155
2054 The Assessment of Particulate Matter Pollution in Kaunas Districts

Authors: Audrius Dedele, Aukse Miskinyte

Abstract:

Air pollution is a major problem, especially in large cities, causing a variety of environmental issues and a risk to human health effects. In order to observe air quality, to reduce and control air pollution in the city, municipalities are responsible for the creation of air quality management plans, air quality monitoring and emission inventories. Atmospheric dispersion modelling systems, along with monitoring, are powerful tools, which can be used not only for air quality management, but for the assessment of human exposure to air pollution. These models are widely used in epidemiological studies, which try to determine the associations between exposure to air pollution and the adverse health effects. The purpose of this study was to determine the concentration of particulate matter smaller than 10 μm (PM10) in different districts of Kaunas city during winter season. ADMS-Urban dispersion model was used for the simulation of PM10 pollution. The inputs of the model were the characteristics of stationary, traffic and domestic sources, emission data, meteorology and background concentrations were entered in the model. To assess the modelled concentrations of PM10 in Kaunas districts, geographic information system (GIS) was used. More detailed analysis was made using Spatial Analyst tools. The modelling results showed that the average concentration of PM10 during winter season in Kaunas city was 24.8 µg/m3. The highest PM10 levels were determined in Zaliakalnis and Aleksotas districts with are the highest number of individual residential properties, 32.0±5.2 and 28.7±8.2 µg/m3, respectively. The lowest pollution of PM10 was modelled in Petrasiunai district (18.4 µg/m3), which is characterized as commercial and industrial neighbourhood.

Keywords: air pollution, dispersion model, GIS, Particulate matter

Procedia PDF Downloads 245
2053 Risk of Heatstroke Occurring in Indoor Built Environment Determined with Nationwide Sports and Health Database and Meteorological Outdoor Data

Authors: Go Iwashita

Abstract:

The paper describes how the frequencies of heatstroke occurring in indoor built environment are related to the outdoor thermal environment with big statistical data. As the statistical accident data of heatstroke, the nationwide accident data were obtained from the National Agency for the Advancement of Sports and Health (NAASH) . The meteorological database of the Japanese Meteorological Agency supplied data about 1-hour average temperature, humidity, wind speed, solar radiation, and so forth. Each heatstroke data point from the NAASH database was linked to the meteorological data point acquired from the nearest meteorological station where the accident of heatstroke occurred. This analysis was performed for a 10-year period (2005–2014). During the 10-year period, 3,819 cases of heatstroke were reported in the NAASH database for the investigated secondary/high schools of the nine Japanese representative cities. Heatstroke most commonly occurred in the outdoor schoolyard at a wet-bulb globe temperature (WBGT) of 31°C and in the indoor gymnasium during athletic club activities at a WBGT > 31°C. The determined accident ratio (number of accidents during each club activity divided by the club’s population) in the gymnasium during the female badminton club activities was the highest. Although badminton is played in a gymnasium, these WBGT results show that the risk level during badminton under hot and humid conditions is equal to that of baseball or rugby played in the schoolyard. Except sports, the high risk of heatstroke was observed in schools houses during cultural activities. The risk level for indoor environment under hot and humid condition would be equal to that for outdoor environment based on the above results of WBGT. Therefore control measures against hot and humid indoor condition were needed as installing air conditions not only schools but also residences.

Keywords: accidents in schools, club activity, gymnasium, heatstroke

Procedia PDF Downloads 197
2052 Eco-Cities in Challenging Environments: Pollution As A Polylemma in The Uae

Authors: Shaima A. Al Mansoori

Abstract:

Eco-cities have become part of the broader and universal discourse and embrace of sustainable communities. Given the ideals and ‘potential’ benefits of eco-cities for people, the environment and prosperity, hardly can an argument be made against the desirability of eco-cities. Yet, this paper posits that it is necessary for urban scholars, technocrats and policy makers to engage in discussions of the pragmatism of implementing the ideals of eco-cities, for example, from the political, budgetary, cultural and other dimensions. In the context of such discourse, this paper examines the feasibility of one of the cardinal principles and goals of eco-cities, which is the reduction or elimination of pollution through various creative and innovative initiatives, in the UAE. This paper contends and argues that, laudable and desirable as this goal is, it is a polylemma and, therefore, overly ambitious and practically unattainable in the UAE. The paper uses the mixed method research strategy, in which data is sourced from secondary and general sources through desktop research, from public records in governmental agencies, and from the conceptual academic and professional literature. Information from these sources will be used, first, to define and review pollution as a concept and multifaceted phenomenon with multidimensional impacts. Second, the paper will use society’s five goal clusters as a framework to identify key causes and impacts of pollution in the UAE. Third, the paper will identify and analyze specific public policies, programs and projects that make pollution in the UAE a polylemma. Fourth, the paper will argue that the phenomenal rates of population increase, urbanization, economic growth, consumerism and development in the UAE make pollution an inevitable product and burden that society must live with. This ‘reality’ makes the goal and desire of pollution-free cities pursuable but unattainable. The paper will conclude by identifying and advocating creative and innovative initiatives that can be taken by the various stakeholders in the country to reduce and mitigate pollution in the short- and long-term.

Keywords: goal clusters, pollution, polylemma, sustainable communities

Procedia PDF Downloads 360
2051 Magnetic Susceptibility Measurements of Urban Areas in Denizli City and Showing the Distributions of Heavy Metal Pollution

Authors: Ali Aydin

Abstract:

Three hundred and fifty soil samples were collected around the urban and residential area, for the purpose of a magnetic susceptibility study on pollution in Denizli City, Turkiye. Measurements of volume-specific magnetic susceptibility (к) and mass-specific magnetic susceptibility (χ) show a significant variation range from place to place collected soil samples. In this study, we did a primary magnetic study near the high heavy traffic pollution in a part of Denizli city, Turkiye which was said the most polluted city in Aegean Region of Turkey. The magnetic susceptibility measurements increased from the garden area to residential area and reached the high levels near the industrial areas of the city. Magnetic particle concentration and grain size sourced exhaust gasses, and other pollution sources increase with the increasing distance from a residential area, indicating the high traffic road area.

Keywords: magnetic susceptibility, pollution, magnetic particle, Denizli

Procedia PDF Downloads 269
2050 The Relationship between Military Expenditure, Military Personnel, Economic Growth, and the Environment

Authors: El Harbi Sana, Ben Afia Neila

Abstract:

In this paper, we study the relationship between the military effort and pollution. A distinction is drawn between the direct and indirect impact of the military effort (military expenditure and military personnel) on pollution, which operates through the impact of military effort on per capita income and the resultant impact of income on pollution. Using the data of 121 countries covering the period 1980–2011, both the direct and indirect impacts of military effort on air pollution emissions are estimated. Our results show that the military effort is estimated to have a positive direct impact on per capita emissions. Indirect effects are found to be positive, the total effect of military effort on emissions is positive for all countries.

Keywords: military endeavor, income, emissions of CO2, panel data

Procedia PDF Downloads 319
2049 A Comparative Study of Localized Rainfall and Air Pollution between the Urban Area of Sungai Penchala with Sub-Urban and Green Area in Malaysia

Authors: Mohd N. Ahmad, Lariyah Mohd Sidek

Abstract:

The study had shown that Sungai Penchala (urban) was experiencing localized rainfall and hazardous air pollution due to urbanization. The high rainfall that partly added by localized rain had been seen as a threat of causing the flash floods and water quality deterioration in the area. The air pollution that consisted of mainly particulate matter (PM10), carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3) gave an alarming air pollution index (API) to the surrounding area. Comparison among urban area (Sungai Penchala), sub-urban (Gombak), and green areas (Jerantut plus Temerloh) with respect to the rainfall parameters and air pollutants, it was found that the degree of intensities of the parameters was positively related with the urbanization. The air pollutants especially NO2, SO2, and CO were in tandem with the increase of the rainfall. Specifically, if the water catchment area is physically near to the urban area, then the authorities need to look into related urban development program by considering the management of emitted pollutants with respect to the ecological setting of the urban area.

Keywords: urbanization, green area localized rainfall, air pollution, sub-urban area

Procedia PDF Downloads 496
2048 Heavy Metal Pollution in Soils of Yelagirihills,Tamilnadu by EDXRF Technique

Authors: Chandrasekaran, Ravisankar N. Harikrishnan, Rajalakshmi, K. K. Satapathy M. V. R. Prasad, K. V. Kanagasabapathy

Abstract:

Heavy metals were considered as highly toxic environmental pollutants to soil ecosystem and human health. In present study the 12 heavy metals (Mg, Al, K, Ca, Ti, Fe, V, Cr, Mn, Co,Ni and Zn.) are determined in soils of Yelagiri hills, Tamilnadu by energy dispersive X-ray fluorescence technique. Metal concentrations were used to quantify pollution contamination factors such as enrichment factor (EF), geo-accumulation index (Igeo) and contamination factor (CF) are calculated and reported.

Keywords: soil, heavy metals, EDXRF, pollution contamination factors

Procedia PDF Downloads 313
2047 Computational Fluid Dynamics Analysis for Radon Dispersion Study and Mitigation

Authors: A. K. Visnuprasad, P. J. Jojo, Reshma Bhaskaran

Abstract:

Computational fluid dynamics (CFD) is used to simulate the distribution of indoor radon concentration in a living room with elevated levels of radon concentration which varies from 22 Bqm-3 to 1533 Bqm-3 in 24 hours. Finite volume method (FVM) was used for the simulation. The simulation results were experimentally validated at 16 points in two horizontal planes (y=1.4m & y=2.0m) using pin-hole dosimeters and at 3 points using scintillation radon monitor (SRM). Passive measurement using pin-hole dosimeters were performed in all seasons. Another simulation was done to find a suitable position for a passive ventilation system for the effective mitigation of radon.

Keywords: indoor radon, computational fluid dynamics, radon flux, ventilation rate, pin-hole dosimeter

Procedia PDF Downloads 386
2046 Analysis of Pollution in Agriculture Land Using Decagon Em-50 and Rock Magnetism Method

Authors: Adinda Syifa Azhari, Eleonora Agustine, Dini Fitriani

Abstract:

This measurement has been done to analyze the impact of industrial pollution on the environment. Our research is to indicate the soil which has contained some pollution by industrial activity around the area, especially in Sumedang, West Java. The parameter phsyics such as total dissolved solid, volumetric water content, electrical conductivity bulk and FD have shown that the soil has polluted and measured by Decagon EM 50. Decagon EM 50 is one of the geophysical environment instrumentation that is used to interpret the soil condition. This experiment has given a result of these parameter physics, these are: Volumetric water content (m³/m³) = 0,154 – 0,384; Electrical Conductivity Bulk (dS/m) = 0,29 – 1,11 ; Dielectric Permittivity (DP) = 77,636 – 78, 339.Based on these data, we have got the conclusion that the area has, in fact, been contaminated by dangerous materials. VWC is parameter physics that has shown water in soil. The data show the pollution of the soil at the place, of which the specifications are PH, Total Dissolved Solid (TDS), Electrical Conductivity (EC) bigger (>>) and Frequency Dependent (FD) smaller (<<); that means the soil is alkali with big grain and has high salt concentration.

Keywords: Decagon EM 50, electrical conductivity, industrial textiles, land, pollution

Procedia PDF Downloads 362
2045 Urban Vegetative Planning for Ambient Ozone Pollution: An Eco-Management Approach

Authors: M. Anji Reddy, R. Uma Devi

Abstract:

Environmental planning for urban development is very much needed to reduce air pollution through the enhancement of vegetative cover in the cities like Hyderabad. This can be mainly based on the selection of appropriate native plant species as bioindicators to assess the impact of ambient Ozone. In the present study, tolerant species are suggested aimed to reduce the magnitude of ambient ozone concentrations which not only increase eco-friendly vegetation but also moderate air pollution. Hyderabad city is divided into 5 zones based on Land Use/Land Cover category further each zone divided into residential, traffic, industrial, and peri-urban areas. Highest ambient ozone levels are recorded in Industrial areas followed by traffic areas in the entire study area ( > 180 µg/m3). Biomonitoring of selected sixteen local urban plant species with the help of Air Pollution Tolerance Index (APTI) showed its susceptibility to air pollution. Statistical regression models in between the tolerant plant species and ambient ozone levels suggested five plant species namely Azardirachta indica A. Juss which have a high tolerant response to ambient ozone followed by Delonix regia Hook. along with Millingtonia hortensis L.f., Alestonia Scholaries L., and Samania saman Jacq. in the industrial and traffic areas of the study area to mitigate ambient Ozone pollution and also to improve urban greenery.

Keywords: air pollution tolerance index, bio-indicators, eco-friendly vegetation, urban greenery

Procedia PDF Downloads 428
2044 The Measurements of Nitrogen Dioxide Pollution in Street Canyons

Authors: Aukse Miskinyte, Audrius Dedele

Abstract:

The impact of urban air pollution on human health effects has been revealed in epidemiological studies, which have assessed the associations between various types of gases and particles and negative health outcomes. The percentage of population living in urban areas is increasing, and the assessment of air pollution in certain zones in the city (like street canyons) that have higher level of air pollution and specific dispersion conditions is essential as these places tend to contain a lot of people. Street canyon is defined as a street surrounded by tall buildings on both sides that trapes traffic emissions and prevents pollution dispersion. The aim of this study was to determine the pollution of nitrogen dioxide in street canyons in Kaunas city during cold and warm seasons. The measurements were conducted using passive sampling technique during two-week period in two street canyon sites, whose axes are approximately north-south and north-northeast‒south-southwest. Both of these streets are two-lane roads of 7 meters width, one is in the central part of the city, and other is in the Old Town. The results of two-week measurements showed that the concentration of nitrogen dioxide was higher in summer season than in winter in both street canyon sites. The difference between the level of NO2 in winter and summer seasons was 5.1 and 19.4 µg/m3 in the first and in the second street canyon sites, respectively. The higher concentration of NO2 was determined in the second street canyon site than in the first, although there was calculated lower traffic intensity. These results could be related to the certain street canyon characteristics.

Keywords: air pollution, nitrogen dioxide, passive sampler, street canyon

Procedia PDF Downloads 238
2043 The Investigation of Cadmium Pollution in the Metal Production Factory in Relation to Environmental Health

Authors: Seyed Armin Hashemi, Somayeh Rahimzadeh

Abstract:

Toxic metals such as lead and cadmium are among the pollutants that are created by the metal production factories and disseminated in the nature. In order to study the quantity of cadmium pollution in the environment of the metal production factories, 50 saplings of the spruce species at the peripheries of the metal production factories were examined and the samples of the leaves, roots and stems of saplings planted around the factory and the soil of the environment of the factory were studied to investigate pollution with cadmium. They were compared to the soil and saplings of the spruce trees planted outside the factory as observer region. The results showed that the quantity of pollution in the leaves, stem, and roots of the trees planted inside the factory environment were estimated at 1.1 milligram/kilogram, 1.5 milligram/kilogram and 2.5 milligram/kilogram respectively and this indicated a significant difference with the observer region (P < 0.05). The quantity of cadmium in the soil of the peripheries of the metal production factory was estimated at 6.8 milligram/kilogram in the depth of 0-10 centimeters beneath the level of the soil. The length of roots in the saplings planted around the factory of metal production stood at 11 centimeters and 14.5 centimeters in the observer region which had a significant difference with the observer region (P < 0.05). The quantity of soil resources and spruce species’ pollution with cadmium in the region has been influenced by the production processes in the factory.

Keywords: cadmium pollution, spruce, soil pollution, the factory of producing alloy metals

Procedia PDF Downloads 308
2042 Human-Centric Sensor Networks for Comfort and Productivity in Offices: Integrating Environmental, Body Area Network, and Participatory Sensing

Authors: Chenlu Zhang, Wanni Zhang, Florian Schaule

Abstract:

Indoor environment in office buildings directly affects comfort, productivity, health, and well-being of building occupants. Wireless environmental sensor networks have been deployed in many modern offices to monitor and control the indoor environments. However, indoor environmental variables are not strong enough predictors of comfort and productivity levels of every occupant due to personal differences, both physiologically and psychologically. This study proposes human-centric sensor networks that integrate wireless environmental sensors, body area network sensors and participatory sensing technologies to collect data from both environment and human and support building operations. The sensor networks have been tested in one small-size and one medium-size office rooms with 22 participants for five months. Indoor environmental data (e.g., air temperature and relative humidity), physiological data (e.g., skin temperature and Galvani skin response), and physiological responses (e.g., comfort and self-reported productivity levels) were obtained from each participant and his/her workplace. The data results show that: (1) participants have different physiological and physiological responses in the same environmental conditions; (2) physiological variables are more effective predictors of comfort and productivity levels than environmental variables. These results indicate that the human-centric sensor networks can support human-centric building control and improve comfort and productivity in offices.

Keywords: body area network, comfort and productivity, human-centric sensors, internet of things, participatory sensing

Procedia PDF Downloads 117
2041 Assessment of Air Quality Status Using Pollution Indicators in Industrial Zone of Brega City

Authors: Tawfig Falani, Abdulalaziz Saleh

Abstract:

Air pollution has become a major environmental issue with definitive repercussions on human health. Global concerns have been raised about the health effects of deteriorating air quality due mainly to widespread industrialization and urbanization. To assess the quality of air in Brega, air quality indicators were calculated using the U.S. Environmental Protection Agency procedure. Air quality was monitored from 01/10/2019 to 28/02/2021 with a daily average measuring six pollutants of particulate matter <2.5µm (PM2.5), and <10µm (PM₁₀), sulfur dioxide (SO₂), nitrogen dioxide (NO₂), ozone (O₃), and carbon monoxide (CO). The result indicated that air pollution at general air quality monitoring sites for sulphur dioxide, carbon monoxide, PM₁₀ and PM2.5 and nitrogen dioxide are always within the permissible limit. Referring to a monthly average of Pollutants in the Brega Industrial area, all months were out of AQG limit for NO₂, and the same with O₃ except for two months. For PM2.5 and PM₁₀ 7, 5 out of 17 months were out of limits, respectively. Relative AQI for ozone is found in the range of moderate category of general air pollution, and the worst month was Nov. 2020, which was marked as Very Unhealthy category, then the next two months (Dec. 2020 and Jan. 2021 ) were Unhealthy categories. It's the first time that we have used the AQI in SOC, and not usually used in Libya to identify the quality of air pollution. So, I think it will be useful if AQI is used as guidance for specified air pollution. That dictate putting monitoring stations beside any industrial activity that has emissions of the six major air pollutants.

Keywords: air quality, air pollutants, air quality index (AQI), particulate matter

Procedia PDF Downloads 20
2040 Solid Waste Pollution and the Importance of Environmental Planning in Managing and Preserving the Public Environment in Benghazi City and Its Surrounding Areas

Authors: Abdelsalam Omran Gebril

Abstract:

Pollution and solid waste are the most important environmental problems plaguing the city of Benghazi as well as other cities and towns in Libya. These problems are caused by the lack of environmental planning and sound environmental management. Environmental planning is very important at present for the development of projects that preserve the environment, therefore, the planning process should be prioritized over the management process. Pollution caused by poor planning and environmental management exists not only in Benghazi but also in all other Libyan cities. This study was conducted through various field visits to several neighborhoods and areas within Benghazi as well as its neighboring regions. Follow-ups in these areas were conducted from March 2013 to October 2013 and documented by photographs. The existing methods of waste collection and means of transportation were investigated. Interviews were conducted with relevant authorities, including the Environment Public Authority in Benghazi and the Public Service Company of Benghazi. The objective of this study is to determine the causes of solid waste pollution in Benghazi City and its surrounding areas. Results show that solid waste pollution in Benghazi and its surrounding areas is the result of poor planning and environmental management, population growth, and the lack of hardware and equipment for the collection and transport of waste from the city to the landfill site. One of the most important recommendations in this study is the development of a complete and comprehensive plan that includes environmental planning and environmental management to reduce solid waste pollution.

Keywords: solid waste, pollution, environmental planning, management, Benghazi, Libya

Procedia PDF Downloads 284
2039 The Impact Of The Covid-19 Lockdown On Solid Waste Pollution And Environmental Hazard. A Blessing In Disguise? A Case Of Liberia

Authors: Eric Berry White

Abstract:

The paper examines the causality between solid waste pollution and lockdown. Particularly in 2020, the world experiences the takeover of the Corona virus pandemic, and most countries decided to adopt lockdown measure as the best solution to curtail the spread of the virus. On March 20, 2020, the Government of Liberia implemented a curfew that starts from 3:00PM to 6:00AM. This means that no unauthorized person is allowed to be in the streets during this time. In most developing countries, the issue of public waste and environmental hazard pollution tend to have a high effect among the slum communities where there are markets. This research covers 6 slums communities around the two biggest market hubs within Monrovia, and the result shows that the lockdown measure significantly reduced public waste pollution by reducing the movement of marketers in slum communities , where limited educational and sensitization for young people is reflected on their job market exclusion, jobless circle, and youth workforce concentration in informal work market. The study discovered that with public awareness and sensitization with females, solid waste could be reduced by 13 percentage point. But there is no evidence that awareness among male conduce pollution. within affected communities, Despite the impact of the lockdown on food consumption, these results emphasized that with the right monitoring of waste and aware, pollution could be reduce. By understanding these results and implementing the best policy, the paper recommends that dump sites be close at certain hours.

Keywords: lockdown, environmental, pollution, waste

Procedia PDF Downloads 51
2038 The Impact of Roof Thermal Performance on the Indoor Thermal Comfort in a Natural Ventilated Building Envelope in Hot Climatic Climates

Authors: J. Iwaro, A. Mwasha, K. Ramsubhag

Abstract:

Global warming has become a threat of our time. It poses challenges to the existence of beings on earth, the built environment, natural environment and has made a clear impact on the level of energy and water consumption. As such, increase in the ambient temperature increases indoor and outdoor temperature level of the buildings which brings about the use of more energy and mechanical air conditioning systems. In addition, in view of the increased modernization and economic growth in the developing countries, a significant amount of energy is being used, especially those with hot climatic conditions. Since modernization in developing countries is rising rapidly, more pressure is being placed on the buildings and energy resources to satisfy the indoor comfort requirements. This paper presents a sustainable passive roof solution as a means of reducing energy cooling loads for satisfying human comfort requirements in a hot climate. As such, the study based on the field study data discusses indoor thermal roof design strategies for a hot climate by investigating the impacts of roof thermal performance on indoor thermal comfort in naturally ventilated building envelope small scaled structures. In this respect, the traditional concrete flat roof, corrugated galvanised iron roof and pre-painted standing seam roof were used. The experiment made used of three identical small scale physical models constructed and sited on the roof of a building at the University of the West Indies. The results show that the utilization of insulation in traditional roofing systems will significantly reduce heat transfer between the internal and ambient environment, thus reducing the energy demand of the structure and the relative carbon footprint of a structure per unit area over its lifetime. Also, the application of flat slab concrete roofing system showed the best performance as opposed to the metal roof sheeting alternative systems. In addition, it has been shown experimentally through this study that a sustainable passive roof solution such as insulated flat concrete roof in hot dry climate has a better cooling strength that can provide building occupant with a better thermal comfort, conducive indoor conditions and energy efficiency.

Keywords: building envelope, roof, energy consumption, thermal comfort

Procedia PDF Downloads 247
2037 Environmental Issues in Construction Projects in India

Authors: Gurbir Singh Khaira, Anmoldeep Singh Kang

Abstract:

Exposures to environmental pollution remain a major source of health risk throughout the world, though risks are generally higher in developing countries, where poverty, lack of investment in modern technology and weak environmental legislation combine to cause high pollution levels. This paper will tell us about the environment is threatened severely by so many problems, some of which are caused by the activities of Construction Projects. The research reveals major environmental impacts of building construction projects to include environmental pollution, resource depletion and habitat destruction causing Destruction of ecosystem, Desertification, Soil Erosion and increasing Material Wastage. Construction is considered as one of the main sources of environmental pollution in the world, the level of knowledge and awareness of project participants, especially project managers, with regards to environmental impacts of construction processes needs to be enhanced. It was found that ‘Transportation Resource’, ‘Noise Pollution’, and ‘Dust Generation with Construction Machinery’ are the greatest environmental impacts in INDIA respectively. The results of this study are useful for construction managers and other participants in construction sites to become aware of construction processes impacts on the environment.

Keywords: construction projects, environmental impacts, material waste age, awareness

Procedia PDF Downloads 344