Search results for: heavy duty pavement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2041

Search results for: heavy duty pavement

1891 Use of Large Eddy Simulations Model to Simulate the Flow of Heavy Oil-Water-Air through Pipe

Authors: Salim Al Jadidi, Shian Gao, Shivananda Moolya

Abstract:

Computational Fluid Dynamic (CFD) technique coupled with Sub-Grid-Scale (SGS) model is used to study the flow behavior of heavy oil-water-air flow in a horizontal pipe by adapting ANSYS Fluent CFD software. The technique suitable for the transport of water-lubricated heavy viscous oil in a horizontal pipe is the Core Annular flow (CAF) technique. The present study focuses on the numerical study of CAF adapting Large Eddy Simulations (LES). The basic objective of the present study is to gain a basic knowledge of the flow behavior of heavy oil using turbulent CAF through a conventional horizontal pipe. This work also focuses on the success and applicability of LES. The simulation of heavy oil-water-air three-phase flow and two-phase flow of heavy oil–water in a conventional horizontal pipe is performed using ANSYS Fluent 16.2 software. The influence of three-phase heavy oil-water air flow in a selected pipe is affected by gravity. It is also observed from the result that the air phase and the variation in the temperature impact the behavior of the annular stream and pressure drop. Some results obtained during the study are validated with the results gained from part of the literature experiments and simulations, and the results show reasonably good agreement between the studies.

Keywords: computational fluid dynamics, gravity, heavy viscous oil, three-phase flow

Procedia PDF Downloads 60
1890 Dietary Exposure of Heavy Metals through Cereals Commonly Consumed by Dhaka City Residents

Authors: A. Md. Bayejid Hosen, B. M Zakir Hossain Howlader, C. Yearul Kabir

Abstract:

Contamination of soil and agricultural products by heavy metals resulting from rapid industrial development has caused major concern. Dietary exposure to heavy metals has been associated with toxic and adverse health effects. The main threats to human health from heavy metals are associated with exposure to Pb, Cd and Hg. The aim of this study was to monitor the presence of heavy metals in cereals collected from different wholesale markets of Dhaka City. One hundred and sixty cereal samples were collected and analyzed for determination of heavy metals. Heavy metals were analyzed by inductively coupled plasma mass spectrometry (ICP-MS). A total of six heavy metals– lead, chromium, cadmium, mercury, arsenic and antimony were estimated. The average concentrations of heavy metals in cereals fall within the safe limit established by regulatory organizations except for Pb (152.4 μg/100g) and Hg (15.13 μg/100g) which exceeded the safe limits. BARI gom-26 was the highest source of Pb (304.1 μg/100g) whereas Haski-29 rice variety contained the highest amount of Hg (60.85 μg/100g). Though all the cereal varieties contained approximately same amount of Cr the naizer sail varieties contained huge amount of Cr (171.8 μg/100g). Among all the cereal samples miniket rice varieties contained the least amount of heavy metals. The concentration of Cr (63.24 μg/100g), Cd (5.54 μg/100g) and As (3.26 μg/100g) in all cereals were below the safe limits. The daily intake of heavy metals was determined using the total weight of cereals consumed each day multiplied by the concentrations of heavy metals in cereals. The daily intake was compared with provisional maximum tolerable daily intake set by different regulatory organizations. The daily intake of Cd (23.0 μg), Hg (63.0 μg) and as (13.6 μg) through cereals were below the risk level except for Pb (634.0 μg) and Cr (263.1 μg). As the main meal of average Bangladeshi people is boiled rice served with some sorts of vegetables, our findings indicate that the residents of Dhaka City are at risk from Pb and Cr contamination. Potential health risks from exposure to heavy metals in self-planted cereals need more attention.

Keywords: contamination, dietary exposure, heavy metals, human health, ICP-MS

Procedia PDF Downloads 423
1889 Experimental and Analytical Design of Rigid Pavement Using Geopolymer Concrete

Authors: J. Joel Bright, P. Peer Mohamed, M. Aswin SAangameshwaran

Abstract:

The increasing usage of concrete produces 80% of carbon dioxide in the atmosphere. Hence, this results in various environmental effects like global warming. The amount of the carbon dioxide released during the manufacture of OPC due to the calcination of limestone and combustion of fossil fuel is in the order of one ton for every ton of OPC produced. Hence, to minimize this Geo Polymer Concrete was introduced. Geo polymer concrete is produced with 0% cement, and hence, it is eco-friendly and it also uses waste product from various industries like thermal power plant, steel manufacturing plant, and paper waste materials. This research is mainly about using Geo polymer concrete for pavement which gives very high strength than conventional concrete and at the same time gives way for sustainable development.

Keywords: activator solution, GGBS, fly ash, metakaolin

Procedia PDF Downloads 444
1888 Maximum Power Point Tracking for Small Scale Wind Turbine Using Multilayer Perceptron Neural Network Implementation without Mechanical Sensor

Authors: Piyangkun Kukutapan, Siridech Boonsang

Abstract:

The article proposes maximum power point tracking without mechanical sensor using Multilayer Perceptron Neural Network (MLPNN). The aim of article is to reduce the cost and complexity but still retain efficiency. The experimental is that duty cycle is generated maximum power, if it has suitable qualification. The measured data from DC generator, voltage (V), current (I), power (P), turnover rate of power (dP), and turnover rate of voltage (dV) are used as input for MLPNN model. The output of this model is duty cycle for driving the converter. The experiment implemented using Arduino Uno board. This diagram is compared to MPPT using MLPNN and P&O control (Perturbation and Observation control). The experimental results show that the proposed MLPNN based approach is more efficiency than P&O algorithm for this application.

Keywords: maximum power point tracking, multilayer perceptron netural network, optimal duty cycle, DC generator

Procedia PDF Downloads 306
1887 The Potential Effectiveness of Marine Algae in Removal of Heavy Metal from Aqueous Medium

Authors: Wed Albalawi, Ebtihaj Jambi, Maha Albazi, Shareefa AlGhamdi

Abstract:

Heavy metal pollution has become a hard threat to marine ecosystems alongside extremely industrialized and urban (urbanized) zones because of their toxicity, resolution, and non-biodegradable nature. Great interest has been given to a new technique -biosorption- which exploits the cell envelopes of organisms to remove metals from water solutions. The main objective of the present study is to explore the potential of marine algae from the Red Sea for the removal of heavy metals from an aqueous medium. The subsequent objective is to study the effect of pH and agitation time on the adsorption capacity of marine algae. Randomly chosen algae from the Red Sea (Jeddah) with known altitude and depth were collected. Analysis of heavy metal ion concentration was measured by ICP-OES (Inductively coupled plasma - optical emission spectrometry) using air argon gas. A standard solution of heavy metal ions was prepared by diluting the original standard solution with ultrapure water. Types of seaweed were used to study the effect of pH on the biosorption of different heavy metals. The biosorption capacity of Cr is significantly lower in Padina Pavonica (P.P) compared to the biosorption capacity in Sargassum Muticum (S.M). The S.M exhibited significantly higher in Cr removal than the P.P at pH 2 and pH 7. However, the P.P exhibited significantly higher in Cr removal than the S.M at pH 3, pH 4, pH 5, pH 6, and pH 8. In conclusion, the dried cells of algae can be used as an effective tool for the removal of heavy metals.

Keywords: biosorption, heavy metal, pollution, pH value, brown algae

Procedia PDF Downloads 51
1886 Use of Waste Road-Asphalt as Aggregate in Pavement Block Production

Authors: Babagana Mohammed, Abdulmuminu Mustapha Ali, Solomon Ibrahim, Buba Ahmad Umdagas

Abstract:

This research investigated the possibility of replacing coarse and fine aggregates with waste road-asphalt (RWA), when sieved appropriately, in concrete production. Interlock pavement block is used widely in many parts of the world as modern day solution to outdoor flooring applications. The weight-percentage replacements of both coarse and fine aggregates with RWA at 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% and 90% respectively using a concrete mix ratio of 1:2:4 and water-to-cement ratio of 0.45 were carried out. The interlock block samples produced were then cured for 28days. Unconfined compressive strength (UCS) and the water absorption properties of the samples were then tested. Comparison of the results of the RWA-containing samples to those of the respective control samples shows significant benefits of using RWA in interlock block production. UCS results of RWA-containing samples compared well with those of the control samples and the RWA content also influenced the lowering of the water absorption of the samples. Overall, the research shows that it is possible to replace both coarse and fine aggregates with RWA materials when sieved appropriately, hence indicating that RWA could be recycled beneficially.

Keywords: aggregate, block-production, pavement, road-asphalt, use, waste

Procedia PDF Downloads 174
1885 Detection of Pollution in the Catchment Area of Baha Region by Using Some Common Plants as a Bioindicators

Authors: Saad M. Howladar

Abstract:

Although, there are a little data on the use of littoral plants as heavy metals bioaccumulators over large areas of the wetlands environment. So, soil samples and biomass of the five plant species: Pluchea dioscroides, Pulicaria crispa, Lavandula pubescens, Tarchononthus comporatus and Argemone ochroleuca were collected from two different sites (basin and mouth) of four dams at Baha province, KSA. Nutrients and heavy metals were extracted from plant samples (leaves and stems) for analyzing elements (Na, K, Ca, P and N) and heavy metals (Pb, Cu and Ni). The soils of the mouth of the dam had the highest concentrations of all elements, while that of basin had the highest ones of most heavy metals except Pb. The soil elements in relation to the two sites arranged as: Ca > K > P > Na > N; and the heavy metals as: Cu > Ni > Pb. The present study indicated that Pluchea dioscroides had the highest values of most elements and heavy metals, while Lavandula pubescens had the lowest. In general, leaves attain the highest concentrations of all nutrients and heavy metals in most studied species as compared with stem. It was indicated that Pluchea dioscroides showed a high transfer factor for almost elements and heavy metals such as K, Na, Cu, Ni and Pb, while Pulicaria crispa showed the highest translocation factor of N, P, Ca-Na ratio and Cu. All studied species growing in the basin had almost the highest concentrations of elements and heavy metals as compared with that in the mouth of dam except K in Pluchea dioscroides, Tarchononthus comporatus and Argemone ochroleuca tissues. Otherwise tissues of Tarchononthus comporatus growing in the basin had the lowest concentrations of K and Ni, while that growing in the mouth had the highest of P and N.

Keywords: Baha Region, bioindicators, plant, pollution, dams, heavy metals

Procedia PDF Downloads 436
1884 Study of Interaction between Recycled Asphalt Pavement (RAP) Material and Virgin Material

Authors: G. Bharath, K. S. Reddy, Vivek Tandon, M. Amaranatha Reddy

Abstract:

This paper presents the details of a study conducted to evaluate the interaction between recycled binder and fresh binder in Recycled Asphalt Pavement (RAP) mixes. When RAP is mixed with virgin aggregates in the presence of fresh binder there will be partial blending in a hot mix asphalt mixture. A recent approach used by some researchers for studying the degree of blending of RAP binder with virgin binder has been adopted in this study. Dense Bituminous Macadam mix of Ministry of Road Transport of India with a nominal maximum aggregate size of 19 mm was studied. Two proportions of RAP-20% and 35% and two types of virgin binders – viscosity grade VG10 and VG30 were considered. Design binder contents were determined for all the four types of mixes (two RAP contents and two virgin binders) as per Marshall mix design procedure. The degree of blending of RAP and virgin binders was evaluated in terms of the complex modulus of the binder. Laboratory test results showed that with an increase in RAP content, the degree of blending decreases. Better blending was observed for softer grade binder (VG10).

Keywords: blending, complex modulus, recycled asphalt pavement, virgin binder

Procedia PDF Downloads 412
1883 Corrosion Evaluation of Zinc Coating Prepared by Two Types of Electric Currents

Authors: M. Sajjadnejad, H. Karimi Abadeh

Abstract:

In this research, zinc coatings were fabricated by electroplating process in a sulfate solution under direct and pulse current conditions. In direct and pulse current conditions, effect of maximum current was investigated on the coating properties. Also a comparison was made between the obtained coatings under direct and pulse current. Morphology of the coatings was investigated by scanning electron microscopy (SEM). Corrosion behavior of the coatings was investigated by potentiodynamic polarization test. In pulse current conditions, the effect of pulse frequency and duty cycle was also studied. The effect of these conditions and parameters were also investigated on morphology and corrosion behavior. All of DC plated coatings are showing a distinct passivation area in -1 to -0.4 V range. Pulsed current coatings possessed a higher corrosion resistance. The results showed that current density is the most important factor regarding the fabrication process. Furthermore, a rise in duty cycle deteriorated corrosion resistance of coatings. Pulsed plated coatings performed almost 10 times better than DC plated coatings.

Keywords: corrosion, duty cycle, pulsed current, zinc

Procedia PDF Downloads 102
1882 Phytoextraction of Some Heavy Metals from Artificially Polluted soil

Authors: Kareem Kalo Qassim, Hassan A. M. Mezori

Abstract:

The bioaccumulation of heavy metals in the environment has become a matter of public interest because it persists in the soil longer than other components of the biosphere. Bioremediation has emerged as the ideal alternative environmentally friendly and ecological sound technology for removing pollutants from polluted sites. Phytoremediation is an attractive remediation technology that makes use of plants to remove contaminants from the environment. A pot experiment was conducted under lath house conditions to evaluate the ability of plants (H. Annuus, S. Bicolor, and Z. Mays) to phytoextract heavy metals from artificially polluted soils by different concentrations of Cadmium, Lead, and Copper (0, 100, 200, 200 + EDTA). The Seed germination was influenced by the presence of heavy metals and inhibition increased by increasing the heavy metals concentration. A significant difference was observed in the effect of lead and copper. Generally, the length of root, shoot, and intact plant was reduced by all the concentrations used in the experiments. The root system was affected more than the shoot system of the same plants. All heavy metals concentrations caused a reduction in the dry weight and chlorophyll content of all tested plant species; the reduction was increased by increasing the concentration of all heavy metals, especially when EDTA was added. The Bioaccumulation of heavy metals concentration of all the tested plants increased by increasing the concentration. The highest accumulation of cadmium was (81.77mg kg⁻¹), and copper was ( 65.07 mg kg⁻¹) in S. bicolor, while lead-in H. annuus was (60.74 mg kg⁻¹). The order of accumulation of heavy metals in all the tested plant species in the root system and the intact plant was as follows: H. annuus ˃ S. bicolor ˃ Z. mays and shoot system was: H. annuus ˃ Z. mays ˃ S. bicolor. The highest TF of cadmium was (0.41) in H. annuus; lead was (0.72) in Z. mays and S. bicolor, and copper was (0.44) in Z. mays. The tested plant species varied in their response to the heavy metals and the inhibition was concentration depended. In general, the roots system was more affected by heavy metals toxicity than the shoots system; the roots system accumulated more heavy metals in the roots than the shoots system. The addition of EDTA to the last concentration of heavy metals facilitated the availably and absorption of heavy metals from the polluted soil by all tested plant species.

Keywords: phytoextyraction, phytoremediation, translocation, heavy metals, soil pollution

Procedia PDF Downloads 118
1881 Evaluation of Commercial Back-analysis Package in Condition Assessment of Railways

Authors: Shadi Fathi, Moura Mehravar, Mujib Rahman

Abstract:

Over the years,increased demands on railways, the emergence of high-speed trains and heavy axle loads, ageing, and deterioration of the existing tracks, is imposing costly maintenance actions on the railway sector. The need for developing a fast andcost-efficient non-destructive assessment method for the structural evaluation of railway tracksis therefore critically important. The layer modulus is the main parameter used in the structural design and evaluation of the railway track substructure (foundation). Among many recently developed NDTs, Falling Weight Deflectometer (FWD) test, widely used in pavement evaluation, has shown promising results for railway track substructure monitoring. The surface deflection data collected by FWD are used to estimate the modulus of substructure layers through the back-analysis technique. Although there are different commerciallyavailableback-analysis programs are used for pavement applications, there are onlya limited number of research-based techniques have been so far developed for railway track evaluation. In this paper, the suitability, accuracy, and reliability of the BAKFAAsoftware are investigated. The main rationale for selecting BAKFAA as it has a relatively straightforward user interfacethat is freely available and widely used in highway and airport pavement evaluation. As part of the study, a finite element (FE) model of a railway track section near Leominsterstation, Herefordshire, UK subjected to the FWD test, was developed and validated against available field data. Then, a virtual experimental database (including 218 sets of FWD testing data) was generated using theFE model and employed as the measured database for the BAKFAA software. This database was generated considering various layers’ moduli for each layer of track substructure over a predefined range. The BAKFAA predictions were compared against the cone penetration test (CPT) data (available from literature; conducted near to Leominster station same section as the FWD was performed). The results reveal that BAKFAA overestimatesthe layers’ moduli of each substructure layer. To adjust the BAKFA with the CPT data, this study introduces a correlation model to make the BAKFAA applicable in railway applications.

Keywords: back-analysis, bakfaa, railway track substructure, falling weight deflectometer (FWD), cone penetration test (CPT)

Procedia PDF Downloads 111
1880 Heavy Metal Contamination in Sediments of North East Coast of Tamilnadu by EDXRF Technique

Authors: R. Ravisankar, Tholkappian A. Chandrasekaran, Y. Raghu, K. K. Satapathy, M. V. R. Prasad, K. V. Kanagasabapathy

Abstract:

The coastal areas of Tamilnadu are assuming greater importance owing to increasing human population, urbanization and accelerated industrial activities. sIn the present study, sediment samples are collected along the east coast of Tamilnadu for assessment of heavy metal pollution. The concentration of 13 selected heavy metals such as Mg, Al, Si, K, Ca, Ti, Fe, V, Cr, Mn, Co, Ni and Zn determined by Energy dispersive X-ray fluorescence (EDXRF) technique. In order to describe the pollution status, Contamination factor and pollution load index are calculated and reported. This result suggests that sources of metal contamination were mainly attributed to natural inputs from surrounding environments.

Keywords: sediments, heavy metals, EDXRF, pollution contamination factors

Procedia PDF Downloads 317
1879 Physiochemical Analysis of Ground Water in Zaria, Kaduna state, Nigeria

Authors: E. D. Paul, F. G. Okibe, C. E. Gimba, S. Yakubu

Abstract:

Some physicochemical characteristics and heavy metal concentrations of water samples collected from ten boreholes in Samaru, Zaria, Kaduna state, Nigeria were analysed in order to assess the drinking water quality. Physicochemical parameters were determined using classical methods while the heavy metals were determined using Atomic Absorption Spectrometry. Results of the analysis obtained were as follows: Temperature 29 – 310C, pH 5.74 – 6.19, Electrical conductivity 3.21 – 7.54 µs, DO 0.51 – 1.00 mg/L, BOD 0.0001 – 0.006 mg/L, COD 160 – 260 mg/L, TDS 2.08 – 4.55 mg/L, Total Hardness 97.44 – 401.36 mg/L CaCO3, and Chloride 0.97 – 59.12 mg/L. Concentrations of heavy metals were in the range; Zinc 0.000 – 0.7568 mg/L, Lead 0.000 – 0.070 mg/L and Cadmium 0.000 – 0.009 mg/L. The implications of these findings are discussed.

Keywords: ground water, water quality, heavy metals, Atomic Absorption Spectrometry (AAS)

Procedia PDF Downloads 500
1878 An Evaluation of Edible Plants for Remediation of Contaminated Soil- Can Edible Plants Be Used to Remove Heavy Metals on Soil?

Authors: Celia Marilia Martins, Sonia I. V. Guilundo, Iris M. Victorino, Antonio O. Quilambo

Abstract:

In Mozambique rapid industrialization (mining, aluminium and cement activities) and urbanization processes has led to the incorporation of heavy metals on soil, thus degrading not only the quality of the environment, but also affecting plants, animals and human healthy. Several methods have been used to remediate contaminated soils, but most of them are costly and difficult to get optimum results. Currently, phytoremediation is an effective and affordable technological solution used to extract or remove inactive metals from contaminated soil. Phytoremediation is the use of plants to clean up a contamination from soils, sediments, and water. This technology is environmental friendly and potentially cost effective. The present investigation summarised the potential of edible vegetable to grow under the high level of heavy metals such as lead and zinc. The plants used in these studies include Tomatoes, lettuce and Soya beans. The studies have shown that edible plants can be grown under the high level of heavy metals on the soil. Further investigations are identifying mechanisms used by plants to ensure a safe and sustainable use for remediation of contaminated soils by heavy metals.

Keywords: contaminated soil, edible plants, heavy metals, phytoremediation

Procedia PDF Downloads 347
1877 Pavement Quality Evaluation Using Intelligent Compaction Technology: Overview of Some Case Studies in Oklahoma

Authors: Sagar Ghos, Andrew E. Elaryan, Syed Ashik Ali, Musharraf Zaman, Mohammed Ashiqur Rahman

Abstract:

Achieving desired density during construction is an important indicator of pavement quality. Insufficient compaction often compromises pavement performance and service life. Intelligent compaction (IC) is an emerging technology for monitoring compaction quality during the construction of asphalt pavements. This paper aims to provide an overview of findings from four case studies in Oklahoma involving the compaction quality of asphalt pavements, namely SE 44th St project (Project 1) and EOC Turnpike project (Project 2), Highway 92 project (Project 3), and 108th Avenue project (Project 4). For this purpose, an IC technology, the intelligent compaction analyzer (ICA), developed at the University of Oklahoma, was used to evaluate compaction quality. Collected data include GPS locations, roller vibrations, roller speed, the direction of movement, and temperature of the asphalt mat. The collected data were analyzed using a widely used software, VETA. The average densities for Projects 1, 2, 3 and 4, were found as 89.8%, 91.50%, 90.7% and 87.5%, respectively. The maximum densities were found as 94.6%, 95.8%, 95.9%, and 89.7% for Projects 1, 2, 3, and 4, respectively. It was observed that the ICA estimated densities correlated well with the field core densities. The ICA results indicated that at least 90% of the asphalt mats were subjected to at least two roller passes. However, the number of passes required to achieve the desired density (94% to 97%) differed from project to project depending on the underlying layer. The results of these case studies show both opportunities and challenges in using IC for monitoring compaction quality during construction in real-time.

Keywords: asphalt pavement construction, density, intelligent compaction, intelligent compaction analyzer, intelligent compaction measure value

Procedia PDF Downloads 136
1876 The Effect of Soil Contamination on Chemical Composition and Quality of Aronia (Aronia melanocarpa) Fruits

Authors: Violina R. Angelova, Sava G. Tabakov, Aleksander B. Peltekov, Krasimir I. Ivanov

Abstract:

A field study was conducted to evaluate the chemical composition and quality of the Aronia fruits, as well as the possibilities of Aronia cultivation on soils contaminated with heavy metals. The experiment was performed on an agricultural field contaminated by the Non-Ferrous-Metal Works (NFMW) near Plovdiv, Bulgaria. The study included four varieties of Aronia; Aron variety, Hugin variety, Viking variety and Nero variety. The Aronia was cultivated according to the conventional technology on areas at a different distance from the source of pollution NFMW- Plovdiv (1 km, 3.5 km, and 15 km). The concentrations of macroelements, microelements, and heavy metals in Aronia fruits were determined. The dry matter content, ash, sugars, proteins, and fats were also determined. Aronia is a crop that is tolerant to heavy metals and can successfully be grown on soils contaminated with heavy metals. The increased content of heavy metals in the soil leads to less absorption of the nutrients (Ca, Mg and P) in the fruit of the Aronia. Soil pollution with heavy metals does not affect the quality of the Aronia fruit varieties.

Keywords: aronia, chemical composition, fruits, quality

Procedia PDF Downloads 181
1875 Effect of Lime Stabilization on E. coli Destruction and Heavy Metal Bioavailability in Sewage Sludge for Agricultural Utilization

Authors: G. Petruzzelli, F. Pedron, M. Grifoni, A. Pera, I. Rosellini, B. Pezzarossa

Abstract:

The addition of lime as Ca(OH)2 to sewage sludge to destroy pathogens (Escherichia coli), was evaluated also in relation to heavy metal bioavailability. The obtained results show that the use of calcium hydroxide at the dose of 3% effectively destroyed pathogens ensuring the stability at high pH values over long period and the duration of the sewage sludge stabilization. In general, lime addition decreased the total extractability of heavy metals indicating a reduced bioavailability of these elements. This is particularly important for a safe utilization in agricultural soils to reduce the possible transfer of heavy metals to the food chain.

Keywords: biological sludge, Ca(OH)2, copper, pathogens, sanitation, zinc

Procedia PDF Downloads 406
1874 Bioactive, Nutritional and Heavy Metal Constituents of Some Edible Mushrooms Found in Abia State of Nigeria

Authors: I. C. Okwulehie, J. A. Ogoke

Abstract:

The phytocemical, mineral, proximate and heavy metals compositions of six edible and non-edible species of mushrooms were investigated. Fully fleshy mushrooms were used for the analysis. On the averagely, the bioactive constituents of the mushrooms were as follows Alkaloids 0.12 ± 0.02 – 1.01 ± 03 %, Tannins 0.44 ± 0.09 – 1.38 ± 0.6,). Phenols,(0.13 ± 0.01 – 0.26± 0.00, Saponins 0.14 ± 0.03 – 0.32 ± 0.04%, Flavonoids 0.08 ± 0.02 – 0.34 ± 0.02%. The result of proximate composition indicated that the mushroom contained (5.17 ± 0.06 – 12.28 ± 0.16% protein, 0.16 ± 0.02 – 0.67 ± 0.02% fats, 1.06 ± 0.03 – 8.49 ± 0.03 % fibre, (62.06 ± 0.52 – 80.01 ± 4.71% and carbohydrate. The mineral composition of the mushrooms were as follows, calcium 81.49 ± 2.32 - .914 ± 2.32mg/100g, Magnesium(8 ± 1.39-24 ± 2.40mg/100g, Potassium 64.54 ± 0.43 – 164.54 ± 1.23 mg/100g, sodium 9.47 ± 0.12 – 30.97 ± 0.16 mg/100g, and Phosphorus 22.19 ± 0.57-53.2± 0.44 mg/100g. Heavy metals concentration indicated Cadmium 0.7-0.94ppm. Zinc 27.82 – 70.98 ppm. Lead 0.66 – 2.86ppm and Copper 1.8-22.32ppm. The result obtained indicates that the mushrooms are of good sources of phytochemicals, proximate and minerals needed for maintenance of good health and can also be exploited in manufacture of drugs. Heavy metals obtained indicate that when consume intentionally in high content may cause liver, kidney damage and even death.

Keywords: bioactive, heavy metals, mushroom, nutritive

Procedia PDF Downloads 400
1873 A Molecular-Level Study of Combining the Waste Polymer and High-Concentration Waste Cooking Oil as an Additive on Reclamation of Aged Asphalt Pavement

Authors: Qiuhao Chang, Liangliang Huang, Xingru Wu

Abstract:

In the United States, over 90% of the roads are paved with asphalt. The aging of asphalt is the most serious problem that causes the deterioration of asphalt pavement. Waste cooking oils (WCOs) have been found they can restore the properties of aged asphalt and promote the reuse of aged asphalt pavement. In our previous study, it was found the optimal WCO concentration to restore the aged asphalt sample should be in the range of 10~15 wt% of the aged asphalt sample. After the WCO concentration exceeds 15 wt%, as the WCO concentration increases, some important properties of the asphalt sample can be weakened by the addition of WCO, such as cohesion energy density, surface free energy density, bulk modulus, shear modulus, etc. However, maximizing the utilization of WCO can create environmental and economic benefits. Therefore, in this study, a new idea about using the waste polymer is another additive to restore the WCO modified asphalt that contains a high concentration of WCO (15-25 wt%) is proposed, which has never been reported before. In this way, both waste polymer and WCO can be utilized. The molecular dynamics simulation is used to study the effect of waste polymer on properties of WCO modified asphalt and understand the corresponding mechanism at the molecular level. The radial distribution function, self-diffusion, cohesion energy density, surface free energy density, bulk modulus, shear modulus, adhesion energy between asphalt and aggregate are analyzed to validate the feasibility of combining the waste polymer and WCO to restore the aged asphalt. Finally, the optimal concentration of waste polymer and WCO are determined.

Keywords: reclaim aged asphalt pavement, waste cooking oil, waste polymer, molecular dynamics simulation

Procedia PDF Downloads 190
1872 Enrichment and Flux of Heavy Metals along the Coastal Sediments of Pakistan

Authors: Asmat Siddiqui, Noor Us Saher

Abstract:

Heavy metal contamination in the marine environment is a global issue, and in past decades, this problem has intensified due to an increase in urbanization and industrialization, especially in developing countries. Marine sediments act as a preliminary indicator of heavy metal contamination in the coastal and estuarine environment, which has adverse effects on biota as well as in the marine system. The aim of the current study was to evaluate the contamination status, enrichment, and flux of heavy metals in two monitoring years from coastal sediments of Pakistan. A total of 74 sediment samples were collected from seven coastal areas of Pakistan in two monitoring years, 2001-03 (MY-I) and 2011-13 (MY-II). The geochemical properties (grain size analysis, organic contents and eight heavy metals, i.e. Fe, Zn, Cu, Cr, Ni, Co, Pb, and Cd) of all sediment samples were analyzed. A significant increase in Fe, Ni and Cr concentrations detected between the years, whereas no significant differences were exhibited in Cu, Zn, Co, Pb and Cd concentrations. The extremely high enrichment (>50) of Cu, Zn, Pb and Cd were scrutinized in both monitoring years. The annual deposition flux of heavy metals ranged from 0.63 to 66.44 and 0.78 to 68.27 tons per year in MY-I and MY-II, respectively, with the lowest flux evaluated for Cd and highest for Zn in both monitoring years. A significant increase (p <0.05) was observed in the burial flux of Cr and Ni during the last decade in coastal sediments. The use of geo-indicators is helpful to assess the contamination analysis for management and conservation of the marine environment.

Keywords: coastal contamination, enrichment factor, geo-indicator, heavy metal flux

Procedia PDF Downloads 354
1871 Role of Microplastics on Reducing Heavy Metal Pollution from Wastewater

Authors: Derin Ureten

Abstract:

Plastic pollution does not disappear, it gets smaller and smaller through photolysis which are caused mainly by sun’s radiation, thermal oxidation, thermal degradation, and biodegradation which is the action of organisms digesting larger plastics. All plastic pollutants have exceedingly harmful effects on the environment. Together with the COVID-19 pandemic, the number of plastic products such as masks and gloves flowing into the environment has increased more than ever. However, microplastics are not the only pollutants in water, one of the most tenacious and toxic pollutants are heavy metals. Heavy metal solutions are also capable of causing varieties of health problems in organisms such as cancer, organ damage, nervous system damage, and even death. The aim of this research is to prove that microplastics can be used in wastewater treatment systems by proving that they could adsorb heavy metals in solutions. Experiment for this research will include two heavy metal solutions; one including microplastics in a heavy metal contaminated water solution, and one that just includes heavy metal solution. After being sieved, absorbance of both mediums will be measured with the help of a spectrometer. Iron (III) chloride (FeCl3) will be used as the heavy metal solution since the solution becomes darker as the presence of this substance increases. The experiment will be supported by Pure Nile Red powder in order to observe if there are any visible differences under the microscope. Pure Nile Red powder is a chemical that binds to hydrophobic materials such as plastics and lipids. If proof of adsorbance could be observed by the rates of the solutions' final absorbance rates and visuals ensured by the Pure Nile Red powder, the experiment will be conducted with different temperature levels in order to analyze the most accurate temperature level to proceed with removal of heavy metals from water. New wastewater treatment systems could be generated with the help of microplastics, for water contaminated with heavy metals.

Keywords: microplastics, heavy metal, pollution, adsorbance, wastewater treatment

Procedia PDF Downloads 61
1870 Heavy Metal Pollution of the Soils around the Mining Area near Shamlugh Town (Armenia) and Related Risks to the Environment

Authors: G. A. Gevorgyan, K. A. Ghazaryan, T. H. Derdzyan

Abstract:

The heavy metal pollution of the soils around the mining area near Shamlugh town and related risks to human health were assessed. The investigations showed that the soils were polluted with heavy metals that can be ranked by anthropogenic pollution degree as follows: Cu>Pb>As>Co>Ni>Zn. The main sources of the anthropogenic metal pollution of the soils were the copper mining area near Shamlugh town, the Chochkan tailings storage facility and the trucks transferring are from the mining area. Copper pollution degree in some observation sites was unallowable for agricultural production. The total non-carcinogenic chronic hazard index (THI) values in some places, including observation sites in Shamlugh town, were above the safe level (THI<1) for children living in this territory. Although the highest heavy metal enrichment degree in the soils was registered in case of copper, the highest health risks to humans especially children were posed by cobalt which is explained by the fact that heavy metals have different toxicity levels and penetration characteristics.

Keywords: Armenia, copper mine, heavy metal pollution of soil, health risks

Procedia PDF Downloads 398
1869 Heavy Minerals Distribution in the Recent Stream Sediments of Diyala River Basin, Northeastern Iraq

Authors: Abbas R. Ali, Daroon Hasan Khorsheed

Abstract:

Twenty one samples of stream sediments were collected from the Diyala River Basin (DRB), which represent one of three major tributaries of the Tigris River at northeastern Iraq. This study is concerned with the heavy minerals (HM) analysis in the + 63μ m fraction of the Diyala River sediments, distribution pattern in the various river basin sectors, as well as comparing the present results with previous works.The metastable heavy minerals (epidote, staurolite, garnet) represent more than (30%) Whereas the ultrastable heavy minerals (pyroxene and amphibole) make only about (19 %). Opaques are present in high proportions reaching about (29%) as an average. The ultrastable (zircon, tourmaline, rutile) heavy minerals are the miner constituents (7%) in the sediments.According to the laboratory analytical data of heavy mineral distributions the studied sediments are derived from mafic and ultramafic rocks are found in northeastern Iraq that represent Walash – Nawpordan Series and Mawat complexes in Zagros zones. The presence of zircon and tourmaline in trace amounts may give an indication for the weak role of acidic rocks in the source area whereas the epidote group minerals give an indication for the role of metamorphic rocks.

Keywords: heavy minerals, mineral distribution, recent stream sediment, Diyala river, northeastern Iraq

Procedia PDF Downloads 496
1868 Heavy Metals and Antibiotic Resistant Bacteria as Indicators of Effluent Environmental Pollution in the Green Turtles, Chelonia Mydas

Authors: S. K. Al-Musharafi, I. Y. Mahmoud, S. N. Al-Bahry

Abstract:

At Ras Al-Hadd Reserve, Eggs from green turtles and Chelonia mydas were randomly collected immediately after Oviposition. Eggshells taken from fresh eggs and sand collected from the body chamber were analyzed for eight heavy metals (Al, Br, Cd, Co, Cu, Fe, S, and Zn) using inductively coupled plasma mass spectrometry (ICP). Heavy metal concentrations varied significantly (P<0.05) between nest sand and eggshells. Zn values were significantly higher than the other heavy metals. A total of 60 heterotrophic bacteria belong to eight genera were isolated from fresh egg contents (albumen and yolk). Resistance of the isolates to Amikacin, ampicillin, chloramphenicol, gentamycine, minocylin, nalidixicacid, neomycin, streptomycin, tetracycline, tobramycin, and Trimethoprim was tested. More than 40 % of the isolates were multiple resistant to 2-7 antibiotics. Most of the resistant strains were also resistant to Zn. The value of these findings may indicate that the origin of pollution is of human contaminated effluents.

Keywords: antibiotic resistance, bacteria, environment, heavy metals, sea turtles

Procedia PDF Downloads 339
1867 Investigation of the Heavy Metal Pollution of the River Ecosystems in the Lake Sevan Basin, Armenia

Authors: G. Gevorgyan, S. Khudaverdyan, A. Vaseashta

Abstract:

The Lake Sevan basin is situated in the eastern part of the Republic of Armenia (Gegharquniq marz/district). The heavy metal pollution of the some tributaries of Lake Sevan was investigated. Water sampling was performed in August and December, 2014 from the 4 observation sites: 1) Sotq river upstream (about 600 meters upstream from the Sotq gold mine); 2) Sotq river mouth; 3) Masrik river mouth; 4) Dzknaget river mouth. Heavy metal (V, Fe, Ni, Cu, As, Mo, Pb) concentrations in the water samples were determined by the standard methods using an atomic absorption spectrophotometer. The results of the study showed that heavy metal content mainly increased from the upstream of the Sotq river to the mouth of the Masrik river which may have been conditioned by the influence of gold mining activity as the Masrik and its tributary-Sotq rivers passing through the gold mining area were exposed to heavy metal pollution. The observation sites can be ranked by pollution degree as follows: №3> №2> №1> №4. The highest heavy metal pollution degree was observed in the Masrik river mouth which may have been conditioned by the direct impact of gold mining activity and the pressure of its tributary–the Sotq river which flows through the gold mining area. The lowest heavy metal pollution degree was registered in the Dzknaget river mouth which flowing through rural areas wasn’t subject to significant heavy metal pollution. According to the observation sites of the Sotq and Masrik rivers, high positive correlation was mainly observed between the concentrations of the investigated heavy metals (except nickel) which indicated that all the heavy metals except the nickel had the same anthropogenic pollution source which was the activity of the Sotq gold mine. In general, it is possible to state that the activity of the Sotq gold mine in the Lake Sevan basin caused the heavy metal pollution of the Sotq and Masrik rivers which may have posed environmental hazards. Heavy metals are nondegradable substances, and heavy metal pollution of freshwater systems may pose risks to the environment and human health through accumulation in the tissues of aquatic organisms, water-food chain as well as oral ingestion and dermal contact.

Keywords: Armenia, Lake Sevan basin, gold mining activity, river ecosystems, heavy metal pollution

Procedia PDF Downloads 566
1866 The Fight against Pollution of Heavy Metals

Authors: K. Menad, A. Feddag, M. A. Hassnaoui

Abstract:

We are living in a time and in a world heavily polluted. In the list of the great dangers awaiting the man can be placed on top of the list pollution by heavy metals: lead, mercury, cadmium, etc. Fatigue, Depression, Thyroid disorder, Alzheimer's, Parkinson's, Cancer, are some of the health problems caused by heavy metal pollution. The environmental protection has long since become a major political and economic issue. Among the priorities, include safeguarding water resources. All countries of the world are concerned either because they lack water or because they pollute it. There are several ways to remove these heavy metals; ion exchange by zeolites is one of these ways, which our work is based on. Zeolites were among the main clean up materials by either adsorption, ion exchange and catalysis. Lead and cadmium, heavy metals, is one of the main dangers fulminate the flora and fauna of our small planet, so many resources are deployed to remedy them. The elimination of lead and cadmium by ion exchange has been extensively studied. However, exchange capacity of more and larger formed a major challenge for researchers and industry.

Keywords: composite, ion excahnge, zeolite LTA, zeolite x

Procedia PDF Downloads 247
1865 Study on the Heavy Oil Degradation Performance and Kinetics of Immobilized Bacteria on Modified Zeolite

Authors: Xiao L Dai, Wen X Wei, Shuo Wang, Jia B Li, Yan Wei

Abstract:

Heavy oil pollution generated from both natural and anthropogenic sources could cause significant damages to the ecological environment, due to the toxicity of some of its constituents. Nowadays, microbial remediation is becoming a promising technology to treat oil pollution owing to its low cost and prevention of secondary pollution; microorganisms are key players in the process. Compared to the free microorganisms, immobilized microorganisms possess several advantages, including high metabolic activity rates, strong resistance to toxic chemicals and natural competition with the indigenous microorganisms, and effective resistance to washing away (in open water system). Many immobilized microorganisms have been successfully used for bioremediation of heavy oil pollution. Considering the broad choices, low cost, simple process, large specific surface area and less impact on microbial activity, modified zeolite were selected as a bio-carrier for bacteria immobilization. Three strains of heavy oil-degrading bacteria Bacillus sp. DL-13, Brevibacillus sp. DL-1 and Acinetobacter sp. DL-34 were immobilized on the modified zeolite under mild conditions, and the bacterial load (bacteria /modified zeolite) was 1.12 mg/g, 1.11 mg/g, and 1.13 mg/g, respectively. SEM results showed that the bacteria mainly adsorbed on the surface or punctured in the void of modified zeolite. The heavy oil degradation efficiency of immobilized bacteria was 62.96%, higher than that of the free bacteria (59.83%). The heavy oil degradation process of immobilized bacteria accords with the first-order reaction equation, and the reaction rate constant is 0.1483 d⁻¹, which was significantly higher than the free bacteria (0.1123 d⁻¹), suggesting that the immobilized bacteria can rapidly start up the heavy oil degradation and has a high activity of heavy oil degradation. The results suggested that immobilized bacteria are promising technology for bioremediation of oil pollution.

Keywords: heavy oil pollution, microbial remediation, modified zeolite, immobilized bacteria

Procedia PDF Downloads 126
1864 Influence of the Quality of the Recycled Aggregates in Concrete Pavement

Authors: Viviana Letelier, Ester Tarela, Bianca Lopez, Pedro Muñoz, Giacomo Moriconi

Abstract:

The environmental impact has become a global concern during the last decades. Several alternatives have been proposed and studied to minimize this impact in different areas. The reuse of aggregates from old concretes to manufacture new ones not only can reduce this impact but is also a way to optimize the resource management. The effect of the origin of the reused aggregates from two different origin materials in recycled concrete pavement is studied here. Using the dosing applied by a pavement company, coarse aggregates in the 6.3-25 mm fraction are replaced by recycled aggregates with two different origins: old concrete pavements with similar origin strength to the one of the control concrete, and precast concrete pipes with smaller strengths than the one of the control concrete. The replacement percentages tested are 30%, 40% and 50% in both cases. The compressive strength tests are performed after 7, 14, 28 and 90 curing days, the flexural strength tests and the elasticity modulus tests after 28 and 90 curing days. Results show that the influence of the quality of the origin concrete in the mechanical properties of recycled concretes is not despicable. Concretes with up to a 50% of recycled aggregates from the concrete pavement have similar compressive strengths to the ones of the control concrete and slightly smaller flexural strengths that, however, in all cases exceed the minimum of 5MPa after 28 curing days stablished by the Chilean regulation for pavement concretes. On the other hand, concretes with recycled aggregates from precast concrete pipes show significantly lower compressive strengths after 28 curing days. The differences with the compressive strength of the control concrete increase with the percentage of replacement, reaching a 13% reduction when 50% of the aggregates are replaced. The flexural strength also suffers significant reductions that increase with the percentage of replacement, only obeying the Chilean regulation when 30% of the aggregates are recycled after 28 curing days. Nevertheless, after 90 curing days, all series obey the regulation requirements. Results show, not only the importance of the quality of the origin concrete, but also the significance of the curing days, that may allow the use of less quality recycled material without important strength losses.

Keywords: flexural strength of recycled concrete., mechanical properties of recycled concrete, recycled aggregates, recycled concrete pavements

Procedia PDF Downloads 229
1863 Comparison of Concentration of Heavy Metals in PM2.5 Analyzed in Three Different Global Research Institutions Using X-Ray Fluorescence

Authors: Sungroul Kim, Yeonjin Kim

Abstract:

This study was conducted by comparing the concentrations of heavy metals analyzed from the same samples with three X-Ray fluorescence (XRF) spectrometer in three different global research institutions, including PAN (A Branch of Malvern Panalytical, Seoul, South Korea), RTI (Research Triangle Institute, NC, U.S.A), and aerosol laboratory in Harvard University, Boston, U.S.A. To achieve our research objectives, the indoor air filter samples were collected at homes (n=24) of adults or child asthmatics then analyzed in PAN followed by Harvard University and RTI consecutively. Descriptive statistics were conducted for data comparison as well as correlation and simple regression analysis using R version 4.0.3. As a result, detection rates of most heavy metals analyzed in three institutions were about 90%. Of the 25 elements commonly analyzed among those institutions, 16 elements showed an R² (coefficient of determination) of 0.7 or higher (10 components were 0.9 or higher). The findings of this study demonstrated that XRF was a useful device ensuring reproducibility and compatibility for measuring heavy metals in PM2.5 collected from indoor air of asthmatics’ home.

Keywords: heavy metals, indoor air quality, PM2.5, X-ray fluorescence

Procedia PDF Downloads 176
1862 Design of Orientation-Free Handler and Fuzzy Controller for Wire-Driven Heavy Object Lifting System

Authors: Bo-Wei Song, Yun-Jung Lee

Abstract:

This paper presents an intention interface and controller for a wire-driven heavy object lifting system that assists the operator with moving a heavy object. The handler is designed to allow a comfortable working posture for the operator. Plus, as a human assistive system, the operator is involved in the control loop, where a fuzzy control system is used to consider the human control characteristics. The effectiveness and performance of the proposed system are proved by experiments.

Keywords: fuzzy controller, handler design, heavy object lifting system, human-assistive device, human-in-the-loop system

Procedia PDF Downloads 492