Search results for: source rock organic matter biodegradation
6864 Petrogenesis and Tectonic Implication of the Oligocene Na-Rich Granites from the North Sulawesi Arc, Indonesia
Authors: Xianghong Lu, Yuejun Wang, Chengshi Gan, Xin Qian
Abstract:
The North Sulawesi Arc, located on the east of Indonesia and to the south of the Celebes Sea, is the north part of the K-shape of Sulawesi Island and has a complex tectonic history since the Cenozoic due to the convergence of three plates (Eurasia, India-Australia and Pacific plates). Published rock records contain less precise chronology, mostly using K-Ar dating, and rare geochemistry data, which limit the understanding of the regional tectonic setting. This study presents detailed zircon U-Pb geochronological and Hf-O isotope and whole-rock geochemical analyses for the Na-rich granites from the North Sulawesi Arc. Zircon U-Pb geochronological analyses of three representative samples yield weighted mean ages of 30.4 ± 0.4 Ma, 29.5 ± 0.2 Ma, and 27.3 ± 0.4 Ma, respectively, revealing the Oligocene magmatism in the North Sulawesi Arc. The samples have high Na₂O and low K₂O contents with high Na₂O/K₂O ratios, belonging to Low-K tholeiitic Na-rich granites. The Na-rich granites are characterized by high SiO₂ contents (75.05-79.38 wt.%) and low MgO contents (0.07-0.91 wt.%) and show arc-like trace elemental signatures. They have low (⁸⁷Sr/⁸⁶Sr)i ratios (0.7044-0.7046), high εNd(t) values (from +5.1 to +6.6), high zircon εHf(t) values (from +10.1 to +18.8) and low zircon δ18O values (3.65-5.02). They show an Indian-Ocean affinity of Pb isotopic compositions with ²⁰⁶Pb/²⁰⁴Pb ratio of 18.16-18.37, ²⁰⁷Pb/²⁰⁴Pb ratio of 15.56-15.62, and ²⁰⁸Pb/²⁰⁴Pb ratio of 38.20-38.66. These geochemical signatures suggest that the Oligocene Na-rich granites from the North Sulawesi Arc formed by partial melting of the juvenile oceanic crust with sediment-derived fluid-related metasomatism in a subducting setting and support an intra-oceanic arc origin. Combined with the published study, the emergence of extensive calc-alkaline felsic arc magmatism can be traced back to the Early Oligocene period, subsequent to the Eocene back-arc basalts (BAB) that share similarity with the Celebes Sea basement. Since the opening of the Celebes Sea started from the Eocene (42~47 Ma) and stopped by the Early Oligocene (~32 Ma), the geodynamical mechanism of the formation of the Na-rich granites from the North Sulawesi Arc during the Oligocene might relate to the subduction of the Indian Ocean.Keywords: North Sulawesi Arc, oligocene, Na-rich granites, in-situ zircon Hf–O analysis, intra-oceanic origin
Procedia PDF Downloads 756863 Feasibility Study of Iraq' Decomposition and Its Effects on the Region
Authors: Ebrahim Rahmani, Siyamak Moazeni
Abstract:
According to the Iraq's first constitutional law (approved 2005), Iraq is an independent with sovereignty and its governmental structure is parliamentary democratic republic and federal. Even in reforms in 2009, this article of law did not changed at all. But considering the existence of this emphasis and clarity which is mentioned in the law, different and sometimes contradictory interpretations and positions are expressed about federalism in the way that we can say, considering the importance of the matter, federalism is a focus point to create and expansion of the cold war among leaders of different groups of the country. Iraq's today political and security position has granted the suitable opportunity to Iraq's Kurdistan in appearing of the recent security crisis to increase its share from the central political power or to achieve to its independent dream. The federalism the weakest point of Iraq's territorial integrity in a way that if different groups do not come to a consensus about it and do not think about a mechanism which is accepted by all of them, this can effect on and Iraq's political stability and security. Iraq's Kurdistan follows the option of disintegration and separation under the shadow of political and security changes, even with existence of some Iraqi groups' hopes regarding the improvement of situation after parliament election and also considering Masoud Barezani's power will for separation from Iraq as well as regarding special international changes and disintegration of Karime from Ukraine and ISIS crises; concerns have been created among regional and international powers and interior players. In this article, a paradox due constitutional law about federalism, Iraq's central government view and its politicians to the matter and the regional effect of this action on region's geopolitics are reviewed as well.Keywords: constitutional law, federalism, decomposition, Iraq's Kurdistan
Procedia PDF Downloads 3276862 The Effect of Reaction Time on the Morphology and Phase of Quaternary Ferrite Nanoparticles (FeCoCrO₄) Synthesised from a Single Source Precursor
Authors: Khadijat Olabisi Abdulwahab, Mohammad Azad Malik, Paul O'Brien, Grigore Timco, Floriana Tuna
Abstract:
The synthesis of spinel ferrite nanoparticles with a narrow size distribution is very crucial in their numerous applications including information storage, hyperthermia treatment, drug delivery, contrast agent in magnetic resonance imaging, catalysis, sensors, and environmental remediation. Ferrites have the general formula MFe₂O₄ (M = Fe, Co, Mn, Ni, Zn e.t.c) and possess remarkable electrical and magnetic properties which depend on the cations, method of preparation, size and their site occupancies. To the best of our knowledge, there are no reports on the use of a single source precursor to synthesise quaternary ferrite nanoparticles. Here in, we demonstrated the use of trimetallic iron pivalate cluster [CrCoFeO(O₂CᵗBu)₆(HO₂CᵗBu)₃] as a single source precursor to synthesise monodisperse cobalt chromium ferrite (FeCoCrO₄) nanoparticles by the hot injection thermolysis method. The precursor was thermolysed in oleylamine, oleic acid, with diphenyl ether as solvent at 260 °C. The effect of reaction time on the stoichiometry, phases or morphology of the nanoparticles was studied. The p-XRD patterns of the nanoparticles obtained after one hour was pure phase of cubic iron cobalt chromium ferrite (FeCoCrO₄). TEM showed that a more monodispersed spherical ferrite nanoparticles were obtained after one hour. Magnetic measurements revealed that the ferrite particles are superparamagnetic at room temperature. The nanoparticles were characterised by Powder X-ray Diffraction (p-XRD), Transmission Electron Microscopy (TEM), Energy Dispersive Spectroscopy (EDS) and Super Conducting Quantum Interference Device (SQUID).Keywords: cobalt chromium ferrite, colloidal, hot injection thermolysis, monodisperse, reaction time, single source precursor, quaternary ferrite nanoparticles
Procedia PDF Downloads 3136861 Halophilic Bacterium: A Review of New Studies
Authors: Bassam Al Johny
Abstract:
Halophilic bacteria are organisms which thrive in salt-rich environments, such as salt lakes, solar salterns and salt mines which contain large populations of these organisms. In biotechnology, such salt-tolerant bacteria are widely used for the production of valuable enzymes, and more than a thousand years ago humans began using salt to cure and thereby preserve perishable foods and other materials, such as hides; halophiles can be detrimental to the preservation of salt brine cured hides. The aim of this review is to provide an overview of the taxonomy of these organisms including novel isolates from rock salt, and also to discuss their current and future biotechnological and environmental uses.Keywords: hypersaline environments, halophilic bacteria, environmental application, industrial application
Procedia PDF Downloads 2696860 Grains of Winter Wheat Spelt (Triticum spelta L.) for Save Food Production
Authors: D. Jablonskytė-Raščė, A. Mankevičienė, S. Supronienė, I. Kerienė, S. Maikštėnienė, S. Bliznikas, R. Česnulevičienė
Abstract:
Organic farming does not allow the use of conventional mineral fertilizers and crop protection products. As a result, in our experiments we chose to grow different species of cereals and to see how cereal species affects mycotoxin accumulation. From the phytopathological and entomological viewpoint, the glumes of spelt grain perform a positive role since they protect grain from the infection of pathogenic microorganisms. On the background of the above-mentioned infection, there were more Fusarium–affected grains of spelt than of common wheat. It can be assumed that spelt is more susceptible to the Fusarium fungi infection than common wheat. This study describes the occurrence of DON, ZEA and T2/HT2 toxin in a survey of spelt and common wheat and their bran as well as flour. The analysis was conducted using the enzyme-linked immunosorbent assay (ELISA) method. The concentrations of DON, ZEA, and T2/HT2 in Triticum spelta and Triticum aestivum are influenced by species, cereal type and year interaction. The highest concentration of mycotoxin was found in spelt grain with glumes. The obtained results indicate the significantly higher concentrations of Fusarium toxins in glumes than in dehulled grain which implicate the possible protective effect of spelt wheat glumes. The lowest DON, ZEA, and T2/HT2 concentration was determined in spelt grain without glumes.Keywords: Fusarium mycotoxins, organic farming, spelt
Procedia PDF Downloads 3116859 Theoretical and Experimental Electrostatic Parameters Determination of 4-Methyl-N-[(5- Nitrothiophen-2-Ylmethylidene)] Aniline Compound
Authors: N. Boukabcha, Y. Megrouss, N. Benhalima, S. Yahiaoui, A. Chouaih, F. Hamzaoui
Abstract:
We present the electron density analysis of organic compound 4-methyl-N-[(5- nitrothiophen-2-ylmethylidene)] aniline with chemical formula C12H10N2O2S. Indeed, determining the electrostatic properties of nonlinear optical organic compounds requires knowledge of the distribution of the electron density with high precision. On the other hand, a structural analysis is performed. Two methods are used to obtain the structure, X-ray diffraction and theoretical calculation with density functional theory (DFT). The electron density study is performed using the Mopro program1503 based on the multipolar model of Hansen and Coppens. Electron density analysis allows determination of the value and orientation of the dipole moment. The net atomic charges, electrostatic potential and the molecular dipole moment have been determined in order to understand the nature of inter- and intramolecular charge transfer. The study reveals the nature of intermolecular interactions including charge transfer and hydrogen bonds in the title compound. Crystallographic data: monoclinic system - space group P21 / n. Celle parameters: a = 4.7606 (4) Å, b = 22.415 (2) Å, c = 10.7008 (15) Å, β = 92.566 (13) 0, V = 1140.7 (2) Å3, Z = 4, R = 0.0034 for 2693 observed reflections.Keywords: electron density, dipole moment, electrostatic potential, DFT, Mopro
Procedia PDF Downloads 3126858 A Proposal for U-City (Smart City) Service Method Using Real-Time Digital Map
Authors: SangWon Han, MuWook Pyeon, Sujung Moon, DaeKyo Seo
Abstract:
Recently, technologies based on three-dimensional (3D) space information are being developed and quality of life is improving as a result. Research on real-time digital map (RDM) is being conducted now to provide 3D space information. RDM is a service that creates and supplies 3D space information in real time based on location/shape detection. Research subjects on RDM include the construction of 3D space information with matching image data, complementing the weaknesses of image acquisition using multi-source data, and data collection methods using big data. Using RDM will be effective for space analysis using 3D space information in a U-City and for other space information utilization technologies.Keywords: RDM, multi-source data, big data, U-City
Procedia PDF Downloads 4326857 The Community Structure of Fish and its Correlation with Mangrove Forest Litter Production in Panjang Island, Banten Bay, Indonesia
Authors: Meilisha Putri Pertiwi, Mufti Petala Patria
Abstract:
Mangrove forest often categorized as a productive ecosystem in trophic water and the highest carbon storage among all the forest types. Mangrove-derived organic matter determines the food web of fish and invertebrates. In Indonesia trophic water ecosystem, 80% commersial fish caught in coastal area are high related to food web in mangrove forest ecosystem. Based on the previous research in Panjang Island, Bojonegara, Banten, Indonesia, removed mangrove litterfall to the sea water were 9,023 g/m³/s for two stations (west station–5,169 g/m³/s and north station-3,854 g/m³/s). The vegetation were dominated from Rhizophora apiculata and Rhizopora stylosa. C element is the highest content (27,303% and 30,373%) than N element (0,427% and 0,35%) and P element (0,19% and 0,143%). The aim of research also to know the diversity of fish inhabit in mangrove forest. Fish sampling is by push net. Fish caught are collected into plastics, total length measured, weigh measured, and individual and total counted. Meanwhile, the 3 modified pipes (1 m long, 5 inches diameter, and a closed one hole part facing the river by using a nylon cloth) set in the water channel connecting mangrove forest and sea water for each stasiun. They placed for 1 hour at low tide. Then calculate the speed of water flow and volume of modified pipes. The fish and mangrove litter will be weigh for wet weight, dry weight, and analyze the C, N, and P element content. The sampling data will be conduct 3 times of month in full moon. The salinity, temperature, turbidity, pH, DO, and the sediment of mangrove forest will be measure too. This research will give information about the fish diversity in mangrove forest, the removed mangrove litterfall to the sea water, the composition of sediment, the total element content (C, N, P) of fish and mangrove litter, and the correlation of element content absorption between fish and mangrove litter. The data will be use for the fish and mangrove ecosystem conservation.Keywords: fish diversity, mangrove forest, mangrove litter, carbon element, nitrogen element, P element, conservation
Procedia PDF Downloads 4846856 Experimental and Theoretical Study on Hygrothermal Aging Effect on Mechanical Behavior of Fiber Reinforced Plastic Laminates
Authors: S. Larbi, R. Bensaada, S. Djebali, A. Bilek
Abstract:
The manufacture of composite parts is a major issue in many industrial domains. Polymer composite materials are ideal for structural applications where high strength-to-weight and stiffness-to-weight ratios are required. However, exposition to extreme environment conditions (temperature, humidity) affects mechanical properties of organic composite materials and lead to an undesirable degradation. Aging mechanisms in organic matrix are very diverse and vary according to the polymer and the aging conditions such as temperature, humidity etc. This paper studies the hygrothermal aging effect on the mechanical properties of fiber reinforced plastics laminates at 40 °C in different environment exposure. Two composite materials are used to conduct the study (carbon fiber/epoxy and glass fiber/vinyl ester with two stratifications for both the materials [904/04] and [454/04]). The experimental procedure includes a mechanical characterization of the materials in a virgin state and exposition of specimens to two environments (seawater and demineralized water). Absorption kinetics for the two materials and both the stratifications are determined. Three-point bending test is performed on the aged materials in order to determine the hygrothermal effect on the mechanical properties of the materials.Keywords: FRP laminates, hygrothermal aging, mechanical properties, theory of laminates
Procedia PDF Downloads 2836855 Effects of Organic Fertilizer and Azotobacter and Azospirillum Bacteria on Concentration and Composition of Essential Oil of Coriander (Coriandrum Sativum L.)
Authors: M. T. Darzi, M. Shirkhodaei, M. R. Haj Seyed Hadi
Abstract:
The main objective of this study was to determine the effects of organic fertilizer and azotobacter and azospirillum bacteria on concentration and composition of essential oil in the coriander essential oil content, essential oil yield, linalool percent, alpha pinene percent and cymene percent in essential oil. The experiment was carried out as factorial experiment in the base of randomized complete blocks design with eight treatments and three replications at research field of Agriculture Company of Ran in Firouzkuh of iran in 2012. The factors were Vermicompost in four levels (0, 3, 6 and 9 ton/ha) and biofertilizer, mixture of Azotobacter chroococcum and Azospirillum lipoferum in two levels (non-inoculated and inoculated seeds). The present results have shown that vermicompost had significant effects on evaluated traits except linalool percent in essential oil, as the highest essential oil content, essential oil yield and alpha pinene percent in essential were obtained after applying 6 ton/ha vermicompost. The minimum cymene percent in essential oil were obtained after applying 6 ton/ha vermicompost. Biofertilizer also showed significant effects on essential oil yield only. The highest essential oil yield were obtained by using the biofertilizer (inoculated seeds).Keywords: coriander, vermicompost, biofertilizer, essential oil
Procedia PDF Downloads 3126854 Participation of Titanium Influencing the Petrological Assemblage of Mafic Dyke: Salem, South India
Authors: Ayoti Banerjee, Meenakshi Banerjee
Abstract:
The study of metamorphic reaction textures is important in contributing to our understanding of the evolution of metamorphic terranes. Where preserved, they provide information on changes in the P-T conditions during the metamorphic history of the rock, and thus allow us to speculate on the P-T-t evolution of the terrane. Mafic dykes have attracted the attention of petrologists because they act as window to mantle. This rock represents a mafic dyke of doleritic composition. It is fine to medium grained in which clinopyroxene are enclosed by the lath shaped plagioclase grains to form spectacular ophitic texture. At places, sub ophitic texture was also observed. Grains of pyroxene and plagioclase show very less deformation typically plagioclase showing deformed lamella along with plagioclase-clinopyroxene-phyric granoblastic fabric within a groundmass of feldspar microphenocrysts and Fe–Ti oxides. Both normal and reverse zoning were noted in the plagioclase laths. The clinopyroxene grains contain exsolved phases such as orthopyroxene, plagioclase, magnetite, ilmenite along the cleavage traces and the orthopyroxene lamella form granules in the periphery of the clinopyroxene grains. Garnet corona also develops preferentially around plagioclase at the contact of clinopyroxene, ilmenite or magnetite. Tiny quartz and K-fs grains showed symplectic intergrowth with garnet at a few places. The product quartz formed along with garnet rims the coronal garnet and the reacting clinopyroxene. Thin amphibole corona formed along the periphery of deformed plagioclase and clinopyroxene occur as patches over the magmatic minerals. The amphibole coronas cannot be assigned to a late magmatic stage and are interpreted as reactive being restricted to the contact between clinopyroxene and plagioclase, thus postdating the crystallization of both. The amphibole and garnet do not share grain boundary in the entire rock and is thus pointing towards simultaneous crystallization. Olivine is absent. Spectacular myrmekitic growth of orthoclase and quartz rimming the plagioclase is consistent with the potash metasomatic effects that is also found in other rocks of this region. These textural features are consistent with a phase of fluid induced metamorphism (retrogression). But the appearance of coronal garnet and amphibole exclusive of each other reflects the participation if Ti as the prime reason. Presence of Ti as a reactant phase is a must for amphibole forming reactions whereas it is not so in case of garnet forming reactions although the reactants are the same plagioclase and clinopyroxene in both cases. These findings are well validated by petrographical and textural analysis. In order to obtain balanced chemical reactions that explain formation of amphibole and garnet in the mafic dyke rocks a matrix operation technique called Singular Value Decomposition (SVD) was adopted utilizing the measured chemical compositions of the minerals. The computer program C-Space was used for this purpose and the required compositional matrix. Data fed to C-Space was after doing cation-calculation of the oxide percentages obtained from EPMA analysis. The Garnet-Clinopyroxene geothermometer yielded a temperature of 650 degrees Celsius. The Garnet-Clinopyroxene-Plagioclase geobarometer and Al-in amphibole yielded roughly 7.5 kbar pressure.Keywords: corona, dolerite, geothermometer, metasomatism, metamorphic reaction texture, retrogression
Procedia PDF Downloads 2766853 Development of Calcium Carbonate Molecular Sheets via Wet Chemical Route
Authors: Sudhir Kumar Sharma, Ramesh Jagannathan
Abstract:
The interaction of organic and inorganic matrices of biological origin resulting in self-assembled structures with unique properties is well established. The development of such self-assembled nanostructures by synthetic and bio-inspired techniques is an established field of active research. Among bio-materials, nacre, a laminar stack of calcium carbonate nanosheets, which are interleaved with organic material, has long been focused research due to its unique mechanical properties. In this paper, we present the development of nacre-like lamellar structures made up of calcium carbonate via a wet chemical route. We used the binding affinity of carboxylate anions and calcium cations using poly (acrylic) acid (PAA) to lead CaCO₃ crystallization. In these experiments, we selected calcium acetate as the precursor molecule along with PAA (Mw ~ 8000 Da). We found that Ca⁺²/COO⁻ ratio provided a tunable control for the morphology and growth of CaCO₃ nanostructures. Drop casting one such formulation on a silicon substrate followed by calcination resulted in co-planner, molecular sheets of CaCO₃, separated by a spacer layer of carbon. The scope of our process could be expanded to produce unit cell thick molecular sheets of other important inorganic materials.Keywords: self-assembled structures, bio-inspired materials, calcium carbonate, wet chemical route
Procedia PDF Downloads 1346852 The Extraction and Stripping of Hg(II) from Produced Water via Hollow Fiber Contactor
Authors: Dolapop Sribudda, Ura Pancharoen
Abstract:
The separation of Hg(II) from produced water by hollow fiber contactors (HFC) was investigation. This system included of two hollow fiber modules in the series connecting. The first module used for the extraction reaction and the second module for stripping reaction. Aliquat336 extractant was fed from the organic reservoirs into the shell side of the first hollow fiber module and continuous to the shell side of the second module. The organic liquid was continuously feed recirculate and back to the reservoirs. The feed solution was pumped into the lumen (tube side) of the first hollow fiber module. Simultaneously, the stripping solution was pumped in the same way in tube side of the second module. The feed and stripping solution was fed which had a counter current flow. Samples were kept in the outlet of feed and stripping solution for 1 hour and characterized concentration of Hg(II) by Inductively Couple Plasma Atomic Emission Spectroscopy (ICP-AES). Feed solution was produced water from natural gulf of Thailand. The extractant was Aliquat336 dissolved in kerosene diluent. Stripping solution used was nitric acid (HNO3) and thiourea (NH2CSNH2). The effect of carrier concentration and type of stripping solution were investigated. Results showed that the best condition were 10 % (v/v) Aliquat336 and 1.0 M NH2CSNH2. At the optimum condition, the extraction and stripping of Hg(II) were 98% and 44.2%, respectively.Keywords: Hg(II), hollow fiber contactor, produced water, wastewater treatment
Procedia PDF Downloads 4016851 Vapochromism of 3,3’,5,5’-Tetramethylbenzidine-Tetrasilisicfluormica Intercalation Compounds with High Selectivity for Water and Acetonitrile
Authors: Reira Kinoshita, Shin'ichi Ishimaru
Abstract:
Vapochromism is a type of chromism in which the color of a substance changes when it is exposed to the vapor of volatile materials, and has been investigated for the application of chemical sensors for volatile organic compounds causing sick building syndrome and health hazards in workspaces. We synthesized intercalation compounds of 3,3',5,5'-tetramethylbenzidine (TMB), and tetrasilisicfluormica (TSFM) by the commonly used cation-exchange method with the cation ratio TMB²⁺/CEC of TSFM = 1.0, 2.0, 2.7 and 5.4 to investigate the vapochromism of these materials. The obtained samples were characterized by powder XRD, XRF, TG-DTA, N₂ adsorption, and SEM. Vapochromism was measured for each sample under a controlled atmosphere by a handy reflectance spectrometer directly from the outside of the glass sample tubes. The color was yellow for all specimens vacuum-dried at 50 °C, but it turned green under H₂O vapor exposure for the samples with TMB²⁺/CEC = 2.0, 2.7, and 5.4 and blue under acetonitrile vapor for all cation ratios. Especially the sample TMB²⁺/CEC = 2.0 showed clear chromism both for water and acetonitrile. On the other hand, no clear color change was observed for vapors of alcohols, acetone, and non-polar solvents. From these results, this material can be expected to apply for easy detection of humidity and acetonitrile vapor in the environment.Keywords: chemical sensor, intercalation compound, tetramethylbenzidine, tetrasilisicfluormica, vapochromism, volatile organic compounds
Procedia PDF Downloads 1176850 Production of Functional Crackers Enriched with Olive (Olea europaea L.) Leaf Extract
Authors: Rosa Palmeri, Julieta I. Monteleone, Antonio C. Barbera, Carmelo Maucieri, Aldo Todaro, Virgilio Giannone, Giovanni Spagna
Abstract:
In recent years, considerable interest has been shown in the functional properties of foods, and a relevant role has been played by phenolic compounds, able to scavenge free radicals. A more sustainable agriculture has to emerge to guarantee food supply over the next years. Wheat, corn, and rice are the most common cereals cultivated, but also other cereal species, such as barley can be appreciated for their peculiarities. Barley (Hordeum vulgare L.) is a C3 winter cereal that shows high resistance at drought and salt stresses. There are growing interests in barley as ingredient for the production of functional foods due to its high content of phenolic compounds and Beta-glucans. In this respect, the possibility of separating specific functional fractions from food industry by-products looks very promising. Olive leaves represent a quantitatively significant by-product of olive grove farming, and are an interesting source of phenolic compounds. In particular, oleuropein, which provide important nutritional benefits, is the main phenolic compound in olive leaves and ranges from 17% to 23% depending upon the cultivar and growing season period. Together with oleuropein and its derivatives (e.g. dimethyloleuropein, oleuropein diglucoside), olive leaves further contain tyrosol, hydroxytyrosol, and a series of secondary metabolities structurally related to them: verbascoside, ligstroside, hydroxytyrosol glucoside, tyrosol glucoside, oleuroside, oleoside-11-methyl ester, and nuzhenide. Several flavonoids, flavonoid glycosides, and phenolic acids have also described in olive leaves. The aim of this work was the production of functional food with higher content of polyphenols and the evaluation of their shelf life. Organic durum wheat and barley grains contain higher levels of phenolic compounds were used for the production of crackers. Olive leaf extract (OLE) was obtained from cv. ‘Biancolilla’ by aqueous extraction method. Two baked goods trials were performed with both organic durum wheat and barley flours, adding olive leaf extract. Control crackers, made as comparison, were produced with the same formulation replacing OLE with water. Total phenolic compound, moisture content, activity water, and textural properties at different time of storage were determined to evaluate the shelf-life of the products. Our the preliminary results showed that the enriched crackers showed higher phenolic content and antioxidant activity than control. Alternative uses of olive leaf extracts for crackers production could represent a good candidate for the addition of functional ingredients because bakery items are daily consumed, and have long shelf-life.Keywords: barley, functional foods, olive leaf, polyphenols, shelf life
Procedia PDF Downloads 3026849 Characterization and Optimization of Culture Conditions for Sulphur Oxidizing Bacteria after Isolation from Rhizospheric Mustard Soil, Decomposing Sites and Pit House
Authors: Suman Chaudhary, Rinku Dhanker, Tanvi, Sneh Goyal
Abstract:
Sulphur oxidizing bacteria (SOB) have marked their significant role in perspectives of maintaining healthy environment as researchers from all over the world tested and apply these in waste water treatment plants, bioleaching of heavy metals, deterioration of bridge structures, concrete and for bioremediation purposes, etc. Also, these SOB are well adapted in all kinds of environment ranging from normal soil, water habitats to extreme natural sources like geothermal areas, volcanic eruptions, black shale and acid rock drainage (ARD). SOB have been isolated from low pH environment of anthropogenic origin like acid mine drainage (AMD) and bioleaching heaps, hence these can work efficiently in different environmental conditions. Besides having many applications in field of environment science, they may be proven to be very beneficial in area of agriculture as sulphur is the fourth major macronutrients required for the growth of plants. More amount of sulphur is needed by pulses and oilseed crops with respect to the cereal grains. Due to continuous use of land for overproduction of more demanding sulphur utilizing crops and without application of sulphur fertilizers, its concentration is decreasing day by day, and thus, sulphur deficiency is becoming a great problem as it affects the crop productivity and quality. Sulphur is generally found in soils in many forms which are unavailable for plants (cannot be use by plants) like elemental sulphur, thiosulphate which can be taken up by bacteria and converted into simpler forms usable by plants by undergoing a series of transformations. So, keeping the importance of sulphur in view for various soil types, oilseed crops and role of microorganisms in making them available to plants, we made an effort to isolate, optimize, and characterize SOB. Three potential strains of bacteria were isolated, namely SSF7, SSA21, and SSS6, showing sulphate production of concentration, i.e. 2.268, 3.102, and 2.785 mM, respectively. Also, these were optimized for various culture conditions like carbon, nitrogen source, pH, temperature, and incubation time, and characterization was also done.Keywords: sulphur oxidizing bacteria, isolation, optimization, characterization, sulphate production
Procedia PDF Downloads 3366848 Reduction of Terpene Emissions from Oriented Strand Boards (OSB) by Bacterial Pre-Treatment
Authors: Bernhard Widhalm, Cornelia Rieder-Gradinger, Ewald Srebotnik
Abstract:
Pine wood (Pinus sylvestris L.) is the basic raw material for the production of Oriented Strand Boards (OSB) and the major source of volatile organic compounds, especially terpenes (like α- and β-pinene). To lower the total emission level of OSB, terpene metabolising microorganisms were therefore applied onto pine wood strands for the production of emission-reduced boards. Suitable microorganisms were identified during preliminary tests under laboratory conditions. At first, their terpene degrading potential was investigated in liquid culture, followed by laboratory tests using unsterile pine wood particles and strands. The main focus was laid on an adoptable terpene reduction in a short incubation time. An optimised bacterial mixture of Pseudomonas putida and Pseudomonas fluorescens showed the best results and was therefore used for further experiments on a larger scale. In an industry-compatible testing procedure, pine wood strands were incubated with the bacterial mixture for a period of 2 to 4 days. Incubation time was stopped by drying the strands. OSB were then manufactured from the pre-treated strands and emissions were measured by means of SPME/GC-MS analysis. Bacterial pre-treatment of strands resulted in a reduction of α-pinene- and β-pinene-emissions from OSB by 40% and 70%, respectively, even after only 2 days of incubation. The results of the investigation provide a basis for the application of microbial treatment within the industrial OSB production line, where shortest possible incubation times are required. For this purpose, the performance of the bacterial mixture will have to be further optimised.Keywords: GC-MS, OSB, Pseudomonas sp., terpene degradation
Procedia PDF Downloads 2666847 A Method of Manufacturing Low Cost Utility Robots and Vehicles
Authors: Gregory E. Ofili
Abstract:
Introduction and Objective: Climate change and a global economy mean farmers must adapt and gain access to affordable and reliable automation technologies. Key barriers include a lack of transportation, electricity, and internet service, coupled with costly enabling technologies and limited local subject matter expertise. Methodology/Approach: Resourcefulness is essential to mechanization on a farm. This runs contrary to the tech industry practice of planned obsolescence and disposal. One solution is plug-and-play hardware that allows farmer to assemble, repair, program, and service their own fleet of industrial machines. To that end, we developed a method of manufacturing low-cost utility robots, transport vehicles, and solar/wind energy harvesting systems, all running on an open-source Robot Operating System (ROS). We demonstrate this technology by fabricating a utility robot and an all-terrain (4X4) utility vehicle. Constructed of aluminum trusses and weighing just 40 pounds, yet capable of transporting 200 pounds of cargo, on sale for less than $2,000. Conclusions & Policy Implications: Electricity, internet, and automation are essential for productivity and competitiveness. With planned obsolescence, the priorities of technology suppliers are not aligned with the farmer’s realities. This patent-pending method of manufacturing low-cost industrial robots and electric vehicles has met its objective. To create low-cost machines, the farmer can assemble, program, and repair with basic hand tools.Keywords: automation, robotics, utility robot, small-hold farm, robot operating system
Procedia PDF Downloads 696846 Functional Finishing of Organic Cotton Fabric Using Vetiver Root Extract
Authors: Sakeena Naikwadi, K. Jagaluraiah Sannapapamma
Abstract:
Vetiveria zizanioides is an aromatic grass and traditionally been used in aromatherapy and ayurvedic medicine. Vetiver root is multi-functional biopolymer and has highly aromatic, antimicrobial, UV blocking, antioxidant properties suitable for textile finishing. The vetiver root (Gulabi) powder of different concentration (2, 4, 6,8 percent) were extracted by aqueous and solvent methods subjected to bioassay for antimicrobial efficiency and GCMS spectral analysis. The organic cotton fabric was finished with vetiver root extract (8 percent) by exhaust and pad dry cure methods. The finished fabric was assessed for functional properties viz., UV protective factor, antimicrobial efficiency and aroma intensity. The results revealed that Ethanol extraction showed a greater zone of inhibition compared to aqueous extract in root powder. Among the concentrations, 8 percent root extract in ethanol showed a greater zone of inhibition against gram-positive organism S. aureus and gram-negative organism E. coli. The major compounds present in vetiver root extracts were diethyl pathalate with greater percentage (87.73 %) followed by 7- Isopropyl dimethyl carboxylic acid (4.05 %), 2-butanone 4-trimethyle cyclohexen (1.21 %), phenanthrene carboxylic acid (1.03 %), naphthalene pentanoic acid (0.99 %), 1-phenanthrene carboxylic acid and 1 cyclohexenone 2-methyl oxobuty (0.89 %). The sample finished by pad dry cure method exhibited better UV protection even after 10th wash as compared to exhaust method. Vetiver extract treated samples exhibited maximum zone of inhibition against S. aureus than the E. coli organism. The vetiver root extract treated organic cotton fabric through pad dry cure method possessed good antimicrobial activity against S. aureus and E. coli even after 20th washes compared to vetiver root extract treated by exhaust method. The olfactory analysis was carried out by 30 panels of members and opined that vetiver root extract treated fabric has very good and pleasant aroma with better tactile properties that provide cooling, soothing effect and enhances the mood of the wearer. Vetiver root extract finished organic cotton fabric possessed aroma, antimicrobial and UV properties which are aptly suitable for medical and healthcare textiles viz., wound dressing, bandage gauze, surgical cloths, baby diapers and sanitary napkins. It can be used as after finishing agent for variegated garments and made-ups and can be replaced with commercial after finishing agents.Keywords: antimicrobial, olfactory analysis, UV protection factor, vetiver root extract
Procedia PDF Downloads 2356845 Polyimide Supported Membrane Made of 2D-Coordination-Crosslinked Polyimide for Rapid Molecular Separation in Multi-Solvent Environments
Authors: Netsanet Kebede Hundessa
Abstract:
Substrate modification of thin film composite (TFC) membranes with various crosslinkers is typically necessary for organic solvent nanofiltration (OSN) applications. This modification is aimed at enhancing membrane stability and solvent resistance, but it often results in a decline in permeance. This study introduces a distinct approach by developing a coordination-crosslinked polyimide substrate, which differs from the covalently-crosslinked substrates traditionally used. This developed substrate achieves enhanced solvent resistance, improved hydrophilicity, and optimized porous microstructure simultaneously. The study investigates the effects of an alkaline coagulation bath, subsequent ion exchange, and further solvent activation. The resulting TFC membrane successfully overcomes the typical permeability-selectivity trade-off of OSN membranes. It demonstrates significantly improved solvent permeance (1.5–2 times higher than previously reported data) with values of 65.2 LMH/bar for methanol, 33.1 LMH/bar for ethanol, and 59.1 LMH/bar for acetone while maintaining competitive solute rejection (>98% for Rose Bengal). This research is expected to provide a new direction for developing high-performance OSN composite membranes and other separation applications.Keywords: metal coordinatiom, thin film composite membrane, organic solvent nanofiltration, solvent activation
Procedia PDF Downloads 676844 Objective Assessment of the Evolution of Microplastic Contamination in Sediments from a Vast Coastal Area
Authors: Vanessa Morgado, Ricardo Bettencourt da Silva, Carla Palma
Abstract:
The environmental pollution by microplastics is well recognized. Microplastics were already detected in various matrices from distinct environmental compartments worldwide, some from remote areas. Various methodologies and techniques have been used to determine microplastic in such matrices, for instance, sediment samples from the ocean bottom. In order to determine microplastics in a sediment matrix, the sample is typically sieved through a 5 mm mesh, digested to remove the organic matter, and density separated to isolate microplastics from the denser part of the sediment. The physical analysis of microplastic consists of visual analysis under a stereomicroscope to determine particle size, colour, and shape. The chemical analysis is performed by an infrared spectrometer coupled to a microscope (micro-FTIR), allowing to the identification of the chemical composition of microplastic, i.e., the type of polymer. Creating legislation and policies to control and manage (micro)plastic pollution is essential to protect the environment, namely the coastal areas. The regulation is defined from the known relevance and trends of the pollution type. This work discusses the assessment of contamination trends of a 700 km² oceanic area affected by contamination heterogeneity, sampling representativeness, and the uncertainty of the analysis of collected samples. The methodology developed consists of objectively identifying meaningful variations of microplastic contamination by the Monte Carlo simulation of all uncertainty sources. This work allowed us to unequivocally conclude that the contamination level of the studied area did not vary significantly between two consecutive years (2018 and 2019) and that PET microplastics are the major type of polymer. The comparison of contamination levels was performed for a 99% confidence level. The developed know-how is crucial for the objective and binding determination of microplastic contamination in relevant environmental compartments.Keywords: measurement uncertainty, micro-ATR-FTIR, microplastics, ocean contamination, sampling uncertainty
Procedia PDF Downloads 896843 Tracing Sources of Sediment in an Arid River, Southern Iran
Authors: Hesam Gholami
Abstract:
Elevated suspended sediment loads in riverine systems resulting from accelerated erosion due to human activities are a serious threat to the sustainable management of watersheds and ecosystem services therein worldwide. Therefore, mitigation of deleterious sediment effects as a distributed or non-point pollution source in the catchments requires reliable provenance information. Sediment tracing or sediment fingerprinting, as a combined process consisting of sampling, laboratory measurements, different statistical tests, and the application of mixing or unmixing models, is a useful technique for discriminating the sources of sediments. From 1996 to the present, different aspects of this technique, such as grouping the sources (spatial and individual sources), discriminating the potential sources by different statistical techniques, and modification of mixing and unmixing models, have been introduced and modified by many researchers worldwide, and have been applied to identify the provenance of fine materials in agricultural, rural, mountainous, and coastal catchments, and in large catchments with numerous lakes and reservoirs. In the last two decades, efforts exploring the uncertainties associated with sediment fingerprinting results have attracted increasing attention. The frameworks used to quantify the uncertainty associated with fingerprinting estimates can be divided into three groups comprising Monte Carlo simulation, Bayesian approaches and generalized likelihood uncertainty estimation (GLUE). Given the above background, the primary goal of this study was to apply geochemical fingerprinting within the GLUE framework in the estimation of sub-basin spatial sediment source contributions in the arid Mehran River catchment in southern Iran, which drains into the Persian Gulf. The accuracy of GLUE predictions generated using four different sets of statistical tests for discriminating three sub-basin spatial sources was evaluated using 10 virtual sediments (VS) samples with known source contributions using the root mean square error (RMSE) and mean absolute error (MAE). Based on the results, the contributions modeled by GLUE for the western, central and eastern sub-basins are 1-42% (overall mean 20%), 0.5-30% (overall mean 12%) and 55-84% (overall mean 68%), respectively. According to the mean absolute fit (MAF; ≥ 95% for all target sediment samples) and goodness-of-fit (GOF; ≥ 99% for all samples), our suggested modeling approach is an accurate technique to quantify the source of sediments in the catchments. Overall, the estimated source proportions can help watershed engineers plan the targeting of conservation programs for soil and water resources.Keywords: sediment source tracing, generalized likelihood uncertainty estimation, virtual sediment mixtures, Iran
Procedia PDF Downloads 736842 A Numerical Investigation of Segmental Lining Joints Interactions in Tunnels
Authors: M. H. Ahmadi, A. Mortazavi, H. Zarei
Abstract:
Several authors have described the main mechanism of formation of cracks in the segment lining during the construction of tunnels with tunnel boring machines. A comprehensive analysis of segmental lining joints may help to guarantee a safe construction during Tunneling and serviceable stages. The most frequent types of segment damage are caused by a condition of uneven segment matching due to contact deficiencies. This paper investigated the interaction mechanism of precast concrete lining joints in tunnels. The Discrete Element Method (DEM) was used to analyze a typical segmental lining model consisting of six segment rings. In the analyses, typical segmental lining design parameters of the Ghomrood water conveyance tunnel, Iran were employed in the study. In the conducted analysis, the worst-case scenario of loading faced during the boring of Ghomrood tunnel was considered. This was associated with the existence of a crushed zone dipping at 75 degree at the location of the key segment. In the analysis, moreover, the effect of changes in horizontal stress ratio on the loads on the segment was assessed. The boundary condition associated with K (ratio of the horizontal to the vertical stress) values of 0.5, 1, 1.5 and 2 were applied to the model and separate analysis was conducted for each case. Important parameters such as stress, moments, and displacements were measured at joint locations and the surrounding rock. Accordingly, the segment joint interactions were assessed and analyzed. Moreover, rock mass properties of the Ghomrood in Ghom were adopted. In this study, the load acting on segments joints are included a crushed zone stratum force that intersect tunnel with 75 slopes in the location of the key segment, gravity force of segments and earth pressures. A numerical investigation was used for different coefficients of stress concentration of 0.5, 1, 1.5, 2 and different geological conditions of saturated crushed zone under the critical scenario. The numerical results also demonstrate that maximum bending moments in longitudinal joints occurred for crushed zone with the weaken strengths (Sandstone). Besides that, increasing the load in segment-stratum interfaces affected radial stress in longitudinal joints and finally the opening of joints occurred.Keywords: joint, interface, segment, contact
Procedia PDF Downloads 2576841 Monodisperse Quaternary Cobalt Chromium Ferrite Nanoparticles Synthesised from a Single Source Precursor
Authors: Khadijat O. Abdulwahab, Mohammad A. Malik, Paul O’Brien, Grigore A. Timco, Floriana Tuna
Abstract:
The synthesis of spinel ferrite nanoparticles with a narrow size distribution is very crucial in their numerous applications including information storage, hyperthermia treatment, drug delivery, contrast agent in magnetic resonance imaging, catalysis, sensors, and environmental remediation. Ferrites have the general formula MFe2O4 (M = Fe, Co, Mn, Ni, Zn etc.) and possess remarkable electrical and magnetic properties which depend on the cations, method of preparation, size and their site occupancies. To the best of our knowledge, there are no reports on the use of a single source precursor to synthesise quaternary ferrite nanoparticles. Herein, we demonstrated the use of trimetallic iron pivalate cluster [CrCoFeO(O2CtBu)6(HO2CtBu)3] as a single source precursor to synthesise monodisperse cobalt chromium ferrite (FeCoCrO4) nanoparticles by the hot injection thermolysis method. The precursor was thermolysed in oleylamine, oleic acid, with diphenyl ether as solvent at its boiling point (260°C). The effect of concentration on the stoichiometry, phases or morphology of the nanoparticles was studied. The p-XRD patterns of the nanoparticles obtained at both concentrations were matched with cubic iron cobalt chromium ferrite (FeCoCrO4). TEM showed that a more monodispersed spherical ferrite nanoparticles of average diameter 4.0 ± 0.4 nm were obtained at higher precursor concentration. Magnetic measurements revealed that all the ferrite particles are superparamagnetic at room temperature. The nanoparticles were characterised by Powder X-ray Diffraction (p-XRD), Transmission Electron Microscopy (TEM), Inductively Coupled Plasma (ICP), Electron Probe Microanalysis (EPMA), Energy Dispersive Spectroscopy (EDS) and Super Conducting Quantum Interference Device (SQUID).Keywords: quaternary ferrite nanoparticles, single source precursor, monodisperse, cobalt chromium ferrite, colloidal, hot injection thermolysis
Procedia PDF Downloads 2716840 The Effect of Metal-Organic Framework Pore Size to Hydrogen Generation of Ammonia Borane via Nanoconfinement
Authors: Jing-Yang Chung, Chi-Wei Liao, Jing Li, Bor Kae Chang, Cheng-Yu Wang
Abstract:
Chemical hydride ammonia borane (AB, NH3BH3) draws attentions to hydrogen energy researches for its high theoretical gravimetrical capacity (19.6 wt%). Nevertheless, the elevated AB decomposition temperatures (Td) and unwanted byproducts are main hurdles in practical application. It was reported that the byproducts and Td can be reduced with nanoconfinement technique, in which AB molecules are confined in porous materials, such as porous carbon, zeolite, metal-organic frameworks (MOFs), etc. Although nanoconfinement empirically shows effectiveness on hydrogen generation temperature reduction in AB, the theoretical mechanism is debatable. Low Td was reported in AB@IRMOF-1 (Zn4O(BDC)3, BDC = benzenedicarboxylate), where Zn atoms form closed metal clusters secondary building unit (SBU) with no exposed active sites. Other than nanosized hydride, it was also observed that catalyst addition facilitates AB decomposition in the composite of Li-catalyzed carbon CMK-3, MOF JUC-32-Y with exposed Y3+, etc. It is believed that nanosized AB is critical for lowering Td, while active sites eliminate byproducts. Nonetheless, some researchers claimed that it is the catalytic sites that are the critical factor to reduce Td, instead of the hydride size. The group physically ground AB with ZIF-8 (zeolitic imidazolate frameworks, (Zn(2-methylimidazolate)2)), and found similar reduced Td phenomenon, even though AB molecules were not ‘confined’ or forming nanoparticles by physical hand grinding. It shows the catalytic reaction, not nanoconfinement, leads to AB dehydrogenation promotion. In this research, we explored the possible criteria of hydrogen production temperature from nanoconfined AB in MOFs with different pore sizes and active sites. MOFs with metal SBU such as Zn (IRMOF), Zr (UiO), and Al (MIL-53), accompanying with various organic ligands (BDC and BPDC; BPDC = biphenyldicarboxylate) were modified with AB. Excess MOFs were used for AB size constrained in micropores estimated by revisiting Horvath-Kawazoe model. AB dissolved in methanol was added to MOFs crystalline with MOF pore volume to AB ratio 4:1, and the slurry was dried under vacuum to collect AB@MOF powders. With TPD-MS (temperature programmed desorption with mass spectroscopy), we observed Td was reduced with smaller MOF pores. For example, it was reduced from 100°C to 64°C when MOF micropore ~1 nm, while ~90°C with pore size up to 5 nm. The behavior of Td as a function of AB crystalline radius obeys thermodynamics when the Gibbs free energy of AB decomposition is zero, and no obvious correlation with metal type was observed. In conclusion, we discovered Td of AB is proportional to the reciprocal of MOF pore size, possibly stronger than the effect of active sites.Keywords: ammonia borane, chemical hydride, metal-organic framework, nanoconfinement
Procedia PDF Downloads 1856839 Spectral Mapping of Hydrothermal Alteration Minerals for Geothermal Exploration Using Advanced Spaceborne Thermal Emission and Reflection Radiometer Short Wave Infrared Data
Authors: Aliyu J. Abubakar, Mazlan Hashim, Amin B. Pour
Abstract:
Exploiting geothermal resources for either power, home heating, Spa, greenhouses, industrial or tourism requires an initial identification of suitable areas. This can be done cost-effectively using remote sensing satellite imagery which has synoptic capabilities of covering large areas in real time and by identifying possible areas of hydrothermal alteration and minerals related to Geothermal systems. Earth features and minerals are known to have unique diagnostic spectral reflectance characteristics that can be used to discriminate them. The focus of this paper is to investigate the applicability of mapping hydrothermal alteration in relation to geothermal systems (thermal springs) at Yankari Park Northeastern Nigeria, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite data for resource exploration. The ASTER Short Wave Infrared (SWIR) bands are used to highlight and discriminate alteration areas by employing sophisticated digital image processing techniques including image transformations and spectral mapping methods. Field verifications are conducted at the Yankari Park using hand held Global Positioning System (GPS) monterra to identify locations of hydrothermal alteration and rock samples obtained at the vicinity and surrounding areas of the ‘Mawulgo’ and ‘Wikki’ thermal springs. X-Ray Diffraction (XRD) results of rock samples obtained from the field validated hydrothermal alteration by the presence of indicator minerals including; Dickite, Kaolinite, Hematite and Quart. The study indicated the applicability of mapping geothermal anomalies for resource exploration in unmapped sparsely vegetated savanna environment characterized by subtle surface manifestations such as thermal springs. The results could have implication for geothermal resource exploration especially at the prefeasibility stages by narrowing targets for comprehensive surveys and in unexplored savanna regions where expensive airborne surveys are unaffordable.Keywords: geothermal exploration, image enhancement, minerals, spectral mapping
Procedia PDF Downloads 3626838 Urinary Volatile Organic Compound Testing in Fast-Track Patients with Suspected Colorectal Cancer
Authors: Godwin Dennison, C. E. Boulind, O. Gould, B. de Lacy Costello, J. Allison, P. White, P. Ewings, A. Wicaksono, N. J. Curtis, A. Pullyblank, D. Jayne, J. A. Covington, N. Ratcliffe, N. K. Francis
Abstract:
Background: Colorectal symptoms are common but only infrequently represent serious pathology, including colorectal cancer (CRC). A large number of invasive tests are presently performed for reassurance. We investigated the feasibility of urinary volatile organic compound (VOC) testing as a potential triage tool in patients fast-tracked for assessment for possible CRC. Methods: A prospective, multi-centre, observational feasibility study was performed across three sites. Patients referred on NHS fast-track pathways for potential CRC provided a urine sample which underwent Gas Chromatography Mass Spectrometry (GC-MS), Field Asymmetric Ion Mobility Spectrometry (FAIMS) and Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) analysis. Patients underwent colonoscopy and/or CT colonography and were grouped as either CRC, adenomatous polyp(s), or controls to explore the diagnostic accuracy of VOC output data supported by an artificial neural network (ANN) model. Results: 558 patients participated with 23 (4.1%) CRC diagnosed. 59% of colonoscopies and 86% of CT colonographies showed no abnormalities. Urinary VOC testing was feasible, acceptable to patients, and applicable within the clinical fast track pathway. GC-MS showed the highest clinical utility for CRC and polyp detection vs. controls (sensitivity=0.878, specificity=0.882, AUROC=0.884). Conclusion: Urinary VOC testing and analysis are feasible within NHS fast-track CRC pathways. Clinically meaningful differences between patients with cancer, polyps, or no pathology were identified therefore suggesting VOC analysis may have future utility as a triage tool. Acknowledgment: Funding: NIHR Research for Patient Benefit grant (ref: PB-PG-0416-20022).Keywords: colorectal cancer, volatile organic compound, gas chromatography mass spectrometry, field asymmetric ion mobility spectrometry, selected ion flow tube mass spectrometry
Procedia PDF Downloads 896837 Spectra Analysis in Sunset Color Demonstrations with a White-Color LED as a Light Source
Authors: Makoto Hasegawa, Seika Tokumitsu
Abstract:
Spectra of light beams emitted from white-color LED torches are different from those of conventional electric torches. In order to confirm if white-color LED torches can be used as light sources for popular sunset color demonstrations in spite of such differences, spectra of travelled light beams and scattered light beams with each of a white-color LED torch (composed of a blue LED and yellow-color fluorescent material) and a conventional electric torch as a light source were measured and compared with each other in a 50 cm-long water tank for sunset color demonstration experiments. Suspension liquid was prepared from acryl-emulsion and tap-water in the water tank, and light beams from the white-color LED torch or the conventional electric torch were allowed to travel in this suspension liquid. Sunset-like color was actually observed when the white-color LED torch was used as the light source in sunset color demonstrations. However, the observed colors when viewed with naked eye look slightly different from those obtainable with the conventional electric torch. At the same time, with the white-color LED, changes in colors in short to middle wavelength regions were recognized with careful observations. From those results, white-color LED torches are confirmed to be applicable as light sources in sunset color demonstrations, although certain attentions have to be paid. Further advanced classes will be successfully performed with white-color LED torches as light sources.Keywords: blue sky demonstration, sunset color demonstration, white LED torch, physics education
Procedia PDF Downloads 2836836 Unknown Groundwater Pollution Source Characterization in Contaminated Mine Sites Using Optimal Monitoring Network Design
Authors: H. K. Esfahani, B. Datta
Abstract:
Groundwater is one of the most important natural resources in many parts of the world; however it is widely polluted due to human activities. Currently, effective and reliable groundwater management and remediation strategies are obtained using characterization of groundwater pollution sources, where the measured data in monitoring locations are utilized to estimate the unknown pollutant source location and magnitude. However, accurately identifying characteristics of contaminant sources is a challenging task due to uncertainties in terms of predicting source flux injection, hydro-geological and geo-chemical parameters, and the concentration field measurement. Reactive transport of chemical species in contaminated groundwater systems, especially with multiple species, is a complex and highly non-linear geochemical process. Although sufficient concentration measurement data is essential to accurately identify sources characteristics, available data are often sparse and limited in quantity. Therefore, this inverse problem-solving method for characterizing unknown groundwater pollution sources is often considered ill-posed, complex and non- unique. Different methods have been utilized to identify pollution sources; however, the linked simulation-optimization approach is one effective method to obtain acceptable results under uncertainties in complex real life scenarios. With this approach, the numerical flow and contaminant transport simulation models are externally linked to an optimization algorithm, with the objective of minimizing the difference between measured concentration and estimated pollutant concentration at observation locations. Concentration measurement data are very important to accurately estimate pollution source properties; therefore, optimal design of the monitoring network is essential to gather adequate measured data at desired times and locations. Due to budget and physical restrictions, an efficient and effective approach for groundwater pollutant source characterization is to design an optimal monitoring network, especially when only inadequate and arbitrary concentration measurement data are initially available. In this approach, preliminary concentration observation data are utilized for preliminary source location, magnitude and duration of source activity identification, and these results are utilized for monitoring network design. Further, feedback information from the monitoring network is used as inputs for sequential monitoring network design, to improve the identification of unknown source characteristics. To design an effective monitoring network of observation wells, optimization and interpolation techniques are used. A simulation model should be utilized to accurately describe the aquifer properties in terms of hydro-geochemical parameters and boundary conditions. However, the simulation of the transport processes becomes complex when the pollutants are chemically reactive. Three dimensional transient flow and reactive contaminant transport process is considered. The proposed methodology uses HYDROGEOCHEM 5.0 (HGCH) as the simulation model for flow and transport processes with chemically multiple reactive species. Adaptive Simulated Annealing (ASA) is used as optimization algorithm in linked simulation-optimization methodology to identify the unknown source characteristics. Therefore, the aim of the present study is to develop a methodology to optimally design an effective monitoring network for pollution source characterization with reactive species in polluted aquifers. The performance of the developed methodology will be evaluated for an illustrative polluted aquifer sites, for example an abandoned mine site in Queensland, Australia.Keywords: monitoring network design, source characterization, chemical reactive transport process, contaminated mine site
Procedia PDF Downloads 2306835 Evaluation of Video Development about Exclusive Breastfeeding as a Nutrition Education Media for Posyandu Cadre
Authors: Ari Istiany, Guspri Devi Artanti, M. Si
Abstract:
Based on the results Riskesdas, it is known that breastfeeding awareness about the importance of exclusive breastfeeding is still low at only 15.3 %. These conditions resulted in a very infant at risk for infectious diseases, such as diarrhea and acute respiratory infection. Therefore, the aim of this study to evaluate the video development about exclusive breastfeeding as a nutrition education media for posyandu cadre. This research used development methods for making the video about exclusive breastfeeding. The study was conducted in urban areas Rawamangun, East Jakarta. Respondents of this study were 1 media experts from the Department of Educational Technology - UNJ, 2 subject matter experts from Department of Home Economics - UNJ and 20 posyandu cadres to assess the quality of the video. Aspects assessed include the legibility of text, image display quality, color composition, clarity of sound, music appropriateness, duration, suitability of the material and language. Data were analyzed descriptively likes frequency distribution table, the average value, and deviation standard. The result of this study showed that the average score assessment according to media experts, subject matter experts, and posyandu cadres respectively was 3.43 ± 0.51 (good), 4.37 ± 0.52 (very good) and 3.6 ± 0.73 (good). The conclusion is on exclusive breastfeeding video as feasible as a media for nutrition education. While suggestions for the improvement of visual media is multiply illustrations, add material about the correct way of breastfeeding and healthy baby pictures.Keywords: exclusive breastfeeding, posyandu cadre, video, nutrition education
Procedia PDF Downloads 410