Search results for: round-off error
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1892

Search results for: round-off error

152 Analog Railway Signal Object Controller Development

Authors: Ercan Kızılay, Mustafa Demi̇rel, Selçuk Coşkun

Abstract:

Railway signaling systems consist of vital products that regulate railway traffic and provide safe route arrangements and maneuvers of trains. SIL 4 signal lamps are produced by many manufacturers today. There is a need for systems that enable these signal lamps to be controlled by commands from the interlocking. These systems should act as fail-safe and give error indications to the interlocking system when an unexpected situation occurs for the safe operation of railway systems from the RAMS perspective. In the past, driving and proving the lamp in relay-based systems was typically done via signaling relays. Today, the proving of lamps is done by comparing the current values read over the return circuit, the lower and upper threshold values. The purpose is an analog electronic object controller with the possibility of easy integration with vital systems and the signal lamp itself. During the study, the EN50126 standard approach was considered, and the concept, definition, risk analysis, requirements, architecture, design, and prototyping were performed throughout this study. FMEA (Failure Modes and Effects Analysis) and FTA (Fault Tree) Analysis) have been used for safety analysis in accordance with EN 50129. Concerning these analyzes, the 1oo2D reactive fail-safe hardware design of a controller has been researched. Electromagnetic compatibility (EMC) effects on the functional safety of equipment, insulation coordination, and over-voltage protection were discussed during hardware design according to EN 50124 and EN 50122 standards. As vital equipment for railway signaling, railway signal object controllers should be developed according to EN 50126 and EN 50129 standards which identify the steps and requirements of the development in accordance with the SIL 4(Safety Integrity Level) target. In conclusion of this study, an analog railway signal object controller, which takes command from the interlocking system, is processed in driver cards. Driver cards arrange the voltage level according to desired visibility by means of semiconductors. Additionally, prover cards evaluate the current upper and lower thresholds. Evaluated values are processed via logic gates which are composed as 1oo2D by means of analog electronic technologies. This logic evaluates the voltage level of the lamp and mitigates the risks of undue dimming.

Keywords: object controller, railway electronic, analog electronic, safety, railway signal

Procedia PDF Downloads 99
151 Improved Traveling Wave Method Based Fault Location Algorithm for Multi-Terminal Transmission System of Wind Farm with Grounding Transformer

Authors: Ke Zhang, Yongli Zhu

Abstract:

Due to rapid load growths in today’s highly electrified societies and the requirement for green energy sources, large-scale wind farm power transmission system is constantly developing. This system is a typical multi-terminal power supply system, whose structure of the network topology of transmission lines is complex. What’s more, it locates in the complex terrain of mountains and grasslands, thus increasing the possibility of transmission line faults and finding the fault location with difficulty after the faults and resulting in an extremely serious phenomenon of abandoning the wind. In order to solve these problems, a fault location method for multi-terminal transmission line based on wind farm characteristics and improved single-ended traveling wave positioning method is proposed. Through studying the zero sequence current characteristics by using the characteristics of the grounding transformer(GT) in the existing large-scale wind farms, it is obtained that the criterion for judging the fault interval of the multi-terminal transmission line. When a ground short-circuit fault occurs, there is only zero sequence current on the path between GT and the fault point. Therefore, the interval where the fault point exists is obtained by determining the path of the zero sequence current. After determining the fault interval, The location of the short-circuit fault point is calculated by the traveling wave method. However, this article uses an improved traveling wave method. It makes the positioning accuracy more accurate by combining the single-ended traveling wave method with double-ended electrical data. What’s more, a method of calculating the traveling wave velocity is deduced according to the above improvements (it is the actual wave velocity in theory). The improvement of the traveling wave velocity calculation method further improves the positioning accuracy. Compared with the traditional positioning method, the average positioning error of this method is reduced by 30%.This method overcomes the shortcomings of the traditional method in poor fault location of wind farm transmission lines. In addition, it is more accurate than the traditional fixed wave velocity method in the calculation of the traveling wave velocity. It can calculate the wave velocity in real time according to the scene and solve the traveling wave velocity can’t be updated with the environment and real-time update. The method is verified in PSCAD/EMTDC.

Keywords: grounding transformer, multi-terminal transmission line, short circuit fault location, traveling wave velocity, wind farm

Procedia PDF Downloads 263
150 Suspended Sediment Concentration and Water Quality Monitoring Along Aswan High Dam Reservoir Using Remote Sensing

Authors: M. Aboalazayem, Essam A. Gouda, Ahmed M. Moussa, Amr E. Flifl

Abstract:

Field data collecting is considered one of the most difficult work due to the difficulty of accessing large zones such as large lakes. Also, it is well known that the cost of obtaining field data is very expensive. Remotely monitoring of lake water quality (WQ) provides an economically feasible approach comparing to field data collection. Researchers have shown that lake WQ can be properly monitored via Remote sensing (RS) analyses. Using satellite images as a method of WQ detection provides a realistic technique to measure quality parameters across huge areas. Landsat (LS) data provides full free access to often occurring and repeating satellite photos. This enables researchers to undertake large-scale temporal comparisons of parameters related to lake WQ. Satellite measurements have been extensively utilized to develop algorithms for predicting critical water quality parameters (WQPs). The goal of this paper is to use RS to derive WQ indicators in Aswan High Dam Reservoir (AHDR), which is considered Egypt's primary and strategic reservoir of freshwater. This study focuses on using Landsat8 (L-8) band surface reflectance (SR) observations to predict water-quality characteristics which are limited to Turbidity (TUR), total suspended solids (TSS), and chlorophyll-a (Chl-a). ArcGIS pro is used to retrieve L-8 SR data for the study region. Multiple linear regression analysis was used to derive new correlations between observed optical water-quality indicators in April and L-8 SR which were atmospherically corrected by values of various bands, band ratios, and or combinations. Field measurements taken in the month of May were used to validate WQP obtained from SR data of L-8 Operational Land Imager (OLI) satellite. The findings demonstrate a strong correlation between indicators of WQ and L-8 .For TUR, the best validation correlation with OLI SR bands blue, green, and red, were derived with high values of Coefficient of correlation (R2) and Root Mean Square Error (RMSE) equal 0.96 and 3.1 NTU, respectively. For TSS, Two equations were strongly correlated and verified with band ratios and combinations. A logarithm of the ratio of blue and green SR was determined to be the best performing model with values of R2 and RMSE equal to 0.9861 and 1.84 mg/l, respectively. For Chl-a, eight methods were presented for calculating its value within the study area. A mix of blue, red, shortwave infrared 1(SWR1) and panchromatic SR yielded the greatest validation results with values of R2 and RMSE equal 0.98 and 1.4 mg/l, respectively.

Keywords: remote sensing, landsat 8, nasser lake, water quality

Procedia PDF Downloads 92
149 An Audit on the Role of Sentinel Node Biopsy in High-Risk Ductal Carcinoma in Situ and Intracystic Papillary Carcinoma

Authors: M. Sulieman, H. Arabiyat, H. Ali, K. Potiszil, I. Abbas, R. English, P. King, I. Brown, P. Drew

Abstract:

Introduction: The incidence of breast ductal Carcinoma in Situ (DCIS) has been increasing; it currently represents up 20-25% of all breast carcinomas. Some aspects of DCIS management are still controversial, mainly due to the heterogeneity of its clinical presentation and of its biological and pathological characteristics. In DCIS, histological diagnosis obtained preoperatively, carries the risk of sampling error if the presence of invasive cancer is subsequently diagnosed. The mammographic extent over than 4–5 cm and the presence of architectural distortion, focal asymmetric density or mass on mammography are proven important risk factors of preoperative histological under staging. Intracystic papillary cancer (IPC) is a rare form of breast carcinoma. Despite being previously compared to DCIS it has been shown to present histologically with invasion of the basement membrane and even metastasis. SLNB – Carries the risk of associated comorbidity that should be considered when planning surgery for DCIS and IPC. Objectives: The aim of this Audit was to better define a ‘high risk’ group of patients with pre-op diagnosis of non-invasive cancer undergoing breast conserving surgery, who would benefit from sentinel node biopsy. Method: Retrospective data collection of all patients with ductal carcinoma in situ over 5 years. 636 patients identified, and after exclusion criteria applied: 394 patients were included. High risk defined as: Extensive micro-calcification >40mm OR any mass forming DCIS. IPC: Winpath search from for the term ‘papillary carcinoma’ in any breast specimen for 5 years duration;.29 patients were included in this group. Results: DCIS: 188 deemed high risk due to >40mm calcification or a mass forming (radiological or palpable) 61% of those had a mastectomy and 32% BCS. Overall, in that high-risk group - the number with invasive disease was 38%. Of those high-risk DCIS pts 85% had a SLN - 80% at the time of surgery and 5% at a second operation. For the BCS patients - 42% had SLN at time of surgery and 13% (8 patients) at a second operation. 15 (7.9%) pts in the high-risk group had a positive SLNB, 11 having a mastectomy and 4 having BCS. IPC: The provisional diagnosis of encysted papillary carcinoma is upgraded to an invasive carcinoma on final histology in around a third of cases. This has may have implications when deciding whether to offer sentinel node removal at the time of therapeutic surgery. Conclusions: We have defined a ‘high risk’ group of pts with pre-op diagnosis of non-invasive cancer undergoing BCS, who would benefit from SLNB at the time of the surgery. In patients with high-risk features; the risk of invasive disease is up to 40% but the risk of nodal involvement is approximately 8%. The risk of morbidity from SLN is up to about 5% especially the risk of lymphedema.

Keywords: breast ductal carcinoma in Situ (DCIS), intracystic papillary carcinoma (IPC), sentinel node biopsy (SLNB), high-risk, non-invasive, cancer disease

Procedia PDF Downloads 111
148 Predicting the Impact of Scope Changes on Project Cost and Schedule Using Machine Learning Techniques

Authors: Soheila Sadeghi

Abstract:

In the dynamic landscape of project management, scope changes are an inevitable reality that can significantly impact project performance. These changes, whether initiated by stakeholders, external factors, or internal project dynamics, can lead to cost overruns and schedule delays. Accurately predicting the consequences of these changes is crucial for effective project control and informed decision-making. This study aims to develop predictive models to estimate the impact of scope changes on project cost and schedule using machine learning techniques. The research utilizes a comprehensive dataset containing detailed information on project tasks, including the Work Breakdown Structure (WBS), task type, productivity rate, estimated cost, actual cost, duration, task dependencies, scope change magnitude, and scope change timing. Multiple machine learning models are developed and evaluated to predict the impact of scope changes on project cost and schedule. These models include Linear Regression, Decision Tree, Ridge Regression, Random Forest, Gradient Boosting, and XGBoost. The dataset is split into training and testing sets, and the models are trained using the preprocessed data. Cross-validation techniques are employed to assess the robustness and generalization ability of the models. The performance of the models is evaluated using metrics such as Mean Squared Error (MSE) and R-squared. Residual plots are generated to assess the goodness of fit and identify any patterns or outliers. Hyperparameter tuning is performed to optimize the XGBoost model and improve its predictive accuracy. The feature importance analysis reveals the relative significance of different project attributes in predicting the impact on cost and schedule. Key factors such as productivity rate, scope change magnitude, task dependencies, estimated cost, actual cost, duration, and specific WBS elements are identified as influential predictors. The study highlights the importance of considering both cost and schedule implications when managing scope changes. The developed predictive models provide project managers with a data-driven tool to proactively assess the potential impact of scope changes on project cost and schedule. By leveraging these insights, project managers can make informed decisions, optimize resource allocation, and develop effective mitigation strategies. The findings of this research contribute to improved project planning, risk management, and overall project success.

Keywords: cost impact, machine learning, predictive modeling, schedule impact, scope changes

Procedia PDF Downloads 39
147 Applicability and Reusability of Fly Ash and Base Treated Fly Ash for Adsorption of Catechol from Aqueous Solution: Equilibrium, Kinetics, Thermodynamics and Modeling

Authors: S. Agarwal, A. Rani

Abstract:

Catechol is a natural polyphenolic compound that widely exists in higher plants such as teas, vegetables, fruits, tobaccos, and some traditional Chinese medicines. The fly ash-based zeolites are capable of absorbing a wide range of pollutants. But the process of zeolite synthesis is time-consuming and requires technical setups by the industries. The marketed costs of zeolites are quite high restricting its use by small-scale industries for the removal of phenolic compounds. The present research proposes a simple method of alkaline treatment of FA to produce an effective adsorbent for catechol removal from wastewater. The experimental parameter such as pH, temperature, initial concentration and adsorbent dose on the removal of catechol were studied in batch reactor. For this purpose the adsorbent materials were mixed with aqueous solutions containing catechol ranging in 50 – 200 mg/L initial concentrations and then shaken continuously in a thermostatic Orbital Incubator Shaker at 30 ± 0.1 °C for 24 h. The samples were withdrawn from the shaker at predetermined time interval and separated by centrifugation (Centrifuge machine MBL-20) at 2000 rpm for 4 min. to yield a clear supernatant for analysis of the equilibrium concentrations of the solutes. The concentrations were measured with Double Beam UV/Visible spectrophotometer (model Spectrscan UV 2600/02) at the wavelength of 275 nm for catechol. In the present study, the use of low-cost adsorbent (BTFA) derived from coal fly ash (FA), has been investigated as a substitute of expensive methods for the sequestration of catechol. The FA and BTFA adsorbents were well characterized by XRF, FE-SEM with EDX, FTIR, and surface area and porosity measurement which proves the chemical constituents, functional groups and morphology of the adsorbents. The catechol adsorption capacities of synthesized BTFA and native material were determined. The adsorption was slightly increased with an increase in pH value. The monolayer adsorption capacities of FA and BTFA for catechol were 100 mg g⁻¹ and 333.33 mg g⁻¹ respectively, and maximum adsorption occurs within 60 minutes for both adsorbents used in this test. The equilibrium data are fitted by Freundlich isotherm found on the basis of error analysis (RMSE, SSE, and χ²). Adsorption was found to be spontaneous and exothermic on the basis of thermodynamic parameters (ΔG°, ΔS°, and ΔH°). Pseudo-second-order kinetic model better fitted the data for both FA and BTFA. BTFA showed large adsorptive characteristics, high separation selectivity, and excellent recyclability than FA. These findings indicate that BTFA could be employed as an effective and inexpensive adsorbent for the removal of catechol from wastewater.

Keywords: catechol, fly ash, isotherms, kinetics, thermodynamic parameters

Procedia PDF Downloads 125
146 The Development of Traffic Devices Using Natural Rubber in Thailand

Authors: Weeradej Cheewapattananuwong, Keeree Srivichian, Godchamon Somchai, Wasin Phusanong, Nontawat Yoddamnern

Abstract:

Natural rubber used for traffic devices in Thailand has been developed and researched for several years. When compared with Dry Rubber Content (DRC), the quality of Rib Smoked Sheet (RSS) is better. However, the cost of admixtures, especially CaCO₃ and sulphur, is higher than the cost of RSS itself. In this research, Flexible Guideposts and Rubber Fender Barriers (RFB) are taken into consideration. In case of flexible guideposts, the materials used are both RSS and DRC60%, but for RFB, only RSS is used due to the controlled performance tests. The objective of flexible guideposts and RFB is to decrease a number of accidents, fatal rates, and serious injuries. Functions of both devices are to save road users and vehicles as well as to absorb impact forces from vehicles so as to decrease of serious road accidents. This leads to the mitigation methods to remedy the injury of motorists, form severity to moderate one. The solution is to find the best practice of traffic devices using natural rubber under the engineering concepts. In addition, the performances of materials, such as tensile strength and durability, are calculated for the modulus of elasticity and properties. In the laboratory, the simulation of crashes, finite element of materials, LRFD, and concrete technology methods are taken into account. After calculation, the trials' compositions of materials are mixed and tested in the laboratory. The tensile test, compressive test, and weathering or durability test are followed and based on ASTM. Furthermore, the Cycle-Repetition Test of Flexible Guideposts will be taken into consideration. The final decision is to fabricate all materials and have a real test section in the field. In RFB test, there will be 13 crash tests, 7 Pickup Truck tests, and 6 Motorcycle Tests. The test of vehicular crashes happens for the first time in Thailand, applying the trial and error methods; for example, the road crash test under the standard of NCHRP-TL3 (100 kph) is changed to the MASH 2016. This is owing to the fact that MASH 2016 is better than NCHRP in terms of speed, types, and weight of vehicles and the angle of crash. In the processes of MASH, Test Level 6 (TL-6), which is composed of 2,270 kg Pickup Truck, 100 kph, and 25 degree of crash-angle is selected. The final test for real crash will be done, and the whole system will be evaluated again in Korea. The researchers hope that the number of road accidents will decrease, and Thailand will be no more in the top tenth ranking of road accidents in the world.

Keywords: LRFD, load and resistance factor design, ASTM, american society for testing and materials, NCHRP, national cooperation highway research program, MASH, manual for assessing safety hardware

Procedia PDF Downloads 128
145 Data Refinement Enhances The Accuracy of Short-Term Traffic Latency Prediction

Authors: Man Fung Ho, Lap So, Jiaqi Zhang, Yuheng Zhao, Huiyang Lu, Tat Shing Choi, K. Y. Michael Wong

Abstract:

Nowadays, a tremendous amount of data is available in the transportation system, enabling the development of various machine learning approaches to make short-term latency predictions. A natural question is then the choice of relevant information to enable accurate predictions. Using traffic data collected from the Taiwan Freeway System, we consider the prediction of short-term latency of a freeway segment with a length of 17 km covering 5 measurement points, each collecting vehicle-by-vehicle data through the electronic toll collection system. The processed data include the past latencies of the freeway segment with different time lags, the traffic conditions of the individual segments (the accumulations, the traffic fluxes, the entrance and exit rates), the total accumulations, and the weekday latency profiles obtained by Gaussian process regression of past data. We arrive at several important conclusions about how data should be refined to obtain accurate predictions, which have implications for future system-wide latency predictions. (1) We find that the prediction of median latency is much more accurate and meaningful than the prediction of average latency, as the latter is plagued by outliers. This is verified by machine-learning prediction using XGBoost that yields a 35% improvement in the mean square error of the 5-minute averaged latencies. (2) We find that the median latency of the segment 15 minutes ago is a very good baseline for performance comparison, and we have evidence that further improvement is achieved by machine learning approaches such as XGBoost and Long Short-Term Memory (LSTM). (3) By analyzing the feature importance score in XGBoost and calculating the mutual information between the inputs and the latencies to be predicted, we identify a sequence of inputs ranked in importance. It confirms that the past latencies are most informative of the predicted latencies, followed by the total accumulation, whereas inputs such as the entrance and exit rates are uninformative. It also confirms that the inputs are much less informative of the average latencies than the median latencies. (4) For predicting the latencies of segments composed of two or three sub-segments, summing up the predicted latencies of each sub-segment is more accurate than the one-step prediction of the whole segment, especially with the latency prediction of the downstream sub-segments trained to anticipate latencies several minutes ahead. The duration of the anticipation time is an increasing function of the traveling time of the upstream segment. The above findings have important implications to predicting the full set of latencies among the various locations in the freeway system.

Keywords: data refinement, machine learning, mutual information, short-term latency prediction

Procedia PDF Downloads 169
144 Applying the Global Trigger Tool in German Hospitals: A Retrospective Study in Surgery and Neurosurgery

Authors: Mareen Brosterhaus, Antje Hammer, Steffen Kalina, Stefan Grau, Anjali A. Roeth, Hany Ashmawy, Thomas Gross, Marcel Binnebosel, Wolfram T. Knoefel, Tanja Manser

Abstract:

Background: The identification of critical incidents in hospitals is an essential component of improving patient safety. To date, various methods have been used to measure and characterize such critical incidents. These methods are often viewed by physicians and nurses as external quality assurance, and this creates obstacles to the reporting events and the implementation of recommendations in practice. One way to overcome this problem is to use tools that directly involve staff in measuring indicators of quality and safety of care in the department. One such instrument is the global trigger tool (GTT), which helps physicians and nurses identify adverse events by systematically reviewing randomly selected patient records. Based on so-called ‘triggers’ (warning signals), indications of adverse events can be given. While the tool is already used internationally, its implementation in German hospitals has been very limited. Objectives: This study aimed to assess the feasibility and potential of the global trigger tool for identifying adverse events in German hospitals. Methods: A total of 120 patient records were randomly selected from two surgical, and one neurosurgery, departments of three university hospitals in Germany over a period of two months per department between January and July, 2017. The records were reviewed using an adaptation of the German version of the Institute for Healthcare Improvement Global Trigger Tool to identify triggers and adverse event rates per 1000 patient days and per 100 admissions. The severity of adverse events was classified using the National Coordinating Council for Medication Error Reporting and Prevention. Results: A total of 53 adverse events were detected in the three departments. This corresponded to adverse event rates of 25.5-72.1 per 1000 patient-days and from 25.0 to 60.0 per 100 admissions across the three departments. 98.1% of identified adverse events were associated with non-permanent harm without (Category E–71.7%) or with (Category F–26.4%) the need for prolonged hospitalization. One adverse event (1.9%) was associated with potentially permanent harm to the patient. We also identified practical challenges in the implementation of the tool, such as the need for adaptation of the global trigger tool to the respective department. Conclusions: The global trigger tool is feasible and an effective instrument for quality measurement when adapted to the departmental specifics. Based on our experience, we recommend a continuous use of the tool thereby directly involving clinicians in quality improvement.

Keywords: adverse events, global trigger tool, patient safety, record review

Procedia PDF Downloads 249
143 Predicting Football Player Performance: Integrating Data Visualization and Machine Learning

Authors: Saahith M. S., Sivakami R.

Abstract:

In the realm of football analytics, particularly focusing on predicting football player performance, the ability to forecast player success accurately is of paramount importance for teams, managers, and fans. This study introduces an elaborate examination of predicting football player performance through the integration of data visualization methods and machine learning algorithms. The research entails the compilation of an extensive dataset comprising player attributes, conducting data preprocessing, feature selection, model selection, and model training to construct predictive models. The analysis within this study will involve delving into feature significance using methodologies like Select Best and Recursive Feature Elimination (RFE) to pinpoint pertinent attributes for predicting player performance. Various machine learning algorithms, including Random Forest, Decision Tree, Linear Regression, Support Vector Regression (SVR), and Artificial Neural Networks (ANN), will be explored to develop predictive models. The evaluation of each model's performance utilizing metrics such as Mean Squared Error (MSE) and R-squared will be executed to gauge their efficacy in predicting player performance. Furthermore, this investigation will encompass a top player analysis to recognize the top-performing players based on the anticipated overall performance scores. Nationality analysis will entail scrutinizing the player distribution based on nationality and investigating potential correlations between nationality and player performance. Positional analysis will concentrate on examining the player distribution across various positions and assessing the average performance of players in each position. Age analysis will evaluate the influence of age on player performance and identify any discernible trends or patterns associated with player age groups. The primary objective is to predict a football player's overall performance accurately based on their individual attributes, leveraging data-driven insights to enrich the comprehension of player success on the field. By amalgamating data visualization and machine learning methodologies, the aim is to furnish valuable tools for teams, managers, and fans to effectively analyze and forecast player performance. This research contributes to the progression of sports analytics by showcasing the potential of machine learning in predicting football player performance and offering actionable insights for diverse stakeholders in the football industry.

Keywords: football analytics, player performance prediction, data visualization, machine learning algorithms, random forest, decision tree, linear regression, support vector regression, artificial neural networks, model evaluation, top player analysis, nationality analysis, positional analysis

Procedia PDF Downloads 38
142 Subjective Probability and the Intertemporal Dimension of Probability to Correct the Misrelation Between Risk and Return of a Financial Asset as Perceived by Investors. Extension of Prospect Theory to Better Describe Risk Aversion

Authors: Roberta Martino, Viviana Ventre

Abstract:

From a theoretical point of view, the relationship between the risk associated with an investment and the expected value are directly proportional, in the sense that the market allows a greater result to those who are willing to take a greater risk. However, empirical evidence proves that this relationship is distorted in the minds of investors and is perceived exactly the opposite. To deepen and understand the discrepancy between the actual actions of the investor and the theoretical predictions, this paper analyzes the essential parameters used for the valuation of financial assets with greater attention to two elements: probability and the passage of time. Although these may seem at first glance to be two distinct elements, they are closely related. In particular, the error in the theoretical description of the relationship between risk and return lies in the failure to consider the impatience that is generated in the decision-maker when events that have not yet happened occur in the decision-making context. In this context, probability loses its objective meaning and in relation to the psychological aspects of the investor, it can only be understood as the degree of confidence that the investor has in the occurrence or non-occurrence of an event. Moreover, the concept of objective probability does not consider the inter-temporality that characterizes financial activities and does not consider the condition of limited cognitive capacity of the decision maker. Cognitive psychology has made it possible to understand that the mind acts with a compromise between quality and effort when faced with very complex choices. To evaluate an event that has not yet happened, it is necessary to imagine that it happens in your head. This projection into the future requires a cognitive effort and is what differentiates choices under conditions of risk and choices under conditions of uncertainty. In fact, since the receipt of the outcome in choices under risk conditions is imminent, the mechanism of self-projection into the future is not necessary to imagine the consequence of the choice and the decision makers dwell on the objective analysis of possibilities. Financial activities, on the other hand, develop over time and the objective probability is too static to consider the anticipatory emotions that the self-projection mechanism generates in the investor. Assuming that uncertainty is inherent in valuations of events that have not yet occurred, the focus must shift from risk management to uncertainty management. Only in this way the intertemporal dimension of the decision-making environment and the haste generated by the financial market can be cautioned and considered. The work considers an extension of the prospectus theory with the temporal component with the aim of providing a description of the attitude towards risk with respect to the passage of time.

Keywords: impatience, risk aversion, subjective probability, uncertainty

Procedia PDF Downloads 107
141 A Comparison of Proxemics and Postural Head Movements during Pop Music versus Matched Music Videos

Authors: Harry J. Witchel, James Ackah, Carlos P. Santos, Nachiappan Chockalingam, Carina E. I. Westling

Abstract:

Introduction: Proxemics is the study of how people perceive and use space. It is commonly proposed that when people like or engage with a person/object, they will move slightly closer to it, often quite subtly and subconsciously. Music videos are known to add entertainment value to a pop song. Our hypothesis was that by adding appropriately matched video to a pop song, it would lead to a net approach of the head to the monitor screen compared to simply listening to an audio-only version of the song. Methods: We presented to 27 participants (ages 21.00 ± 2.89, 15 female) seated in front of 47.5 x 27 cm monitor two musical stimuli in a counterbalanced order; all stimuli were based on music videos by the band OK Go: Here It Goes Again (HIGA, boredom ratings (0-100) = 15.00 ± 4.76, mean ± SEM, standard-error-of-the-mean) and Do What You Want (DWYW, boredom ratings = 23.93 ± 5.98), which did not differ in boredom elicited (P = 0.21, rank-sum test). Each participant experienced each song only once, and one song (counterbalanced) as audio-only versus the other song as a music video. The movement was measured by video-tracking using Kinovea 0.8, based on recording from a lateral aspect; before beginning, each participant had a reflective motion tracking marker placed on the outer canthus of the left eye. Analysis of the Kinovea X-Y coordinate output in comma-separated-variables format was performed in Matlab, as were non-parametric statistical tests. Results: We found that the audio-only stimuli (combined for both HIGA and DWYW, mean ± SEM, 35.71 ± 5.36) were significantly more boring than the music video versions (19.46 ± 3.83, P = 0.0066 Wilcoxon Signed Rank Test (WSRT), Cohen's d = 0.658, N = 28). We also found that participants' heads moved around twice as much during the audio-only versions (speed = 0.590 ± 0.095 mm/sec) compared to the video versions (0.301 ± 0.063 mm/sec, P = 0.00077, WSRT). However, the participants' mean head-to-screen distances were not detectably smaller (i.e. head closer to the screen) during the music videos (74.4 ± 1.8 cm) compared to the audio-only stimuli (73.9 ± 1.8 cm, P = 0.37, WSRT). If anything, during the audio-only condition, they were slightly closer. Interestingly, the ranges of the head-to-screen distances were smaller during the music video (8.6 ± 1.4 cm) compared to the audio-only (12.9 ± 1.7 cm, P = 0.0057, WSRT), the standard deviations were also smaller (P = 0.0027, WSRT), and their heads were held 7 mm higher (video 116.1 ± 0.8 vs. audio-only 116.8 ± 0.8 cm above floor, P = 0.049, WSRT). Discussion: As predicted, sitting and listening to experimenter-selected pop music was more boring than when the music was accompanied by a matched, professionally-made video. However, we did not find that the proxemics of the situation led to approaching the screen. Instead, adding video led to efforts to control the head to a more central and upright viewing position and to suppress head fidgeting.

Keywords: boredom, engagement, music videos, posture, proxemics

Procedia PDF Downloads 167
140 Structural Invertibility and Optimal Sensor Node Placement for Error and Input Reconstruction in Dynamic Systems

Authors: Maik Kschischo, Dominik Kahl, Philipp Wendland, Andreas Weber

Abstract:

Understanding and modelling of real-world complex dynamic systems in biology, engineering and other fields is often made difficult by incomplete knowledge about the interactions between systems states and by unknown disturbances to the system. In fact, most real-world dynamic networks are open systems receiving unknown inputs from their environment. To understand a system and to estimate the state dynamics, these inputs need to be reconstructed from output measurements. Reconstructing the input of a dynamic system from its measured outputs is an ill-posed problem if only a limited number of states is directly measurable. A first requirement for solving this problem is the invertibility of the input-output map. In our work, we exploit the fact that invertibility of a dynamic system is a structural property, which depends only on the network topology. Therefore, it is possible to check for invertibility using a structural invertibility algorithm which counts the number of node disjoint paths linking inputs and outputs. The algorithm is efficient enough, even for large networks up to a million nodes. To understand structural features influencing the invertibility of a complex dynamic network, we analyze synthetic and real networks using the structural invertibility algorithm. We find that invertibility largely depends on the degree distribution and that dense random networks are easier to invert than sparse inhomogeneous networks. We show that real networks are often very difficult to invert unless the sensor nodes are carefully chosen. To overcome this problem, we present a sensor node placement algorithm to achieve invertibility with a minimum set of measured states. This greedy algorithm is very fast and also guaranteed to find an optimal sensor node-set if it exists. Our results provide a practical approach to experimental design for open, dynamic systems. Since invertibility is a necessary condition for unknown input observers and data assimilation filters to work, it can be used as a preprocessing step to check, whether these input reconstruction algorithms can be successful. If not, we can suggest additional measurements providing sufficient information for input reconstruction. Invertibility is also important for systems design and model building. Dynamic models are always incomplete, and synthetic systems act in an environment, where they receive inputs or even attack signals from their exterior. Being able to monitor these inputs is an important design requirement, which can be achieved by our algorithms for invertibility analysis and sensor node placement.

Keywords: data-driven dynamic systems, inversion of dynamic systems, observability, experimental design, sensor node placement

Procedia PDF Downloads 150
139 Exposure to Radon on Air in Tourist Caves in Bulgaria

Authors: Bistra Kunovska, Kremena Ivanova, Jana Djounova, Desislava Djunakova, Zdenka Stojanovska

Abstract:

The carcinogenic effects of radon as a radioactive noble gas have been studied and show a strong correlation between radon exposure and lung cancer occurrence, even in the case of low radon levels. The major part of the natural radiation dose in humans is received by inhaling radon and its progenies, which originates from the decay chain of U-238. Indoor radon poses a substantial threat to human health when build-up occurs in confined spaces such as homes, mines and caves and the risk increases with the duration of radon exposure and is proportional to both the radon concentration and the time of exposure. Tourist caves are a case of special environmental conditions that may be affected by high radon concentration. Tourist caves are a recognized danger in terms of radon exposure to cave workers (guides, employees working in shops built above the cave entrances, etc.), but due to the sensitive nature of the cave environment, high concentrations cannot be easily removed. Forced ventilation of the air in the caves is considered unthinkable due to the possible harmful effects on the microclimate, flora and fauna. The risks to human health posed by exposure to elevated radon levels in caves are not well documented. Various studies around the world often detail very high concentrations of radon in caves and exposure of employees but without a follow-up assessment of the overall impact on human health. This study was developed in the implementation of a national project to assess the potential health effects caused by exposure to elevated levels of radon in buildings with public access under the National Science Fund of Bulgaria, in the framework of grant No КП-06-Н23/1/07.12.2018. The purpose of the work is to assess the radon level in Bulgarian caves and the exposure of the visitors and workers. The number of caves (sampling size) was calculated for simple random selection from total available caves 65 (sampling population) are 13 caves with confidence level 95 % and confidence interval (margin of error) approximately 25 %. A measurement of the radon concentration in air at specific locations in caves was done by using CR-39 type nuclear track-etch detectors that were placed by the participants in the research team. Despite the fact that all of the caves were formed in karst rocks, the radon levels were rather different from each other (97–7575 Bq/m3). An assessment of the influence of the orientation of the caves in the earth's surface (horizontal, inclined, vertical) on the radon concentration was performed. Evaluation of health hazards and radon risk exposure causing by inhaling the radon and its daughter products in each surveyed caves was done. Reducing the time spent in the cave has been recommended in order to decrease the exposure of workers.

Keywords: tourist caves, radon concentration, exposure, Bulgaria

Procedia PDF Downloads 189
138 Microplastics Accumulation and Abundance Standardization for Fluvial Sediments: Case Study for the Tena River

Authors: Mishell E. Cabrera, Bryan G. Valencia, Anderson I. Guamán

Abstract:

Human dependence on plastic products has led to global pollution, with plastic particles ranging in size from 0.001 to 5 millimeters, which are called microplastics (hereafter, MPs). The abundance of microplastics is used as an indicator of pollution. However, reports of pollution (abundance of MPs) in river sediments do not consider that the accumulation of sediments and MPs depends on the energy of the river. That is, the abundance of microplastics will be underestimated if the sediments analyzed come from places where the river flows with a lot of energy, and the abundance will be overestimated if the sediment analyzed comes from places where the river flows with less energy. This bias can generate an error greater than 300% of the MPs value reported for the same river and should increase when comparisons are made between 2 rivers with different characteristics. Sections where the river flows with higher energy allow sands to be deposited and limit the accumulation of MPs, while sections, where the same river has lower energy, allow fine sediments such as clays and silts to be deposited and should facilitate the accumulation of MPs particles. That is, the abundance of MPs in the same river is underrepresented when the sediment analyzed is sand, and the abundance of MPs is overrepresented if the sediment analyzed is silt or clay. The present investigation establishes a protocol aimed at incorporating sample granulometry to calibrate MPs quantification and eliminate over- or under-representation bias (hereafter granulometric bias). A total of 30 samples were collected by taking five samples within six work zones. The slope of the sampling points was less than 8 degrees, referred to as low slope areas, according to the Van Zuidam slope classification. During sampling, blanks were used to estimate possible contamination by MPs during sampling. Samples were dried at 60 degrees Celsius for three days. A flotation technique was employed to isolate the MPs using sodium metatungstate with a density of 2 gm/l. For organic matter digestion, 30% hydrogen peroxide and Fenton were used at a ratio of 6:1 for 24 hours. The samples were stained with rose bengal at a concentration of 200 mg/L and were subsequently dried in an oven at 60 degrees Celsius for 1 hour to be identified and photographed in a stereomicroscope with the following conditions: Eyepiece magnification: 10x, Zoom magnification (zoom knob): 4x, Objective lens magnification: 0.35x for analysis in ImageJ. A total of 630 fibers of MPs were identified, mainly red, black, blue, and transparent colors, with an overall average length of 474,310 µm and an overall median length of 368,474 µm. The particle size of the 30 samples was calculated using 100 g per sample using sieves with the following apertures: 2 mm, 1 mm, 500 µm, 250 µm, 125 µm and 0.63 µm. This sieving allowed a visual evaluation and a more precise quantification of the microplastics present. At the same time, the weight of sediment in each fraction was calculated, revealing an evident magnitude: as the presence of sediment in the < 63 µm fraction increases, a significant increase in the number of MPs particles is observed.

Keywords: microplastics, pollution, sediments, Tena River

Procedia PDF Downloads 73
137 Problems and Solutions in the Application of ICP-MS for Analysis of Trace Elements in Various Samples

Authors: Béla Kovács, Éva Bódi, Farzaneh Garousi, Szilvia Várallyay, Áron Soós, Xénia Vágó, Dávid Andrási

Abstract:

In agriculture for analysis of elements in different food and food raw materials, moreover environmental samples generally flame atomic absorption spectrometers (FAAS), graphite furnace atomic absorption spectrometers (GF-AAS), inductively coupled plasma optical emission spectrometers (ICP-OES) and inductively coupled plasma mass spectrometers (ICP-MS) are routinely applied. An inductively coupled plasma mass spectrometer (ICP-MS) is capable for analysis of 70-80 elements in multielemental mode, from 1-5 cm3 volume of a sample, moreover the detection limits of elements are in µg/kg-ng/kg (ppb-ppt) concentration range. All the analytical instruments have different physical and chemical interfering effects analysing the above types of samples. The smaller the concentration of an analyte and the larger the concentration of the matrix the larger the interfering effects. Nowadays there is very important to analyse growingly smaller concentrations of elements. From the above analytical instruments generally the inductively coupled plasma mass spectrometer is capable of analysing the smallest concentration of elements. The applied ICP-MS instrument has Collision Cell Technology (CCT) also. Using CCT mode certain elements have better (smaller) detection limits with 1-3 magnitudes comparing to a normal ICP-MS analytical method. The CCT mode has better detection limits mainly for analysis of selenium, arsenic, germanium, vanadium and chromium. To elaborate an analytical method for trace elements with an inductively coupled plasma mass spectrometer the most important interfering effects (problems) were evaluated: 1) Physical interferences; 2) Spectral interferences (elemental and molecular isobaric); 3) Effect of easily ionisable elements; 4) Memory interferences. Analysing food and food raw materials, moreover environmental samples an other (new) interfering effect emerged in ICP-MS, namely the effect of various matrixes having different evaporation and nebulization effectiveness, moreover having different quantity of carbon content of food and food raw materials, moreover environmental samples. In our research work the effect of different water-soluble compounds furthermore the effect of various quantity of carbon content (as sample matrix) were examined on changes of intensity of the applied elements. So finally we could find “opportunities” to decrease or eliminate the error of the analyses of applied elements (Cr, Co, Ni, Cu, Zn, Ge, As, Se, Mo, Cd, Sn, Sb, Te, Hg, Pb, Bi). To analyse these elements in the above samples, the most appropriate inductively coupled plasma mass spectrometer is a quadrupole instrument applying a collision cell technique (CCT). The extent of interfering effect of carbon content depends on the type of compounds. The carbon content significantly affects the measured concentration (intensities) of the above elements, which can be corrected using different internal standards.

Keywords: elements, environmental and food samples, ICP-MS, interference effects

Procedia PDF Downloads 504
136 New Gas Geothermometers for the Prediction of Subsurface Geothermal Temperatures: An Optimized Application of Artificial Neural Networks and Geochemometric Analysis

Authors: Edgar Santoyo, Daniel Perez-Zarate, Agustin Acevedo, Lorena Diaz-Gonzalez, Mirna Guevara

Abstract:

Four new gas geothermometers have been derived from a multivariate geo chemometric analysis of a geothermal fluid chemistry database, two of which use the natural logarithm of CO₂ and H2S concentrations (mmol/mol), respectively, and the other two use the natural logarithm of the H₂S/H₂ and CO₂/H₂ ratios. As a strict compilation criterion, the database was created with gas-phase composition of fluids and bottomhole temperatures (BHTM) measured in producing wells. The calibration of the geothermometers was based on the geochemical relationship existing between the gas-phase composition of well discharges and the equilibrium temperatures measured at bottomhole conditions. Multivariate statistical analysis together with the use of artificial neural networks (ANN) was successfully applied for correlating the gas-phase compositions and the BHTM. The predicted or simulated bottomhole temperatures (BHTANN), defined as output neurons or simulation targets, were statistically compared with measured temperatures (BHTM). The coefficients of the new geothermometers were obtained from an optimized self-adjusting training algorithm applied to approximately 2,080 ANN architectures with 15,000 simulation iterations each one. The self-adjusting training algorithm used the well-known Levenberg-Marquardt model, which was used to calculate: (i) the number of neurons of the hidden layer; (ii) the training factor and the training patterns of the ANN; (iii) the linear correlation coefficient, R; (iv) the synaptic weighting coefficients; and (v) the statistical parameter, Root Mean Squared Error (RMSE) to evaluate the prediction performance between the BHTM and the simulated BHTANN. The prediction performance of the new gas geothermometers together with those predictions inferred from sixteen well-known gas geothermometers (previously developed) was statistically evaluated by using an external database for avoiding a bias problem. Statistical evaluation was performed through the analysis of the lowest RMSE values computed among the predictions of all the gas geothermometers. The new gas geothermometers developed in this work have been successfully used for predicting subsurface temperatures in high-temperature geothermal systems of Mexico (e.g., Los Azufres, Mich., Los Humeros, Pue., and Cerro Prieto, B.C.) as well as in a blind geothermal system (known as Acoculco, Puebla). The last results of the gas geothermometers (inferred from gas-phase compositions of soil-gas bubble emissions) compare well with the temperature measured in two wells of the blind geothermal system of Acoculco, Puebla (México). Details of this new development are outlined in the present research work. Acknowledgements: The authors acknowledge the funding received from CeMIE-Geo P09 project (SENER-CONACyT).

Keywords: artificial intelligence, gas geochemistry, geochemometrics, geothermal energy

Procedia PDF Downloads 351
135 On-Ice Force-Velocity Modeling Technical Considerations

Authors: Dan Geneau, Mary Claire Geneau, Seth Lenetsky, Ming -Chang Tsai, Marc Klimstra

Abstract:

Introduction— Horizontal force-velocity profiling (HFVP) involves modeling an athletes linear sprint kinematics to estimate valuable maximum force and velocity metrics. This approach to performance modeling has been used in field-based team sports and has recently been introduced to ice-hockey as a forward skating performance assessment. While preliminary data has been collected on ice, distance constraints of the on-ice test restrict the ability of the athletes to reach their maximal velocity which result in limits of the model to effectively estimate athlete performance. This is especially true of more elite athletes. This report explores whether athletes on-ice are able to reach a velocity plateau similar to what has been seen in overground trials. Fourteen male Major Junior ice-hockey players (BW= 83.87 +/- 7.30 kg, height = 188 ± 3.4cm cm, age = 18 ± 1.2 years n = 14) were recruited. For on-ice sprints, participants completed a standardized warm-up consisting of skating and dynamic stretching and a progression of three skating efforts from 50% to 95%. Following the warm-up, participants completed three on ice 45m sprints, with three minutes of rest in between each trial. For overground sprints, participants completed a similar dynamic warm-up to that of on-ice trials. Following the warm-up participants completed three 40m overground sprint trials. For each trial (on-ice and overground), radar was used to collect instantaneous velocity (Stalker ATS II, Texas, USA) aimed at the participant’s waist. Sprint velocities were modelled using custom Python (version 3.2) script using a mono-exponential function, similar to previous work. To determine if on-ice tirals were achieving a maximum velocity (plateau), minimum acceleration values of the modeled data at the end of the sprint were compared (using paired t-test) between on-ice and overground trials. Significant differences (P<0.001) between overground and on-ice minimum accelerations were observed. It was found that on-ice trials consistently reported higher final acceleration values, indicating a maximum maintained velocity (plateau) had not been reached. Based on these preliminary findings, it is suggested that reliable HFVP metrics cannot yet be collected from all ice-hockey populations using current methods. Elite male populations were not able to achieve a velocity plateau similar to what has been seen in overground trials, indicating the absence of a maximum velocity measure. With current velocity and acceleration modeling techniques, including a dependency of a velocity plateau, these results indicate the potential for error in on-ice HFVP measures. Therefore, these findings suggest that a greater on-ice sprint distance may be required or the need for other velocity modeling techniques, where maximal velocity is not required for a complete profile.   

Keywords: ice-hockey, sprint, skating, power

Procedia PDF Downloads 100
134 STML: Service Type-Checking Markup Language for Services of Web Components

Authors: Saqib Rasool, Adnan N. Mian

Abstract:

Web components are introduced as the latest standard of HTML5 for writing modular web interfaces for ensuring maintainability through the isolated scope of web components. Reusability can also be achieved by sharing plug-and-play web components that can be used as off-the-shelf components by other developers. A web component encapsulates all the required HTML, CSS and JavaScript code as a standalone package which must be imported for integrating a web component within an existing web interface. It is then followed by the integration of web component with the web services for dynamically populating its content. Since web components are reusable as off-the-shelf components, these must be equipped with some mechanism for ensuring their proper integration with web services. The consistency of a service behavior can be verified through type-checking. This is one of the popular solutions for improving the quality of code in many programming languages. However, HTML does not provide type checking as it is a markup language and not a programming language. The contribution of this work is to introduce a new extension of HTML called Service Type-checking Markup Language (STML) for adding support of type checking in HTML for JSON based REST services. STML can be used for defining the expected data types of response from JSON based REST services which will be used for populating the content within HTML elements of a web component. Although JSON has five data types viz. string, number, boolean, object and array but STML is made to supports only string, number and object. This is because of the fact that both object and array are considered as string, when populated in HTML elements. In order to define the data type of any HTML element, developer just needs to add the custom STML attributes of st-string, st-number and st-boolean for string, number and boolean respectively. These all annotations of STML are used by the developer who is writing a web component and it enables the other developers to use automated type-checking for ensuring the proper integration of their REST services with the same web component. Two utilities have been written for developers who are using STML based web components. One of these utilities is used for automated type-checking during the development phase. It uses the browser console for showing the error description if integrated web service is not returning the response with expected data type. The other utility is a Gulp based command line utility for removing the STML attributes before going in production. This ensures the delivery of STML free web pages in the production environment. Both of these utilities have been tested to perform type checking of REST services through STML based web components and results have confirmed the feasibility of evaluating service behavior only through HTML. Currently, STML is designed for automated type-checking of integrated REST services but it can be extended to introduce a complete service testing suite based on HTML only, and it will transform STML from Service Type-checking Markup Language to Service Testing Markup Language.

Keywords: REST, STML, type checking, web component

Procedia PDF Downloads 254
133 Experimental and Computational Fluid Dynamic Modeling of a Progressing Cavity Pump Handling Newtonian Fluids

Authors: Deisy Becerra, Edwar Perez, Nicolas Rios, Miguel Asuaje

Abstract:

Progressing Cavity Pump (PCP) is a type of positive displacement pump that is being awarded greater importance as capable artificial lift equipment in the heavy oil field. The most commonly PCP used is driven single lobe pump that consists of a single external helical rotor turning eccentrically inside a double internal helical stator. This type of pump was analyzed by the experimental and Computational Fluid Dynamic (CFD) approach from the DCAB031 model located in a closed-loop arrangement. Experimental measurements were taken to determine the pressure rise and flow rate with a flow control valve installed at the outlet of the pump. The flowrate handled was measured by a FLOMEC-OM025 oval gear flowmeter. For each flowrate considered, the pump’s rotational speed and power input were controlled using an Invertek Optidrive E3 frequency driver. Once a steady-state operation was attained, pressure rise measurements were taken with a Sper Scientific wide range digital pressure meter. In this study, water and three Newtonian oils of different viscosities were tested at different rotational speeds. The CFD model implementation was developed on Star- CCM+ using an Overset Mesh that includes the relative motion between rotor and stator, which is one of the main contributions of the present work. The simulations are capable of providing detailed information about the pressure and velocity fields inside the device in laminar and unsteady regimens. The simulations have a good agreement with the experimental data due to Mean Squared Error (MSE) in under 21%, and the Grid Convergence Index (GCI) was calculated for the validation of the mesh, obtaining a value of 2.5%. In this case, three different rotational speeds were evaluated (200, 300, 400 rpm), and it is possible to show a directly proportional relationship between the rotational speed of the rotor and the flow rate calculated. The maximum production rates for the different speeds for water were 3.8 GPM, 4.3 GPM, and 6.1 GPM; also, for the oil tested were 1.8 GPM, 2.5 GPM, 3.8 GPM, respectively. Likewise, an inversely proportional relationship between the viscosity of the fluid and pump performance was observed, since the viscous oils showed the lowest pressure increase and the lowest volumetric flow pumped, with a degradation around of 30% of the pressure rise, between performance curves. Finally, the Productivity Index (PI) remained approximately constant for the different speeds evaluated; however, between fluids exist a diminution due to the viscosity.

Keywords: computational fluid dynamic, CFD, Newtonian fluids, overset mesh, PCP pressure rise

Procedia PDF Downloads 128
132 Factors Affecting Air Surface Temperature Variations in the Philippines

Authors: John Christian Lequiron, Gerry Bagtasa, Olivia Cabrera, Leoncio Amadore, Tolentino Moya

Abstract:

Changes in air surface temperature play an important role in the Philippine’s economy, industry, health, and food production. While increasing global mean temperature in the recent several decades has prompted a number of climate change and variability studies in the Philippines, most studies still focus on rainfall and tropical cyclones. This study aims to investigate the trend and variability of observed air surface temperature and determine its major influencing factor/s in the Philippines. A non-parametric Mann-Kendall trend test was applied to monthly mean temperature of 17 synoptic stations covering 56 years from 1960 to 2015 and a mean change of 0.58 °C or a positive trend of 0.0105 °C/year (p < 0.05) was found. In addition, wavelet decomposition was used to determine the frequency of temperature variability show a 12-month, 30-80-month and more than 120-month cycles. This indicates strong annual variations, interannual variations that coincide with ENSO events, and interdecadal variations that are attributed to PDO and CO2 concentrations. Air surface temperature was also correlated with smoothed sunspot number and galactic cosmic rays, the results show a low to no effect. The influence of ENSO teleconnection on temperature, wind pattern, cloud cover, and outgoing longwave radiation on different ENSO phases had significant effects on regional temperature variability. Particularly, an anomalous anticyclonic (cyclonic) flow east of the Philippines during the peak and decay phase of El Niño (La Niña) events leads to the advection of warm southeasterly (cold northeasterly) air mass over the country. Furthermore, an apparent increasing cloud cover trend is observed over the West Philippine Sea including portions of the Philippines, and this is believed to lessen the effect of the increasing air surface temperature. However, relative humidity was also found to be increasing especially on the central part of the country, which results in a high positive trend of heat index, exacerbating the effects on human discomfort. Finally, an assessment of gridded temperature datasets was done to look at the viability of using three high-resolution datasets in future climate analysis and model calibration and verification. Several error statistics (i.e. Pearson correlation, Bias, MAE, and RMSE) were used for this validation. Results show that gridded temperature datasets generally follows the observed surface temperature change and anomalies. In addition, it is more representative of regional temperature rather than a substitute to station-observed air temperature.

Keywords: air surface temperature, carbon dioxide, ENSO, galactic cosmic rays, smoothed sunspot number

Procedia PDF Downloads 323
131 Capacity of Cold-Formed Steel Warping-Restrained Members Subjected to Combined Axial Compressive Load and Bending

Authors: Maryam Hasanali, Syed Mohammad Mojtabaei, Iman Hajirasouliha, G. Charles Clifton, James B. P. Lim

Abstract:

Cold-formed steel (CFS) elements are increasingly being used as main load-bearing components in the modern construction industry, including low- to mid-rise buildings. In typical multi-storey buildings, CFS structural members act as beam-column elements since they are exposed to combined axial compression and bending actions, both in moment-resisting frames and stud wall systems. Current design specifications, including the American Iron and Steel Institute (AISI S100) and the Australian/New Zealand Standard (AS/NZS 4600), neglect the beneficial effects of warping-restrained boundary conditions in the design of beam-column elements. Furthermore, while a non-linear relationship governs the interaction of axial compression and bending, the combined effect of these actions is taken into account through a simplified linear expression combining pure axial and flexural strengths. This paper aims to evaluate the reliability of the well-known Direct Strength Method (DSM) as well as design proposals found in the literature to provide a better understanding of the efficiency of the code-prescribed linear interaction equation in the strength predictions of CFS beam columns and the effects of warping-restrained boundary conditions on their behavior. To this end, the experimentally validated finite element (FE) models of CFS elements under compression and bending were developed in ABAQUS software, which accounts for both non-linear material properties and geometric imperfections. The validated models were then used for a comprehensive parametric study containing 270 FE models, covering a wide range of key design parameters, such as length (i.e., 0.5, 1.5, and 3 m), thickness (i.e., 1, 2, and 4 mm) and cross-sectional dimensions under ten different load eccentricity levels. The results of this parametric study demonstrated that using the DSM led to the most conservative strength predictions for beam-column members by up to 55%, depending on the element’s length and thickness. This can be sourced by the errors associated with (i) the absence of warping-restrained boundary condition effects, (ii) equations for the calculations of buckling loads, and (iii) the linear interaction equation. While the influence of warping restraint is generally less than 6%, the code suggested interaction equation led to an average error of 4% to 22%, based on the element lengths. This paper highlights the need to provide more reliable design solutions for CFS beam-column elements for practical design purposes.

Keywords: beam-columns, cold-formed steel, finite element model, interaction equation, warping-restrained boundary conditions

Procedia PDF Downloads 104
130 The Value of Computerized Corpora in EFL Textbook Design: The Case of Modal Verbs

Authors: Lexi Li

Abstract:

This study aims to contribute to the field of how computer technology can be exploited to enhance EFL textbook design. Specifically, the study demonstrates how computerized native and learner corpora can be used to enhance modal verb treatment in EFL textbooks. The linguistic focus is will, would, can, could, may, might, shall, should, must. The native corpus is the spoken component of BNC2014 (hereafter BNCS2014). The spoken part is chosen because the pedagogical purpose of the textbooks is communication-oriented. Using the standard query option of CQPweb, 5% of each of the nine modals was sampled from BNCS2014. The learner corpus is the POS-tagged Ten-thousand English Compositions of Chinese Learners (TECCL). All the essays under the “secondary school” section were selected. A series of five secondary coursebooks comprise the textbook corpus. All the data in both the learner and the textbook corpora are retrieved through the concordance functions of WordSmith Tools (version, 5.0). Data analysis was divided into two parts. The first part compared the patterns of modal verbs in the textbook corpus and BNC2014 with respect to distributional features, semantic functions, and co-occurring constructions to examine whether the textbooks reflect the authentic use of English. Secondly, the learner corpus was compared with the textbook corpus in terms of the use (distributional features, semantic functions, and co-occurring constructions) in order to examine the degree of influence of the textbook on learners’ use of modal verbs. Moreover, the learner corpus was analyzed for the misuse (syntactic errors, e.g., she can sings*.) of the nine modal verbs to uncover potential difficulties that confront learners. The results indicate discrepancies between the textbook presentation of modal verbs and authentic modal use in natural discourse in terms of distributions of frequencies, semantic functions, and co-occurring structures. Furthermore, there are consistent patterns of use between the learner corpus and the textbook corpus with respect to the three above-mentioned aspects, except could, will and must, partially confirming the correlation between the frequency effects and L2 grammar acquisition. Further analysis reveals that the exceptions are caused by both positive and negative L1 transfer, indicating that the frequency effects can be intercepted by L1 interference. Besides, error analysis revealed that could, would, should and must are the most difficult for Chinese learners due to both inter-linguistic and intra-linguistic interference. The discrepancies between the textbook corpus and the native corpus point to a need to adjust the presentation of modal verbs in the textbooks in terms of frequencies, different meanings, and verb-phrase structures. Along with the adjustment of modal verb treatment based on authentic use, it is important for textbook writers to take into consideration the L1 interference as well as learners’ difficulties in their use of modal verbs. The present study is a methodological showcase of the combination both native and learner corpora in the enhancement of EFL textbook language authenticity and appropriateness for learners.

Keywords: EFL textbooks, learner corpus, modal verbs, native corpus

Procedia PDF Downloads 124
129 Healthcare Fire Disasters: Readiness, Response and Resilience Strategies: A Real-Time Experience of a Healthcare Organization of North India

Authors: Raman Sharma, Ashok Kumar, Vipin Koushal

Abstract:

Healthcare facilities are always seen as places of haven and protection for managing the external incidents, but the situation becomes more difficult and challenging when such facilities themselves are affected from internal hazards. Such internal hazards are arguably more disruptive than external incidents affecting vulnerable ones, as patients are always dependent on supportive measures and are neither in a position to respond to such crisis situation nor do they know how to respond. The situation becomes more arduous and exigent to manage if, in case critical care areas like Intensive Care Units (ICUs) and Operating Rooms (OR) are convoluted. And, due to these complexities of patients’ in-housed there, it becomes difficult to move such critically ill patients on immediate basis. Healthcare organisations use different types of electrical equipment, inflammable liquids, and medical gases often at a single point of use, hence, any sort of error can spark the fire. Even though healthcare facilities face many fire hazards, damage caused by smoke rather than flames is often more severe. Besides burns, smoke inhalation is primary cause of fatality in fire-related incidents. The greatest cause of illness and mortality in fire victims, particularly in enclosed places, appears to be the inhalation of fire smoke, which contains a complex mixture of gases in addition to carbon monoxide. Therefore, healthcare organizations are required to have a well-planned disaster mitigation strategy, proactive and well prepared manpower to cater all types of exigencies resulting from internal as well as external hazards. This case report delineates a true OR fire incident in Emergency Operation Theatre (OT) of a tertiary care multispecialty hospital and details the real life evidence of the challenges encountered by OR staff in preserving both life and property. No adverse event was reported during or after this fire commotion, yet, this case report aimed to congregate the lessons identified of the incident in a sequential and logical manner. Also, timely smoke evacuation and preventing the spread of smoke to adjoining patient care areas by opting appropriate measures, viz. compartmentation, pressurisation, dilution, ventilation, buoyancy, and airflow, helped to reduce smoke-related fatalities. Henceforth, precautionary measures may be implemented to mitigate such incidents. Careful coordination, continuous training, and fire drill exercises can improve the overall outcomes and minimize the possibility of these potentially fatal problems, thereby making a safer healthcare environment for every worker and patient.

Keywords: healthcare, fires, smoke, management, strategies

Procedia PDF Downloads 68
128 Measuring Oxygen Transfer Coefficients in Multiphase Bioprocesses: The Challenges and the Solution

Authors: Peter G. Hollis, Kim G. Clarke

Abstract:

Accurate quantification of the overall volumetric oxygen transfer coefficient (KLa) is ubiquitously measured in bioprocesses by analysing the response of dissolved oxygen (DO) to a step change in the oxygen partial pressure in the sparge gas using a DO probe. Typically, the response lag (τ) of the probe has been ignored in the calculation of KLa when τ is less than the reciprocal KLa, failing which a constant τ has invariably been assumed. These conventions have now been reassessed in the context of multiphase bioprocesses, such as a hydrocarbon-based system. Here, significant variation of τ in response to changes in process conditions has been documented. Experiments were conducted in a 5 L baffled stirred tank bioreactor (New Brunswick) in a simulated hydrocarbon-based bioprocess comprising a C14-20 alkane-aqueous dispersion with suspended non-viable Saccharomyces cerevisiae solids. DO was measured with a polarographic DO probe fitted with a Teflon membrane (Mettler Toledo). The DO concentration response to a step change in the sparge gas oxygen partial pressure was recorded, from which KLa was calculated using a first order model (without incorporation of τ) and a second order model (incorporating τ). τ was determined as the time taken to reach 63.2% of the saturation DO after the probe was transferred from a nitrogen saturated vessel to an oxygen saturated bioreactor and is represented as the inverse of the probe constant (KP). The relative effects of the process parameters on KP were quantified using a central composite design with factor levels typical of hydrocarbon bioprocesses, namely 1-10 g/L yeast, 2-20 vol% alkane and 450-1000 rpm. A response surface was fitted to the empirical data, while ANOVA was used to determine the significance of the effects with a 95% confidence interval. KP varied with changes in the system parameters with the impact of solid loading statistically significant at the 95% confidence level. Increased solid loading reduced KP consistently, an effect which was magnified at high alkane concentrations, with a minimum KP of 0.024 s-1 observed at the highest solids loading of 10 g/L. This KP was 2.8 fold lower that the maximum of 0.0661 s-1 recorded at 1 g/L solids, demonstrating a substantial increase in τ from 15.1 s to 41.6 s as a result of differing process conditions. Importantly, exclusion of KP in the calculation of KLa was shown to under-predict KLa for all process conditions, with an error up to 50% at the highest KLa values. Accurate quantification of KLa, and therefore KP, has far-reaching impact on industrial bioprocesses to ensure these systems are not transport limited during scale-up and operation. This study has shown the incorporation of τ to be essential to ensure KLa measurement accuracy in multiphase bioprocesses. Moreover, since τ has been conclusively shown to vary significantly with process conditions, it has also been shown that it is essential for τ to be determined individually for each set of process conditions.

Keywords: effect of process conditions, measuring oxygen transfer coefficients, multiphase bioprocesses, oxygen probe response lag

Procedia PDF Downloads 266
127 Artificial Intelligence and Governance in Relevance to Satellites in Space

Authors: Anwesha Pathak

Abstract:

With the increasing number of satellites and space debris, space traffic management (STM) becomes crucial. AI can aid in STM by predicting and preventing potential collisions, optimizing satellite trajectories, and managing orbital slots. Governance frameworks need to address the integration of AI algorithms in STM to ensure safe and sustainable satellite activities. AI and governance play significant roles in the context of satellite activities in space. Artificial intelligence (AI) technologies, such as machine learning and computer vision, can be utilized to process vast amounts of data received from satellites. AI algorithms can analyse satellite imagery, detect patterns, and extract valuable information for applications like weather forecasting, urban planning, agriculture, disaster management, and environmental monitoring. AI can assist in automating and optimizing satellite operations. Autonomous decision-making systems can be developed using AI to handle routine tasks like orbit control, collision avoidance, and antenna pointing. These systems can improve efficiency, reduce human error, and enable real-time responsiveness in satellite operations. AI technologies can be leveraged to enhance the security of satellite systems. AI algorithms can analyze satellite telemetry data to detect anomalies, identify potential cyber threats, and mitigate vulnerabilities. Governance frameworks should encompass regulations and standards for securing satellite systems against cyberattacks and ensuring data privacy. AI can optimize resource allocation and utilization in satellite constellations. By analyzing user demands, traffic patterns, and satellite performance data, AI algorithms can dynamically adjust the deployment and routing of satellites to maximize coverage and minimize latency. Governance frameworks need to address fair and efficient resource allocation among satellite operators to avoid monopolistic practices. Satellite activities involve multiple countries and organizations. Governance frameworks should encourage international cooperation, information sharing, and standardization to address common challenges, ensure interoperability, and prevent conflicts. AI can facilitate cross-border collaborations by providing data analytics and decision support tools for shared satellite missions and data sharing initiatives. AI and governance are critical aspects of satellite activities in space. They enable efficient and secure operations, ensure responsible and ethical use of AI technologies, and promote international cooperation for the benefit of all stakeholders involved in the satellite industry.

Keywords: satellite, space debris, traffic, threats, cyber security.

Procedia PDF Downloads 76
126 Benign Recurrent Unilateral Abducens (6th) Nerve Palsy in 14 Months Old Girl: A Case Report

Authors: Khaled Alabduljabbar

Abstract:

Background: Benign, isolated, recurrent sixth nerve palsy is very rare in children. Here we report a case of recurrent abducens nerve palsy with no obvious etiology. It is a diagnosis of exclusion. A recurrent benign form of 6th nerve palsy, a rarer still palsy, has been described in the literature, and it is of most likely secondary to inflammatory causes, e.g, following viral and bacterial infections. Purpose: To present a case of 14 months old girl with recurrent attacks of isolated left sixth cranial nerve palsy following upper respiratory tract infection. Observation: The patient presented to opthalmology clinic with sudden onset of inward deviation (esotropia) of the left eye with a compensatory left face turn one week following signs of upper respiratory tract infection. Ophthalmological examination revealed large angle esotropia of the left eye in primary position, with complete limitation of abduction of the left eye, no palpebral fissure changes, and abnormal position of the head (left face turn). Visual acuity was normal, and no significant refractive error on cycloplegic refraction for her age. Fundus examination was normal with no evidence of papilledema. There was no relative afferent pupillary defect (RAPD) and no anisocoria. Past medical history and family history were unremarkable, with no history of convulsion attacks or head trauma. Additional workout include CBC. Erythrocyte sedimentation rate, Urgent magnetic resonance imaging (MRI), and angiography of the brain were performed and demonstrated the absence of intracranial and orbital lesions. Referral to pediatric neurologist was also done and concluded no significant finding. The patient showed improvement of the left sixth cranial nerve palsy and left face turn over a period of two months. Seven months since the first attack, she experienced a recurrent attack of left eye esotropia with left face turn concurrent with URTI. The rest of eye examination was again unremarkable. CT scan and MRI scan of brain and orbit were performed and showed only signs of sinusitis with no intracranial pathology. The palsy resolved spontaneously within two months. A third episode of left 6th nerve palsy occurred 6 months later, whichrecovered over one month. Examination and neuroimagingwere unremarkable. A diagnosis of benign recurrent left 6th cranial nerve palsy was made. Conclusion: Benign sixth cranial nerve palsy is always a diagnosis of exclusion given the more serious and life-threatening alternative causes. It seems to have a good prognosis with only supportive measures. The likelihood of benign 6th cranial nerve palsy to resolve completely and spontaneously is high. Observation for at least 6 months without intervention is advisable.

Keywords: 6th nerve pasy, abducens nerve pasy, recurrent nerve palsy, cranial nerve palsy

Procedia PDF Downloads 89
125 Design of a Low-Cost, Portable, Sensor Device for Longitudinal, At-Home Analysis of Gait and Balance

Authors: Claudia Norambuena, Myissa Weiss, Maria Ruiz Maya, Matthew Straley, Elijah Hammond, Benjamin Chesebrough, David Grow

Abstract:

The purpose of this project is to develop a low-cost, portable sensor device that can be used at home for long-term analysis of gait and balance abnormalities. One area of particular concern involves the asymmetries in movement and balance that can accompany certain types of injuries and/or the associated devices used in the repair and rehabilitation process (e.g. the use of splints and casts) which can often increase chances of falls and additional injuries. This device has the capacity to monitor a patient during the rehabilitation process after injury or operation, increasing the patient’s access to healthcare while decreasing the number of visits to the patient’s clinician. The sensor device may thereby improve the quality of the patient’s care, particularly in rural areas where access to the clinician could be limited, while simultaneously decreasing the overall cost associated with the patient’s care. The device consists of nine interconnected accelerometer/ gyroscope/compass chips (9-DOF IMU, Adafruit, New York, NY). The sensors attach to and are used to determine the orientation and acceleration of the patient’s lower abdomen, C7 vertebra (lower neck), L1 vertebra (middle back), anterior side of each thigh and tibia, and dorsal side of each foot. In addition, pressure sensors are embedded in shoe inserts with one sensor (ESS301, Tekscan, Boston, MA) beneath the heel and three sensors (Interlink 402, Interlink Electronics, Westlake Village, CA) beneath the metatarsal bones of each foot. These sensors measure the distribution of the weight applied to each foot as well as stride duration. A small microntroller (Arduino Mega, Arduino, Ivrea, Italy) is used to collect data from these sensors in a CSV file. MATLAB is then used to analyze the data and output the hip, knee, ankle, and trunk angles projected on the sagittal plane. An open-source program Processing is then used to generate an animation of the patient’s gait. The accuracy of the sensors was validated through comparison to goniometric measurements (±2° error). The sensor device was also shown to have sufficient sensitivity to observe various gait abnormalities. Several patients used the sensor device, and the data collected from each represented the patient’s movements. Further, the sensors were found to have the ability to observe gait abnormalities caused by the addition of a small amount of weight (4.5 - 9.1 kg) to one side of the patient. The user-friendly interface and portability of the sensor device will help to construct a bridge between patients and their clinicians with fewer necessary inpatient visits.

Keywords: biomedical sensing, gait analysis, outpatient, rehabilitation

Procedia PDF Downloads 289
124 Experiences of Pediatric Cancer Patients and Their Families: A Focus Group Interview

Authors: Bu Kyung Park

Abstract:

Background: The survival rate of pediatric cancer patients has been increased. Thus, the needs of long-term management and follow-up education after discharge continue to grow. Purpose: The purpose of this study was to explore the experiences of pediatric cancer patients and their families from first diagnosis to returning their social life. The ultimate goal of this study was to assess which information and intervention did pediatric cancer patients and their families required and needed, so that this could provide fundamental information for developing educational content of web-based intervention program for pediatric cancer patients. Research Approach: This study was based on a descriptive qualitative research design using semi-structured focus group interview. Participants: Twelve pediatric cancer patients and 12 family members participated in a total six focus group interview sessions. Methods: All interviews were audiotaped after obtaining participants’ approval. The recordings were transcribed. Qualitative Content analysis using the inductive coding approach was performed on the transcriptions by three coders. Findings: Eighteen categories emerged from the six main themes: 1) Information needs, 2) Support system, 3) Barriers to treatment, 4) Facilitators to treatment, 5) Return to social life, 6) Healthcare system issues. Each theme had both pediatric cancer patients’ codes and their family members’ codes. Patients and family members had high information needs through the whole process of treatment, not only the first diagnosis but also after completion of treatment. Hospitals provided basic information on chemo therapy, medication, and various examinations. However, they were more likely to rely on information from other patients and families by word of mouth. Participants’ information needs were different according to their treatment stage (e.g., first admitted patients versus cancer survivors returning to their social life). Even newly diagnosed patients worried about social adjustment after completion of all treatment, such as return to school and diet and physical activity at home. Most family members had unpleasant experiences while they were admitted in hospitals and concerned about healthcare system issues, such as medical error and patient safety. Conclusions: In conclusion, pediatric cancer patients and their family members wanted information source which can provide tailored information based on their needs. Different information needs with patients and their family members based on their diagnosis, progress, stage of treatment were identified. Findings from this study will be used to develop a patient-centered online health intervention program for pediatric cancer patients. Pediatric cancer patients and their family members had variety fields of education needs and soak the information from various sources. Web-based health intervention program for them is required to satisfy their inquiries to provide reliable information.

Keywords: focus group interview, family caregivers, pediatric cancer patients, qualitative content analysis

Procedia PDF Downloads 181
123 Optimization of Operational Water Quality Parameters in a Drinking Water Distribution System Using Response Surface Methodology

Authors: Sina Moradi, Christopher W. K. Chow, John Van Leeuwen, David Cook, Mary Drikas, Patrick Hayde, Rose Amal

Abstract:

Chloramine is commonly used as a disinfectant in drinking water distribution systems (DWDSs), particularly in Australia and the USA. Maintaining a chloramine residual throughout the DWDS is important in ensuring microbiologically safe water is supplied at the customer’s tap. In order to simulate how chloramine behaves when it moves through the distribution system, a water quality network model (WQNM) can be applied. In this work, the WQNM was based on mono-chloramine decomposition reactions, which enabled prediction of mono-chloramine residual at different locations through a DWDS in Australia, using the Bentley commercial hydraulic package (Water GEMS). The accuracy of WQNM predictions is influenced by a number of water quality parameters. Optimization of these parameters in order to obtain the closest results in comparison with actual measured data in a real DWDS would result in both cost reduction as well as reduction in consumption of valuable resources such as energy and materials. In this work, the optimum operating conditions of water quality parameters (i.e. temperature, pH, and initial mono-chloramine concentration) to maximize the accuracy of mono-chloramine residual predictions for two water supply scenarios in an entire network were determined using response surface methodology (RSM). To obtain feasible and economical water quality parameters for highest model predictability, Design Expert 8.0 software (Stat-Ease, Inc.) was applied to conduct the optimization of three independent water quality parameters. High and low levels of the water quality parameters were considered, inevitably, as explicit constraints, in order to avoid extrapolation. The independent variables were pH, temperature and initial mono-chloramine concentration. The lower and upper limits of each variable for two water supply scenarios were defined and the experimental levels for each variable were selected based on the actual conditions in studied DWDS. It was found that at pH of 7.75, temperature of 34.16 ºC, and initial mono-chloramine concentration of 3.89 (mg/L) during peak water supply patterns, root mean square error (RMSE) of WQNM for the whole network would be minimized to 0.189, and the optimum conditions for averaged water supply occurred at pH of 7.71, temperature of 18.12 ºC, and initial mono-chloramine concentration of 4.60 (mg/L). The proposed methodology to predict mono-chloramine residual can have a great potential for water treatment plant operators in accurately estimating the mono-chloramine residual through a water distribution network. Additional studies from other water distribution systems are warranted to confirm the applicability of the proposed methodology for other water samples.

Keywords: chloramine decay, modelling, response surface methodology, water quality parameters

Procedia PDF Downloads 224