Search results for: release kinetics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1840

Search results for: release kinetics

100 Conservation Detection Dogs to Protect Europe's Native Biodiversity from Invasive Species

Authors: Helga Heylen

Abstract:

With dogs saving wildlife in New Zealand since 1890 and governments in Africa, Australia and Canada trusting them to give the best results, Conservation Dogs Ireland want to introduce more detection dogs to protect Europe's native wildlife. Conservation detection dogs are fast, portable and endlessly trainable. They are a cost-effective, highly sensitive and non-invasive way to detect protected and invasive species and wildlife disease. Conservation dogs find targets up to 40 times faster than any other method. They give results instantly, with near-perfect accuracy. They can search for multiple targets simultaneously, with no reduction in efficacy The European Red List indicates the decline in biodiversity has been most rapid in the past 50 years, and the risk of extinction never higher. Just two examples of major threats dogs are trained to tackle are: (I)Japanese Knotweed (Fallopia Japonica), not only a serious threat to ecosystems, crops, structures like bridges and roads - it can wipe out the entire value of a house. The property industry and homeowners are only just waking up to the full extent of the nightmare. When those working in construction on the roads move topsoil with a trace of Japanese Knotweed, it suffices to start a new colony. Japanese Knotweed grows up to 7cm a day. It can stay dormant and resprout after 20 years. In the UK, the cost of removing Japanese Knotweed from the London Olympic site in 2012 was around £70m (€83m). UK banks already no longer lend on a house that has Japanese Knotweed on-site. Legally, landowners are now obliged to excavate Japanese Knotweed and have it removed to a landfill. More and more, we see Japanese Knotweed grow where a new house has been constructed, and topsoil has been brought in. Conservation dogs are trained to detect small fragments of any part of the plant on sites and in topsoil. (II)Zebra mussels (Dreissena Polymorpha) are a threat to many waterways in the world. They colonize rivers, canals, docks, lakes, reservoirs, water pipes and cooling systems. They live up to 3 years and will release up to one million eggs each year. Zebra mussels attach to surfaces like rocks, anchors, boat hulls, intake pipes and boat engines. They cause changes in nutrient cycles, reduction of plankton and increased plant growth around lake edges, leading to the decline of Europe's native mussel and fish populations. There is no solution, only costly measures to keep it at bay. With many interconnected networks of waterways, they have spread uncontrollably. Conservation detection dogs detect the Zebra mussel from its early larvae stage, which is still invisible to the human eye. Detection dogs are more thorough and cost-effective than any other conservation method, and will greatly complement and speed up the work of biologists, surveyors, developers, ecologists and researchers.

Keywords: native biodiversity, conservation detection dogs, invasive species, Japanese Knotweed, zebra mussel

Procedia PDF Downloads 197
99 Automated System: Managing the Production and Distribution of Radiopharmaceuticals

Authors: Shayma Mohammed, Adel Trabelsi

Abstract:

Radiopharmacy is the art of preparing high-quality, radioactive, medicinal products for use in diagnosis and therapy. Radiopharmaceuticals unlike normal medicines, this dual aspect (radioactive, medical) makes their management highly critical. One of the most convincing applications of modern technologies is the ability to delegate the execution of repetitive tasks to programming scripts. Automation has found its way to the most skilled jobs, to improve the company's overall performance by allowing human workers to focus on more important tasks than document filling. This project aims to contribute to implement a comprehensive system to insure rigorous management of radiopharmaceuticals through the use of a platform that links the Nuclear Medicine Service Management System to the Nuclear Radio-pharmacy Management System in accordance with the recommendations of World Health Organization (WHO) and International Atomic Energy Agency (IAEA). In this project we attempt to build a web application that targets radiopharmacies, the platform is built atop the inherently compatible web stack which allows it to work in virtually any environment. Different technologies are used in this project (PHP, Symfony, MySQL Workbench, Bootstrap, Angular 7, Visual Studio Code and TypeScript). The operating principle of the platform is mainly based on two parts: Radiopharmaceutical Backoffice for the Radiopharmacian, who is responsible for the realization of radiopharmaceutical preparations and their delivery and Medical Backoffice for the Doctor, who holds the authorization for the possession and use of radionuclides and he/she is responsible for ordering radioactive products. The application consists of sven modules: Production, Quality Control/Quality Assurance, Release, General Management, References, Transport and Stock Management. It allows 8 classes of users: The Production Manager (PM), Quality Control Manager (QCM), Stock Manager (SM), General Manager (GM), Client (Doctor), Parking and Transport Manager (PTM), Qualified Person (QP) and Technical and Production Staff. Digital platform bringing together all players involved in the use of radiopharmaceuticals and integrating the stages of preparation, production and distribution, Web technologies, in particular, promise to offer all the benefits of automation while requiring no more than a web browser to act as a user client, which is a strength because the web stack is by nature multi-platform. This platform will provide a traceability system for radiopharmaceuticals products to ensure the safety and radioprotection of actors and of patients. The new integrated platform is an alternative to write all the boilerplate paperwork manually, which is a tedious and error-prone task. It would minimize manual human manipulation, which has proven to be the main source of error in nuclear medicine. A codified electronic transfer of information from radiopharmaceutical preparation to delivery will further reduce the risk of maladministration.

Keywords: automated system, management, radiopharmacy, technical papers

Procedia PDF Downloads 157
98 Wadjda, a Film That Quietly Sets the Stage for a Cultural Revolution in Saudi Arabia

Authors: Anouar El Younssi

Abstract:

This study seeks to shed some light on the political and social ramifications and implications of Haifaa al-Mansour’s 2012 film Wadjda. The film made international headlines following its release, and was touted as the first film ever to be shot in its entirety inside the Kingdom of Saudi Arabia, and also the first to be directed by a female (Haifaa al-Mansour). Wadjda revolves around a simple storyline: A teenage Saudi girl living in the capital city Riyadh—named Wadjda—wants to have a bicycle just like her male teenage neighbor and friend Abdullah, but her ultra-conservative Saudi society places so many constraints on its female population—including not allowing girls and women to ride bicycles. Wadjda, who displays a rebellious spirit, takes concrete steps to save money in order to realize her dream of buying a bicycle. For example, she starts making and selling sports bracelets to her school mates, and she decides to participate in a Qur’an competition in hopes of winning a sum of money that comes with the first prize. In the end, Wadjda could not beat the system on her own, but the film reverses course, and the audience gets a happy ending: Wadjda’s mother, whose husband has decided to take a second wife, defies the system and buys her daughter the very bicycle Wadjda has been dreaming of. It is quite significant that the mother takes her daughter’s side on the subject of the bicycle at the end of the film, for this shows that she finally came to the realization that she and her daughter are both oppressed by the cultural norms prevalent in Saudi society. It is no coincidence that this change of heart and action on the part of the mother takes place immediately after the wedding night celebrating her husband’s second marriage. Gender inequality is thus placed front and center in the film. Nevertheless, a major finding of this study is that the film carries out its social critique in a soft and almost covert manner. The female actors in the film never issue a direct criticism of Saudi society or government; the criticism is consistently implied and subtle throughout. It is a criticism that relies more on showing than telling. The film shows us—rather than tells us directly—what is wrong, and lets us, the audience, decide and make a judgment. In fact, showing could arguably be more powerful and impactful than telling. Regarding methodology, this study will focus on and analyze the visuals and a number of key utterances by the main actor Wadjda in order to corroborate the study’s argument about the film’s bent on critiquing patriarchy. This research will attempt to establish a link between the film as an art object and as a social text. Ultimately, Wadjda sends a message of hope, that change is possible and that it is already happening slowly inside the Kingdom. It also sends the message that an insurrectional approach regarding women’s rights in Saudi Arabia is perhaps not the right one, at least at this historical juncture.

Keywords: bicycle, gender inequality, social critique, Wadjda, women’s rights

Procedia PDF Downloads 130
97 Numerical Analyses of Dynamics of Deployment of PW-Sat2 Deorbit Sail Compared with Results of Experiment under Micro-Gravity and Low Pressure Conditions

Authors: P. Brunne, K. Ciechowska, K. Gajc, K. Gawin, M. Gawin, M. Kania, J. Kindracki, Z. Kusznierewicz, D. Pączkowska, F. Perczyński, K. Pilarski, D. Rafało, E. Ryszawa, M. Sobiecki, I. Uwarowa

Abstract:

Big amount of space debris constitutes nowadays a real thread for operating space crafts; therefore the main purpose of PW-Sat2’ team was to create a system that could help cleanse the Earth’s orbit after each small satellites’ mission. After 4 years of development, the motorless, low energy consumption and low weight system has been created. During series of tests, the system has shown high reliable efficiency. The PW-Sat2’s deorbit system is a square-shaped sail which covers an area of 4m². The sail surface is made of 6 μm aluminized Mylar film which is stretched across 4 diagonally placed arms, each consisting of two C-shaped flat springs and enveloped in Mylar sleeves. The sail is coiled using a special, custom designed folding stand that provides automation and repeatability of the sail unwinding tests and placed in a container with inner diameter of 85 mm. In the final configuration the deorbit system weights ca. 600 g and occupies 0.6U (in accordance with CubeSat standard). The sail’s releasing system requires minimal amount of power based on thermal knife that burns out the Dyneema wire, which holds the system before deployment. The Sail is being pushed out of the container within a safe distance (20 cm away) from the satellite. The energy for the deployment is completely assured by coiled C-shaped flat springs, which during the release, unfold the sail surface. To avoid dynamic effects on the satellite’s structure, there is the rotational link between the sail and satellite’s main body. To obtain complete knowledge about complex dynamics of the deployment, a number of experiments have been performed in varied environments. The numerical model of the dynamics of the Sail’s deployment has been built and is still under continuous development. Currently, the integration of the flight model and Deorbit Sail is performed. The launch is scheduled for February 2018. At the same time, in cooperation with United Nations Office for Outer Space Affairs, sail models and requested facilities are being prepared for the sail deployment experiment under micro-gravity and low pressure conditions at Bremen Drop Tower, Germany. Results of those tests will provide an ultimate and wide knowledge about deployment in space environment to which system will be exposed during its mission. Outcomes of the numerical model and tests will be compared afterwards and will help the team in building a reliable and correct model of a very complex phenomenon of deployment of 4 c-shaped flat springs with surface attached. The verified model could be used inter alia to investigate if the PW-Sat2’s sail is scalable and how far is it possible to go with enlarging when creating systems for bigger satellites.

Keywords: cubesat, deorbitation, sail, space, debris

Procedia PDF Downloads 292
96 Effect of Different Contaminants on Mineral Insulating Oil Characteristics

Authors: H. M. Wilhelm, P. O. Fernandes, L. P. Dill, C. Steffens, K. G. Moscon, S. M. Peres, V. Bender, T. Marchesan, J. B. Ferreira Neto

Abstract:

Deterioration of insulating oil is a natural process that occurs during transformers operation. However, this process can be accelerated by some factors, such as oxygen, high temperatures, metals and, moisture, which rapidly reduce oil insulating capacity and favor transformer faults. Parts of building materials of a transformer can be degraded and yield soluble compounds and insoluble particles that shorten the equipment life. Physicochemical tests, dissolved gas analysis (including propane, propylene and, butane), volatile and furanic compounds determination, besides quantitative and morphological analyses of particulate are proposed in this study in order to correlate transformers building materials degradation with insulating oil characteristics. The present investigation involves tests of medium temperature overheating simulation by means of an electric resistance wrapped with the following materials immersed in mineral insulating oil: test I) copper, tin, lead and, paper (heated at 350-400 °C for 8 h); test II) only copper (at 250 °C for 11 h); and test III) only paper (at 250 °C for 8 h and at 350 °C for 8 h). A different experiment is the simulation of electric arc involving copper, using an electric welding machine at two distinct energy sets (low and high). Analysis results showed that dielectric loss was higher in the sample of test I, higher neutralization index and higher values of hydrogen and hydrocarbons, including propane and butane, were also observed. Test III oil presented higher particle count, in addition, ferrographic analysis revealed contamination with fibers and carbonized paper. However, these particles had little influence on the oil physicochemical parameters (dielectric loss and neutralization index) and on the gas production, which was very low. Test II oil showed high levels of methane, ethane, and propylene, indicating the effect of metal on oil degradation. CO2 and CO gases were formed in the highest concentration in test III, as expected. Regarding volatile compounds, in test I acetone, benzene and toluene were detected, which are oil oxidation products. Regarding test III, methanol was identified due to cellulose degradation, as expected. Electric arc simulation test showed the highest oil oxidation in presence of copper and at high temperature, since these samples had huge concentration of hydrogen, ethylene, and acetylene. Particle count was also very high, showing the highest release of copper in such conditions. When comparing high and low energy, the first presented more hydrogen, ethylene, and acetylene. This sample had more similar results to test I, pointing out that the generation of different particles can be the cause for faults such as electric arc. Ferrography showed more evident copper and exfoliation particles than in other samples. Therefore, in this study, by using different combined analytical techniques, it was possible to correlate insulating oil characteristics with possible contaminants, which can lead to transformers failure.

Keywords: Ferrography, gas analysis, insulating mineral oil, particle contamination, transformer failures

Procedia PDF Downloads 226
95 Mapping Vulnerabilities: A Social and Political Study of Disasters in Eastern Himalayas, Region of Darjeeling

Authors: Shailendra M. Pradhan, Upendra M. Pradhan

Abstract:

Disasters are perennial features of human civilization. The recurring earthquakes, floods, cyclones, among others, that result in massive loss of lives and devastation, is a grim reminder of the fact that, despite all our success stories of development, and progress in science and technology, human society is perennially at risk to disasters. The apparent threat of climate change and global warming only severe our disaster risks. Darjeeling hills, situated along Eastern Himalayan region of India, and famous for its three Ts – tea, tourism and toy-train – is also equally notorious for its disasters. The recurring landslides and earthquakes, the cyclone Aila, and the Ambootia landslides, considered as the largest landslide in Asia, are strong evidence of the vulnerability of Darjeeling hills to natural disasters. Given its geographical location along the Hindu-Kush Himalayas, the region is marked by rugged topography, geo-physically unstable structure, high-seismicity, and fragile landscape, making it prone to disasters of different kinds and magnitudes. Most of the studies on disasters in Darjeeling hills are, however, scientific and geographical in orientation that focuses on the underlying geological and physical processes to the neglect of social and political conditions. This has created a tendency among the researchers and policy-makers to endorse and promote a particular type of discourse that does not consider the social and political aspects of disasters in Darjeeling hills. Disaster, this paper argues, is a complex phenomenon, and a result of diverse factors, both physical and human. The hazards caused by the physical and geological agents, and the vulnerabilities produced and rooted in political, economic, social and cultural structures of a society, together result in disasters. In this sense, disasters are as much a result of political and economic conditions as it is of physical environment. The human aspect of disasters, therefore, compels us to address intricating social and political challenges that ultimately determine our resilience and vulnerability to disasters. Set within the above milieu, the aims of the paper are twofold: a) to provide a political and sociological account of disasters in Darjeeling hills; and, b) to identify and address the root causes of its vulnerabilities to disasters. In situating disasters in Darjeeling Hills, the paper adopts the Pressure and Release Model (PAR) that provides a theoretical insight into the study of social and political aspects of disasters, and to examine myriads of other related issues therein. The PAR model conceptualises risk as a complex combination of vulnerabilities, on the one hand, and hazards, on the other. Disasters, within the PAR framework, occur when hazards interact with vulnerabilities. The root causes of vulnerability, in turn, could be traced to social and political structures such as legal definitions of rights, gender relations, and other ideological structures and processes. In this way, the PAR model helps the present study to identify and unpack the root causes of vulnerabilities and disasters in Darjeeling hills that have largely remained neglected in dominant discourses, thereby providing a more nuanced and sociologically sensitive understanding of disasters.

Keywords: Darjeeling, disasters, PAR, vulnerabilities

Procedia PDF Downloads 273
94 Oxidation Behavior of Ferritic Stainless Steel Interconnects Modified Using Nanoparticles of Rare-Earth Elements under Operating Conditions Specific to Solid Oxide Electrolyzer Cells

Authors: Łukasz Mazur, Kamil Domaradzki, Bartosz Kamecki, Justyna Ignaczak, Sebastian Molin, Aleksander Gil, Tomasz Brylewski

Abstract:

The rising global power consumption necessitates the development of new energy storage solutions. Prospective technologies include solid oxide electrolyzer cells (SOECs), which convert surplus electrical energy into hydrogen. An electrolyzer cell consists of a porous anode, and cathode, and a dense electrolyte. Power output is increased by connecting cells into stacks using interconnects. Interconnects are currently made from high-chromium ferritic steels – for example, Crofer 22 APU – which exhibit high oxidation resistance and a thermal expansion coefficient that is similar to that of electrode materials. These materials have one disadvantage – their area-specific resistance (ASR) gradually increases due to the formation of a Cr₂O₃ scale on their surface as a result of oxidation. The chromia in the scale also reacts with the water vapor present in the reaction media, forming volatile chromium oxyhydroxides, which in turn react with electrode materials and cause their deterioration. The electrochemical efficiency of SOECs thus decreases. To mitigate this, the interconnect surface can be modified with protective-conducting coatings of spinel or other materials. The high prices of SOEC components -especially the Crofer 22 APU- have prevented their widespread adoption. More inexpensive counterparts, therefore, need to be found, and their properties need to be enhanced to make them viable. Candidates include the Nirosta 4016/1,4016 low-chromium ferritic steel with a chromium content of just 16.3 wt%. This steel's resistance to high-temperature oxidation was improved by depositing Gd₂O₃ nanoparticles on its surface via either dip coating or electrolysis. Modification with CeO₂ or Ce₀.₉Y₀.₁O₂ nanoparticles deposited by means of spray pyrolysis was also tested. These methods were selected because of their low cost and simplicity of application. The aim of this study was to investigate the oxidation kinetics of Nirosta 4016/1,4016 modified using the afore-mentioned methods and to subsequently measure the obtained samples' ASR. The samples were oxidized for 100 h in the air as well as air/H₂O and Ar/H₂/H₂O mixtures at 1073 K. Such conditions reflect those found in the anode and cathode operating space during real-life use of SOECs. Phase and chemical composition and the microstructure of oxidation products were determined using XRD and SEM-EDS. ASR was measured over the range of 623-1073 K using a four-point, two-probe DC technique. The results indicate that the applied nanoparticles improve the oxidation resistance and electrical properties of the studied layered systems. The properties of individual systems varied significantly depending on the applied reaction medium. Gd₂O₃ nanoparticles improved oxidation resistance to a greater degree than either CeO₂ or Ce₀.₉Y₀.₁O₂ nanoparticles. On the other hand, the cerium-containing nanoparticles improved electrical properties regardless of the reaction medium. The ASR values of all surface-modified steel samples were below the 0.1 Ω.cm² threshold set for interconnect materials, which was exceeded in the case of the unmodified reference sample. It can be concluded that the applied modifications increased the oxidation resistance of Nirosta 4016/1.4016 to a level that allows its use as SOEC interconnect material. Acknowledgments: Funding of Research project supported by program "Excellence initiative – research university" for the AGH University of Krakow" is gratefully acknowledged (TB).

Keywords: cerium oxide, ferritic stainless steel, gadolinium oxide, interconnect, SOEC

Procedia PDF Downloads 88
93 Chemotactic Behaviour of Human Mesenchymal Stem Cells in Response to Silicate Substituted Hydroxyapatite

Authors: Dinara Ikramova, Karin A. Hing, Simon C. F. Rawlinson

Abstract:

Silicate-substituted hydroxyapatite (SiHA) has been shown to enhance bone regeneration in vivo compared with phase pure stoichiometric hydroxyapatite. Evidence suggests that substrate chemistry dependent formation of a permissive protein layer on the surface of synthetic bone graft substitute materials is key for bioactivity and cell attachment. However, little information is available on whether the substrate chemistry may affect cell migration and recruitment. The aim of this study is to investigate whether or not human Mesenchymal Stem Cells (hMSCs) exhibit a chemotactic response to SiHA porous granules and if it can be linked to either the ion exchange or protein sequestering and enrichment on the surface of the material. 150mg of SiHA granules with 80% total porosity and 20% strut porosity were incubated in 1ml of either Serum Free Media (SFM) or 10% Serum Containing Media (SCM) under static cell culture conditions (37°C, 5% CO2) in absence of cells. Protein sequestering and exchange of calcium, phosphate and silicate ions were analysed at 0.5, 1, 2, 4, 8, 16 and 24 hours with n=12 per time point. Migration of hMSCs in the presence of 150mg of SiHA granules was assessed over 24 hours using a modified transwell migration system in either SFM or SCM (n=6) with 30% serum containing media acting as a positive control. At 24 hours protein sequestering and ionic exchange were analysed, and the number of cells was quantified using a high throughput confocal microscope (IN Cell Analyser 6000). In acellular condition, both calcium and phosphate ion concentrations in media showed a decrease at 24 hours which was greater in SFM than in SCM. This suggests possible formation and precipitation of a bone like apatite on the surface of SiHA. Reduction in this activity observed in SCM indicates that the presence of serum proteins is interfering with the ion exchange at the material and media interface. Adsorbed protein levels showed fluctuation over time followed by sharp decrease at 24 hours, suggesting a possible protein rearrangement on the surface of the material. The ion analysis performed on SFM and SCM after 24-hour incubation with cells in the presence of granules showed a greater reduction in phosphate concentration in both SFM and SCM compared to phosphate levels in acellular condition. Silicate concentration in SCM increased from 1.6mM (absence of cells) to 5.1mM (presence of cells). This indicates that the cells are promoting the uptake of phosphate and release of silicate ions. No significant change was seen in levels of adsorbed proteins in the presence and absence of cells. Further analysis is required to determine whether the species of these proteins change over time. The analysis of cell migration after 24-hour incubation showed more cells migrating towards the granules, 12.7% in SFM and 8.3% in SCM, than in positive control, 4.5% in SFM and 3.6% in SCM respectively. These results suggest that SiHA has a chemotactic activity independent of serum proteins. A property which has not previously been demonstrated for a synthetic bone graft material.

Keywords: cell migration, hMSCs, SiHA, transwell migration system

Procedia PDF Downloads 132
92 Education Delivery in Youth Justice Centres: Inside-Out Prison Exchange Program Pedagogy in an Australian Context

Authors: Tarmi A'Vard

Abstract:

This paper discusses the transformative learning experience for students participating in the Inside-Out Prison Exchange Program (Inside-out) and explores the value this pedagogical approach may have in youth justice centers. Inside-Out is a semester-long university course which is unique as it takes 15 university students, with their textbook and theory-based knowledge, behind the walls to study alongside 15 incarcerated students, who have the lived experience of the criminal justice system. Inside-out is currently offered in three Victorian prisons, expanding to five in 2020. The Inside-out pedagogy which is based on transformative dialogic learning is reliant upon the participants sharing knowledge and experiences to develop an understanding and appreciation of the diversity and uniqueness of one another. Inside-out offers the class an opportunity to create its own guidelines for dialogue, which can lead to the student’s sense of equality, which is fundamental in the success of this program. Dialogue allows active participation by all parties in reconciling differences, collaborating ideas, critiquing and developing hypotheses and public policies, and encouraging self-reflection and exploration. The structure of the program incorporates the implementation of circular seating (where the students alternate between inside and outside), activities, individual reflective tasks, group work, and theory analysis. In this circle everyone is equal, this includes the educator, who serves as a facilitator more so than the traditional teacher role. A significant function of the circle is to develop a group consciousness, allowing the whole class to see itself as a collective, and no one person holds a superior role. This also encourages participants to be responsible and accountable for their behavior and contributions. Research indicates completing academic courses, like Inside-Out, contributes positively to reducing recidivism. Inside-Out’s benefits and success in many adult correctional institutions have been outlined in evaluation reports and scholarly articles. The key findings incorporate the learning experiences for the students in both an academic capability and professional practice and development. Furthermore, stereotypes and pre-determined ideas are challenged, and there is a promotion of critical thinking and evidence of self-discovery and growth. There is empirical data supporting positive outcomes of education in youth justice centers in reducing recidivism and increasing the likelihood of returning to education upon release. Hence, this research could provide the opportunity to increase young people’s engagement in education which is a known protective factor for assisting young people to move away from criminal behavior. In 2016, Tarmi completed the Inside-Out educator training in Philadelphia, Pennsylvania, and has developed an interest in exploring the pedagogy of Inside-Out, specifically targeting young offenders in a Youth Justice Centre.

Keywords: dialogic transformative learning, inside-out prison exchange program, prison education, youth justice

Procedia PDF Downloads 126
91 From Victim to Ethical Agent: Oscar Wilde's The Ballad of Reading Gaol as Post-Traumatic Writing

Authors: Mona Salah El-Din Hassanein

Abstract:

Faced with a sudden, unexpected, and overwhelming event, the individual's normal cognitive processing may cease to function, trapping the psyche in "speechless terror", while images, feelings and sensations are experienced with emotional intensity. Unable to master such situation, the individual becomes a trauma victim who will be susceptible to traumatic recollections like intrusive thoughts, flashbacks, and repetitive re-living of the primal event in a way that blurs the distinction between past and present, and forecloses the future. Trauma is timeless, repetitious, and contagious; a trauma observer could fall prey to "secondary victimhood". Central to the process of healing the psychic wounds in the aftermath of trauma is verbalizing the traumatic experience (i.e., putting it into words) – an act which provides a chance for assimilation, testimony, and reevaluation. In light of this paradigm, this paper proposes a reading of Oscar Wilde's The Ballad of Reading Gaol, written shortly after his release from prison, as a post-traumatic text which traces the disruptive effects of the traumatic experience of Wilde's imprisonment for homosexual offences and the ensuing reversal of fortune he endured. Post-traumatic writing demonstrates the process of "working through" a trauma which may lead to the possibility of ethical agency in the form of a "survivor mission". This paper draws on fundamental concepts and key insights in literary trauma theory which is characterized by interdisciplinarity, combining the perspectives of different fields like critical theory, psychology, psychiatry, psychoanalysis, history, and social studies. Of particular relevance to this paper are the concepts of "vicarious traumatization" and "survivor mission", as The Ballad of Reading Gaol was written in response to Wilde's own prison trauma and the indirect traumatization he experienced as a result of witnessing the execution of a fellow prisoner whose story forms the narrative base of the poem. The Ballad displays Wilde's sense of mission which leads him to recognize the social as well as ethical implications of personal tragedy. Through a close textual analysis of The Ballad of Reading Gaol within the framework of literary trauma theory, the paper aims to: (a) demonstrate how the poem's thematic concerns, structure and rhetorical figures reflect the structure of trauma; (b) highlight Wilde's attempts to come to terms with the effects of the cataclysmic experience which transformed him into a social outcast; and (c) show how Wilde manages to transcend the victim status and assumes the role of ethical agent to voice a critique of the Victorian penal system and the standards of morality underlying the cruelties practiced against wrong doers and to solicit social action.

Keywords: ballad of reading of reading, post-traumatic writing, trauma theory, Wilde

Procedia PDF Downloads 187
90 Mistletoe Supplementation and Exercise Training on IL-1β and TNF-α Levels

Authors: Alireza Barari, Ahmad Abdi

Abstract:

Introduction: Plyometric training (PT) is popular among individuals involved in dynamic sports, and is executed with a goal to improve muscular performance. Cytokines are considered as immunoregulatory molecules for regulation of immune function and other body responses. In addition, the pro-inflammatory cytokines, TNF-α andIL-1β, have been reported to be increased during and after exercises. If some of the cytokines which cause responses such as inflammation of cells in skeletal muscles, with manipulating of training program or optimizing nutrition, it can be avoided or limited from those injuries caused by cytokines release. Its shows that mistletoe extracts show immune-modulating effects. Materials and methods: present study was to investigate the effect of six weeks PT with or without mistletoe supplementation (MS)(10 mg/kg) on cytokine responses and performance in male basketball players. This study is semi-experimental. Statistic society of this study was basketball player’s male students of Mahmoud Abad city. Statistic samples are concluded of 32 basketball players with an age range of 14–17 years was selected from randomly. Selection of samples in four groups of 8 individuals Participants were randomly assigned to either an experimental group (E, n=16) that performed plyometric exercises with (n=8) or without (n=8) MS, or a control group that rested (C, n=16) with (n=8) or without (n=8) MS. Plants were collected in June from the Mazandaran forest in north of Iran. Then they dried in exposure to air without any exposition to sunlight, on a clean textile. For better drying the plants were high and down until they lost their water. Each subject consumed 10 mg/kg/day of extract for six weeks of intervention. Pre and post-testing was performed in the afternoon of the same day. Blood samples (10 ml) were collected from the intermediate cubital vein of the subjects. Serum concentration of IL-1β and TNF-α were measured by ELISA method. Data analysis was performed using pretest to posttest changes that assessed by t-test for paired samples. After the last plyometric training program, the second blood samples were in the next day. Group differences at baseline were evaluated using One-way ANOVA (post-hock Tukey) test is used for analysis and comparison of three group’s variables. Results: PT with or without MS improved the one repetition maximum leg and chest press, Sargeant test and power in RAST (P < 0.05). However there were no statistically significant differences between groups in Vo2max measures (P > 0.05). PT resulted in a significant increase in plasma IL-1β concentration from 1.08±0.4 mg/ml in pre-training to 1.68±0.18 mg/ml in post-training (P=0.006). While the MS significantly decreased the training-induced increment of IL-1β (P=0.007). In contrast, neither PT nor MS had any effect on TNF-α levels (P > 0.05). Discussion: The results of this investigation indicate that PT improved muscular performance and increases the IL-1β concentration. Increasing of IL-1β after exercise in damaged skeletal muscle has shown of the role of this cytokine in inflammation processes and damaged skeletal muscle repair. However mistletoe supplementation ameliorates the increment of IL-1β levels, indicating the beneficial effect of mistletoe on immune response following plyometric training.

Keywords: mistletoe supplementation, training, IL-1β, TNF-α

Procedia PDF Downloads 653
89 Impact of Insect-Feeding and Fire-Heating Wounding on Wood Properties of Lodgepole Pine

Authors: Estelle Arbellay, Lori D. Daniels, Shawn D. Mansfield, Alice S. Chang

Abstract:

Mountain pine beetle (MPB) outbreaks are currently devastating lodgepole pine forests in western North America, which are also widely disturbed by frequent wildfires. Both MPB and fire can leave scars on lodgepole pine trees, thereby diminishing their commercial value and possibly compromising their utilization in solid wood products. In order to fully exploit the affected resource, it is crucial to understand how wounding from these two disturbance agents impact wood properties. Moreover, previous research on lodgepole pine has focused solely on sound wood and stained wood resulting from the MPB-transmitted blue fungi. By means of a quantitative multi-proxy approach, we tested the hypotheses that (i) wounding (of either MPB or fire origin) caused significant changes in wood properties of lodgepole pine and that (ii) MPB-induced wound effects could differ from those induced by fire in type and magnitude. Pith-to-bark strips were extracted from 30 MPB scars and 30 fire scars. Strips were cut immediately adjacent to the wound margin and encompassed 12 rings from normal wood formed prior to wounding and 12 rings from wound wood formed after wounding. Wood properties evaluated within this 24-year window included ring width, relative wood density, cellulose crystallinity, fibre dimensions, and carbon and nitrogen concentrations. Methods used to measure these proxies at a (sub-)annual resolution included X-ray densitometry, X-ray diffraction, fibre quality analysis, and elemental analysis. Results showed a substantial growth release in wound wood compared to normal wood, as both earlywood and latewood width increased over a decade following wounding. Wound wood was also shown to have a significantly different latewood density than normal wood 4 years after wounding. Latewood density decreased in MPB scars while the opposite was true in fire scars. By contrast, earlywood density was presented only minor variations following wounding. Cellulose crystallinity decreased in wound wood compared to normal wood, being especially diminished in MPB scars the first year after wounding. Fibre dimensions also decreased following wounding. However, carbon and nitrogen concentrations did not substantially differ between wound wood and normal wood. Nevertheless, insect-feeding and fire-heating wounding were shown to significantly alter most wood properties of lodgepole pine, as demonstrated by the existence of several morphological anomalies in wound wood. MPB and fire generally elicited similar anomalies, with the major exception of latewood density. In addition to providing quantitative criteria for differentiating between biotic (MPB) and abiotic (fire) disturbances, this study provides the wood industry with fundamental information on the physiological response of lodgepole pine to wounding in order to evaluate the utilization of scarred trees in solid wood products.

Keywords: elemental analysis, fibre quality analysis, lodgepole pine, wood properties, wounding, X-ray densitometry, X-ray diffraction

Procedia PDF Downloads 320
88 Determination Optimum Strike Price of FX Option Call Spread with USD/IDR Volatility and Garman–Kohlhagen Model Analysis

Authors: Bangkit Adhi Nugraha, Bambang Suripto

Abstract:

On September 2016 Bank Indonesia (BI) release regulation no.18/18/PBI/2016 that permit bank clients for using the FX option call spread USD/IDR. Basically, this product is a combination between clients buy FX call option (pay premium) and sell FX call option (receive premium) to protect against currency depreciation while also capping the potential upside with cheap premium cost. BI classifies this product as a structured product. The structured product is combination at least two financial instruments, either derivative or non-derivative instruments. The call spread is the first structured product against IDR permitted by BI since 2009 as response the demand increase from Indonesia firms on FX hedging through derivative for protecting market risk their foreign currency asset or liability. The composition of hedging products on Indonesian FX market increase from 35% on 2015 to 40% on 2016, the majority on swap product (FX forward, FX swap, cross currency swap). Swap is formulated by interest rate difference of the two currency pairs. The cost of swap product is 7% for USD/IDR with one year USD/IDR volatility 13%. That cost level makes swap products seem expensive for hedging buyers. Because call spread cost (around 1.5-3%) cheaper than swap, the most Indonesian firms are using NDF FX call spread USD/IDR on offshore with outstanding amount around 10 billion USD. The cheaper cost of call spread is the main advantage for hedging buyers. The problem arises because BI regulation requires the call spread buyer doing the dynamic hedging. That means, if call spread buyer choose strike price 1 and strike price 2 and volatility USD/IDR exchange rate surpass strike price 2, then the call spread buyer must buy another call spread with strike price 1’ (strike price 1’ = strike price 2) and strike price 2’ (strike price 2’ > strike price 1‘). It could make the premium cost of call spread doubled or even more and dismiss the purpose of hedging buyer to find the cheapest hedging cost. It is very crucial for the buyer to choose best optimum strike price before entering into the transaction. To help hedging buyer find the optimum strike price and avoid expensive multiple premium cost, we observe ten years 2005-2015 historical data of USD/IDR volatility to be compared with the price movement of the call spread USD/IDR using Garman–Kohlhagen Model (as a common formula on FX option pricing). We use statistical tools to analysis data correlation, understand nature of call spread price movement over ten years, and determine factors affecting price movement. We select some range of strike price and tenor and calculate the probability of dynamic hedging to occur and how much it’s cost. We found USD/IDR currency pairs is too uncertain and make dynamic hedging riskier and more expensive. We validated this result using one year data and shown small RMS. The study result could be used to understand nature of FX call spread and determine optimum strike price for hedging plan.

Keywords: FX call spread USD/IDR, USD/IDR volatility statistical analysis, Garman–Kohlhagen Model on FX Option USD/IDR, Bank Indonesia Regulation no.18/18/PBI/2016

Procedia PDF Downloads 380
87 Analysis of Long-Term Response of Seawater to Change in CO₂, Heavy Metals and Nutrients Concentrations

Authors: Igor Povar, Catherine Goyet

Abstract:

The seawater is subject to multiple external stressors (ES) including rising atmospheric CO2 and ocean acidification, global warming, atmospheric deposition of pollutants and eutrophication, which deeply alter its chemistry, often on a global scale and, in some cases, at the degree significantly exceeding that in the historical and recent geological verification. In ocean systems the micro- and macronutrients, heavy metals, phosphor- and nitrogen-containing components exist in different forms depending on the concentrations of various other species, organic matter, the types of minerals, the pH etc. The major limitation to assessing more strictly the ES to oceans, such as pollutants (atmospheric greenhouse gas, heavy metals, nutrients as nitrates and phosphates) is the lack of theoretical approach which could predict the ocean resistance to multiple external stressors. In order to assess the abovementioned ES, the research has applied and developed the buffer theory approach and theoretical expressions of the formal chemical thermodynamics to ocean systems, as heterogeneous aqueous systems. The thermodynamic expressions of complex chemical equilibria, involving acid-base, complex formation and mineral ones have been deduced. This thermodynamic approach utilizes thermodynamic relationships coupled with original mass balance constraints, where the solid phases are explicitly expressed. The ocean sensitivity to different external stressors and changes in driving factors are considered in terms of derived buffering capacities or buffer factors for heterogeneous systems. Our investigations have proved that the heterogeneous aqueous systems, as ocean and seas are, manifest their buffer properties towards all their components, not only to pH, as it has been known so far, for example in respect to carbon dioxide, carbonates, phosphates, Ca2+, Mg2+, heavy metal ions etc. The derived expressions make possible to attribute changes in chemical ocean composition to different pollutants. These expressions are also useful for improving the current atmosphere-ocean-marine biogeochemistry models. The major research questions, to which the research responds, are: (i.) What kind of contamination is the most harmful for Future Ocean? (ii.) What are chemical heterogeneous processes of the heavy metal release from sediments and minerals and its impact to the ocean buffer action? (iii.) What will be the long-term response of the coastal ocean to the oceanic uptake of anthropogenic pollutants? (iv.) How will change the ocean resistance in terms of future chemical complex processes and buffer capacities and its response to external (anthropogenic) perturbations? The ocean buffer capacities towards its main components are recommended as parameters that should be included in determining the most important ocean factors which define the response of ocean environment at the technogenic loads increasing. The deduced thermodynamic expressions are valid for any combination of chemical composition, or any of the species contributing to the total concentration, as independent state variable.

Keywords: atmospheric greenhouse gas, chemical thermodynamics, external stressors, pollutants, seawater

Procedia PDF Downloads 146
86 Study on Chinese High School Students’ Physical Activity Promotion

Authors: Min Wang, Hui Tian

Abstract:

Health promotion of high school students is essential for the construction of ‘Healthy China’, and increasing high school students’ physical activity is a must for their health promotion. School plays a crucial role in increasing high school students’ physical activity. Therefore, to have a comprehensive command of the school physical activity promotion strategies is of great significance for the health promotion of high school students in China and will shed some light on physical activity promotion worldwide. Literature review and interview survey are the main methods adopted for this research. It has been found that reforms of P.E. classes, improving the overall quality of P.E. teachers, and construction of school fields and facilities are among the major strategies to promote students’ physical activities. Even though it has been stipulated that primary and middle school students should take 3-4 times of P.E. classes per week, the execution is greatly influenced by the exam-oriented educational system. Randomly canceling P.E. classes or taking up the time to study other subjects is common, so it is difficult to guarantee the quantity of P.E. classes. According to national surveys, only 20%-40% of schools have 3-4 times of P.E. classes per week. In order to reduce the hindering effects of the exam-oriented educational system, a physical education test is included in the senior middle school entrance exam. The exam items include 1000m run for boys, 800m run for girls, and the basic skills for basketball/football/volleyball. The scores of the physical education test will greatly influence the admission of senior middle schools. China is now developing the ‘campus football’ policy and has established 20,000 football featured schools by 2017. Especially in these schools, football has become an important part of the students’ P.E. classes and a major means to promote students’ physical activity. As the Winter Olympics will be held in Beijing in 2022, China has promoted the ‘winter sports for all’ movement. The aim is to encourage 300 million people to winter sports, and the high school students are among the most potential participants. The primary and middle schools in Beijing have introduced winter sports to their P.E. curriculum, providing opportunities for the students to experience ice hockey and curling. Some Winter Olympics champions also go to the schools to popularize winter sports among the students. This greatly adds variety to the students’ physical activity regimen at school. In November 2017, seven ministries, including the General Administration of Sport of China and Ministry of Education of the People’s Republic of China, release Youth Sport Promotion Strategy. The strategy stipulates to strengthen the construction of youth sport facilities and implement the cultivation plan for P.E. teachers. It also emphasizes that school sport facilities should be open to students during holidays and vacations for free or at an affordable price. Overall speaking, the Chinese government stresses the importance of youth physical activity promotion and has issued a series of related policies and strategies, but the implementation still needs improvement.

Keywords: China, physical activity, promotion, school

Procedia PDF Downloads 100
85 Li2o Loss of Lithium Niobate Nanocrystals during High-Energy Ball-Milling

Authors: Laura Kocsor, Laszlo Peter, Laszlo Kovacs, Zsolt Kis

Abstract:

The aim of our research is to prepare rare-earth-doped lithium niobate (LiNbO3) nanocrystals, having only a few dopant ions in the focal point of an exciting laser beam. These samples will be used to achieve individual addressing of the dopant ions by light beams in a confocal microscope setup. One method for the preparation of nanocrystalline materials is to reduce the particle size by mechanical grinding. High-energy ball-milling was used in several works to produce nano lithium niobate. Previously, it was reported that dry high-energy ball-milling of lithium niobate in a shaker mill results in the partial reduction of the material, which leads to a balanced formation of bipolarons and polarons yielding gray color together with oxygen release and Li2O segregation on the open surfaces. In the present work we focus on preparing LiNbO3 nanocrystals by high-energy ball-milling using a Fritsch Pulverisette 7 planetary mill. Every ball-milling process was carried out in zirconia vial with zirconia balls of different sizes (from 3 mm to 0.1 mm), wet grinding with water, and the grinding time being less than an hour. Gradually decreasing the ball size to 0.1 mm, an average particle size of about 10 nm could be obtained determined by dynamic light scattering and verified by scanning electron microscopy. High-energy ball-milling resulted in sample darkening evidenced by optical absorption spectroscopy measurements indicating that the material underwent partial reduction. The unwanted lithium oxide loss decreases the Li/Nb ratio in the crystal, strongly influencing the spectroscopic properties of lithium niobate. Zirconia contamination was found in ground samples proved by energy-dispersive X-ray spectroscopy measurements; however, it cannot be explained based on the hardness properties of the materials involved in the ball-milling process. It can be understood taking into account the presence of lithium hydroxide formed the segregated lithium oxide and water during the ball-milling process, through chemically induced abrasion. The quantity of the segregated Li2O was measured by coulometric titration. During the wet milling process in the planetary mill, it was found that the lithium oxide loss increases linearly in the early phase of the milling process, then a saturation of the Li2O loss can be seen. This change goes along with the disappearance of the relatively large particles until a relatively narrow size distribution is achieved in accord with the dynamic light scattering measurements. With the 3 mm ball size and 1100 rpm rotation rate, the mean particle size achieved is 100 nm, and the total Li2O loss is about 1.2 wt.% of the original LiNbO3. Further investigations have been done to minimize the Li2O segregation during the ball-milling process. Since the Li2O loss was observed to increase with the growing total surface of the particles, the influence of ball-milling parameters on its quantity has also been studied.

Keywords: high-energy ball-milling, lithium niobate, mechanochemical reaction, nanocrystals

Procedia PDF Downloads 135
84 Case Report of Left Atrial Myxoma Diagnosed by Bedside Echocardiography

Authors: Anthony S. Machi, Joseph Minardi

Abstract:

We present a case report of left atrial myxoma diagnosed by bedside transesophageal (TEE) ultrasound. Left atrial myxoma is the most common benign cardiac tumor and can obstruct blood flow and cause valvular insufficiency. Common symptoms consist of dyspnea, pulmonary edema and other features of left heart failure in addition to thrombus release in the form of tumor fragments. The availability of bedside ultrasound equipment is essential for the quick diagnosis and treatment of various emergency conditions including cardiac neoplasms. A 48-year-old Caucasian female with a four-year history of an untreated renal mass and anemia presented to the ED with two months of sharp, intermittent, bilateral flank pain radiating into the abdomen. She also reported intermittent vomiting and constipation along with generalized body aches, night sweats, and 100-pound weight loss over last year. She had a CT in 2013 showing a 3 cm left renal mass and a second CT in April 2016 showing a 3.8 cm left renal mass along with a past medical history of diverticulosis, chronic bronchitis, dyspnea on exertion, uncontrolled hypertension, and hyperlipidemia. Her maternal family history is positive for breast cancer, hypertension, and Type II Diabetes. Her paternal family history is positive for stroke. She was a current everyday smoker with an 11 pack/year history. Alcohol and drug use were denied. Physical exam was notable for a Grade II/IV systolic murmur at the right upper sternal border, dyspnea on exertion without angina, and a tender left lower quadrant. Her vitals and labs were notable for a blood pressure of 144/96, heart rate of 96 beats per minute, pulse oximetry of 96%, hemoglobin of 7.6 g/dL, hypokalemia, hypochloremia, and multiple other abnormalities. Physicians ordered a CT to evaluate her flank pain which revealed a 7.2 x 8.9 x 10.5 cm mixed cystic/solid mass in the lower pole of the left kidney and a filling defect in the left atrium. Bedside TEE was ordered to follow up on the filling defect. TEE reported an ejection fraction of 60-65% and visualized a mobile 6 x 3 cm mass in the left atrium attached to the interatrial septum extending into the mitral valve. Cardiothoracic Surgery and Urology were consulted and confirmed a diagnosis of left atrial myxoma and clear cell renal cell carcinoma. The patient returned a week later due to worsening nausea and vomiting and underwent emergent nephrectomy, lymph node dissection, and colostomy due to a necrotic colon. Her condition declined over the next four months due to lung and brain metastases, infections, and other complications until she passed away.

Keywords: bedside ultrasound, echocardiography, emergency medicine, left atrial myxoma

Procedia PDF Downloads 332
83 Women's Pathways to Prison in Thailand

Authors: Samantha Jeffries, Chontit Chuenurah

Abstract:

Thailand incarcerates the largest number of women and has the highest female incarceration rate in South East Asia. Since the 1990s, there has been a substantial increase in the number, rate and proportion of women imprisoned. Thailand places a high priority on the gender specific contexts out of which offending arises and the different needs of women in the criminal justice system. This is manifested in work undertaken to guide the development of the United Nations Rules for the Treatment of Women Prisoners and Non-Custodial Measures for Women Offenders (the Bangkok Rules); adopted by the United Nations General Assembly in 2010. The Bangkok Rules make a strong statement about Thailand’s recognition of and commitment to the fair and equitable treatment of women throughout their contact with the criminal justice system including at sentencing and in prison. This makes the comparatively high use of imprisonment for women in Thailand particularly concerning and raises questions about the relationship between gender, crime and criminal justice. While there is an extensive body of research in Western jurisdictions exploring women’s pathways to prison, there is a relative dearth of methodologically robust research examining the possible gendered circumstances leading to imprisonment in Thailand. In this presentation, we will report preliminary findings from a qualitative study of women’s pathways to prison in Thailand. Our research aims were to ascertain: 1) the type, frequency, and context of criminal behavior that led to women’s incarceration, 2) women’s experiences of the criminal justice system, 3) the broader life experiences and circumstances that led women to prison in Thailand. In-depth life history interviews (n=77) were utilized to gain a comprehensive understanding of women’s journeys into prison. The interview schedule was open-ended consisting of prisoner responses to broad discussion topics. This approach provided women with the opportunity to describe significant experiences in their lives, to bring together distinct chronologies of events, and to analyze links between their varied life experiences, offending, and incarceration. Analyses showed that women’s journey’s to prison take one of eight pathways which tentatively labelled as follows, the: 1) harmed and harming pathway, 2) domestic/family violence victimization pathway, 3) drug connected pathway, 4) street woman pathway, 5) economically motivated pathway, 6) jealousy anger and/or revenge pathway, 7) naivety pathway, 8) unjust and/or corrupted criminal justice pathway. Each will be fully discussed during the presentation. This research is significant because it is the first in-depth methodologically robust exploration of women’s journeys to prison in Thailand and one of a few studies to explore gendered pathways outside of western contexts. Understanding women’s pathways into Thailand’s prisons is crucial to the development of effective planning, policy and program responses not only while women are in prison but also post-release. To best meet women’s needs in prison and effectively support their reintegration, we must have a comprehensive understanding of who these women are, what offenses they commit, the reasons that trigger their confrontations with the criminal justice system and the impact of the criminal justice system on them.

Keywords: pathways, prison, women, Thailand

Procedia PDF Downloads 247
82 The Concept of Path in Original Buddhism and the Concept of Psychotherapeutic Improvement

Authors: Beth Jacobs

Abstract:

The landmark movement of Western clinical psychology in the 20th century was the development of psychotherapy. The landmark movement of clinical psychology in the 21st century will be the absorption of meditation practices from Buddhist psychology. While millions of people explore meditation and related philosophy, very few people are exposed to the materials of original Buddhism on this topic, especially to the Theravadan Abhidharma. The Abhidharma is an intricate system of lists and matrixes that were used to understand and remember Buddha’s teaching. The Abhidharma delineates the first psychological system of Buddhism, how the mind works in the universe of reality and why meditation training strengthens and purifies the experience of life. Its lists outline the psychology of mental constructions, perception, emotion and cosmological causation. While the Abhidharma is technical, elaborate and complex, its essential purpose relates to the central purpose of clinical psychology: to relieve human suffering. Like Western depth psychology, the methodology rests on understanding underlying processes of consciousness and perception. What clinical psychologists might describe as therapeutic improvement, the Abhidharma delineates as a specific pathway of purified actions of consciousness. This paper discusses the concept of 'path' as presented in aspects of the Theravadan Abhidharma and relates this to current clinical psychological views of therapy outcomes and gains. The core path in Buddhism is the Eight-Fold Path, which is the fourth noble truth and the launching of activity toward liberation. The path is not composed of eight ordinal steps; it’s eight-fold and is described as opening the way, not funneling choices. The specific path in the Abhidharma is described in many steps of development of consciousness activities. The path is not something a human moves on, but something that moments of consciousness develop within. 'Cittas' are extensively described in the Abhidharma as the atomic-level unit of a raw action of consciousness touching upon an object in a field, and there are 121 types of cittas categorized. The cittas are embedded in the mental factors, which could be described as the psychological packaging elements of our experiences of consciousness. Based on these constellations of infinitesimal, linked occurrences of consciousness, citta are categorized by dimensions of purification. A path is a chain of citta developing through causes and conditions. There are no selves, no pronouns in the Abhidharma. Instead of me walking a path, this is about a person working with conditions to cultivate a stream of consciousness that is pure, immediate, direct and generous. The same effort, in very different terms, informs the work of most psychotherapies. Depth psychology seeks to release the bound, unconscious elements of mental process into the clarity of realization. Cognitive and behavioral psychologies work on breaking down automatic thought valuations and actions, changing schemas and interpersonal dynamics. Understanding how the original Buddhist concept of positive human development relates to the clinical psychological concept of therapy weaves together two brilliant systems of thought on the development of human well being.

Keywords: Abhidharma, Buddhist path, clinical psychology, psychotherapeutic outcome

Procedia PDF Downloads 214
81 The Pro-Reparative Effect of Vasoactive Intestinal Peptide in Chronic Inflammatory Osteolytic Periapical Lesions

Authors: Michelle C. S. Azevedo, Priscila M. Colavite, Carolina F. Francisconi, Ana P. Trombone, Gustavo P. Garlet

Abstract:

VIP (vasoactive intestinal peptide) know as a potential protective factor in the view of its marked immunosuppressive properties. In this work, we investigated a possible association of VIP with the clinical status of experimental periapical granulomas and the association with expression markers in the lesions potentially associated with periapical lesions pathogenesis. C57BL/6WT mice were treated or not with recombinant VIP. Animals with active/progressive (N=40), inactive/stable (N=70) periapical granulomas and controls (N=50) were anesthetized and the right mandibular first molar was surgically opened, allowing exposure of dental pulp. Endodontic pathogenic bacterial strains were inoculated: Porphyromonas gingivalis, Prevotella nigrescens, Actinomyces viscosus, and Fusobacterium nucleatum subsp. polymorphum. The cavity was not sealed after bacterial inoculation. During lesion development, animals were treated or not with recombinant VIP 3 days post infection. Animals were killed after 3, 7, 14, and 21 days of infection and the jaws were dissected. The extraction of total RNA from periodontal tissues was performed and the integrity of samples was checked. qPCR reaction using TaqMan chemistry with inventoried primers were performed in ViiA7 equipment. The results, depicted as the relative levels of gene expression, were calculated in reference to GAPDH and β-actin expression. Periodontal tissues from upper molars were vested and incubated supplemented RPMI, followed by processing with 0.05% DNase. Cell viability and couting were determined by Neubauer chamber analysis. For flow cytometry analysis, after cell counting the cells were stained with the optimal dilution of each antibody; (PE)-conjugated and (FITC)-conjugated antibodies against CD4, CD25, FOXP3, IL-4, IL-17 and IFN-γ antibodies, as well their respective isotype controls. Cells were analyzed by FACScan and CellQuest software. Results are presented as the number of cells in the periodontal tissues or the number of positive cells for each marker in the CD4+FOXp3+, CD4+IL-4+, CD4+IFNg+ and CD4+IL-17+ subpopulations. The levels mRNA were measured by qPCR. The VIP expression was predominated in inactive lesions, as well part of the clusters of cytokine/Th markers identified as protective factors and a negative correlation between VIP expression and lesion evolution was observed. A quantitative analysis of IL1β, IL17, TNF, IFN, MMP2, RANKL, OPG, IL10, TGFβ, CTLA4, COL5A1, CTGF, CXCL11, FGF7, ITGA4, ITGA5, SERP1 and VTN expression was measured in experimental periapical lesions treated with VIP 7 and 14 days after lesion induction and healthy animals. After 7 days, all targets presented a significate increase in comparison to untreated animals. About migration kinetics, profile of chemokine receptors expression of TCD4+ subsets and phenotypic analysis of Tregs, Th1, Th2 and Th17 cells during the course of experimental periodontal disease evaluated by flow cytometry and depicted as the number of positive cells for each marker. CD4+IFNg+ and CD4+FOXp3+ cells migration were significate increased 7 days post VIP treatment. CD4+IL17+ cells migration were significate increased 7 and 14 days post VIP treatment, CD4+IL4+ cells migration were significate increased 14 and 21 days post VIP treatment compared to the control group. In conclusion, our experimental data support VIP involvement in determining the inactivity of periapical lesions. Financial support: FAPESP #2015/25618-2.

Keywords: chronic inflammation, cytokines, osteolytic lesions, VIP (Vasoactive Intestinal Peptide)

Procedia PDF Downloads 194
80 Numerical Analysis of NOₓ Emission in Staged Combustion for the Optimization of Once-Through-Steam-Generators

Authors: Adrien Chatel, Ehsan Askari Mahvelati, Laurent Fitschy

Abstract:

Once-Through-Steam-Generators are commonly used in the oil-sand industry in the heavy fuel oil extraction process. They are composed of three main parts: the burner, the radiant and convective sections. Natural gas is burned through staged diffusive flames stabilized by the burner. The heat generated by the combustion is transferred to the water flowing through the piping system in the radiant and convective sections. The steam produced within the pipes is then directed to the ground to reduce the oil viscosity and allow its pumping. With the rapid development of the oil-sand industry, the number of OTSG in operation has increased as well as the associated emissions of environmental pollutants, especially the Nitrous Oxides (NOₓ). To limit the environmental degradation, various international environmental agencies have established regulations on the pollutant discharge and pushed to reduce the NOₓ release. To meet these constraints, OTSG constructors have to rely on more and more advanced tools to study and predict the NOₓ emission. With the increase of the computational resources, Computational Fluid Dynamics (CFD) has emerged as a flexible tool to analyze the combustion and pollutant formation process. Moreover, to optimize the burner operating condition regarding the NOx emission, field characterization and measurements are usually accomplished. However, these kinds of experimental campaigns are particularly time-consuming and sometimes even impossible for industrial plants with strict operation schedule constraints. Therefore, the application of CFD seems to be more adequate in order to provide guidelines on the NOₓ emission and reduction problem. In the present work, two different software are employed to simulate the combustion process in an OTSG, namely the commercial software ANSYS Fluent and the open source software OpenFOAM. RANS (Reynolds-Averaged Navier–Stokes) equations combined with the Eddy Dissipation Concept to model the combustion and closed by the k-epsilon model are solved. A mesh sensitivity analysis is performed to assess the independence of the solution on the mesh. In the first part, the results given by the two software are compared and confronted with experimental data as a mean to assess the numerical modelling. Flame temperatures and chemical composition are used as reference fields to perform this validation. Results show a fair agreement between experimental and numerical data. In the last part, OpenFOAM is employed to simulate several operating conditions, and an Emission Characteristic Map of the combustion system is generated. The sources of high NOₓ production inside the OTSG are pointed and correlated to the physics of the flow. CFD is, therefore, a useful tool for providing an insight into the NOₓ emission phenomena in OTSG. Sources of high NOₓ production can be identified, and operating conditions can be adjusted accordingly. With the help of RANS simulations, an Emission Characteristics Map can be produced and then be used as a guide for a field tune-up.

Keywords: combustion, computational fluid dynamics, nitrous oxides emission, once-through-steam-generators

Procedia PDF Downloads 116
79 Persistent Organic Pollutant Level in Challawa River Basin of Kano State, Nigeria

Authors: Abdulkadir Sarauta

Abstract:

Almost every type of industrial process involves the release of trace quantity of toxic organic and inorganic compound that up in receiving water bodies, this study was aimed at assessing the Persistent Organic Pollutant Level in Challawa River Basin of Kano State, Nigeria. And the research formed the basis of identifying the presence of PCBs and PAHs in receiving water bodies in the study area, assessing the PCBs and PAHs concentration in receiving water body of Challawa system, evaluate the concentration level of PCBs and PAHs in fishes in the study area, determine the concentration level of PCBs and PAHs in crops irrigated in the study area as well as compare the concentration of PCBs and PAHs with the acceptable limit set by Nigerian, EU, U.S and WHO standard. Data were collected using reconnaissance survey, site inspection, field survey, laboratory experiment as well as secondary data source. A total of 78 samples were collected through stratified systematic random sampling (i.e., 26 samples for each of water, crops and fish) three sampling points were chosen and designated A, B and C along the stretch of the river (i.e. up, middle, and downstream) from Yan Danko Bridge to Tambirawa bridge. The result shows that the Polychlorinated biphenyls (PCBs) was not detected while, polycyclic aromatic hydrocarbons (PAHs) was detected in the whole samples analysed at the trench of Challawa River basin in order to assess the contribution of human activities to global environmental pollution. The total concentrations of ΣPAH and ΣPCB ranges between 0.001 to 0.087mg/l and 0.00 to 0.00mg/l of water samples While, crops samples ranges between 2.0ppb to 8.1ppb and fish samples ranges from 2.0 to 6.7ppb.The whole samples are polluted because most of the parameters analyzed exceed the threshold limits set by WHO, Nigerian, U.S and EU standard. The analytical results revealed that some chemicals are present in water, crops and fishes are significantly very high at Zamawa village which is very close to Challawa industrial estate and also is main effluent discharge point and drinking water around study area is not potable for consumption. Analysis of Variance was obtained by Bartlett’s test performance. There is only significant difference in water because the P < 0.05 level of significant, But there is no difference in crops concentration they have the same performance, likes wise in the fishes. It is said to be of concern to health hazard which will increase incidence of tumor related diseases such as skin, lungs, bladder, gastrointestinal cancer, this show there is high failure of pollution abatement measures in the area. In conclusion, it can be said that industrial activities and effluent has impact on Challawa River basin and its environs especially those that are living in the immediate surroundings. Arising from the findings of this research some recommendations were made the industries should treat their liquid properly by installing modern treatment plants.

Keywords: Challawa River Basin, organic, persistent, pollutant

Procedia PDF Downloads 575
78 Economic Valuation of Emissions from Mobile Sources in the Urban Environment of Bogotá

Authors: Dayron Camilo Bermudez Mendoza

Abstract:

Road transportation is a significant source of externalities, notably in terms of environmental degradation and the emission of pollutants. These emissions adversely affect public health, attributable to criteria pollutants like particulate matter (PM2.5 and PM10) and carbon monoxide (CO), and also contribute to climate change through the release of greenhouse gases, such as carbon dioxide (CO2). It is, therefore, crucial to quantify the emissions from mobile sources and develop a methodological framework for their economic valuation, aiding in the assessment of associated costs and informing policy decisions. The forthcoming congress will shed light on the externalities of transportation in Bogotá, showcasing methodologies and findings from the construction of emission inventories and their spatial analysis within the city. This research focuses on the economic valuation of emissions from mobile sources in Bogotá, employing methods like hedonic pricing and contingent valuation. Conducted within the urban confines of Bogotá, the study leverages demographic, transportation, and emission data sourced from the Mobility Survey, official emission inventories, and tailored estimates and measurements. The use of hedonic pricing and contingent valuation methodologies facilitates the estimation of the influence of transportation emissions on real estate values and gauges the willingness of Bogotá's residents to invest in reducing these emissions. The findings are anticipated to be instrumental in the formulation and execution of public policies aimed at emission reduction and air quality enhancement. In compiling the emission inventory, innovative data sources were identified to determine activity factors, including information from automotive diagnostic centers and used vehicle sales websites. The COPERT model was utilized to ascertain emission factors, requiring diverse inputs such as data from the national transit registry (RUNT), OpenStreetMap road network details, climatological data from the IDEAM portal, and Google API for speed analysis. Spatial disaggregation employed GIS tools and publicly available official spatial data. The development of the valuation methodology involved an exhaustive systematic review, utilizing platforms like the EVRI (Environmental Valuation Reference Inventory) portal and other relevant sources. The contingent valuation method was implemented via surveys in various public settings across the city, using a referendum-style approach for a sample of 400 residents. For the hedonic price valuation, an extensive database was developed, integrating data from several official sources and basing analyses on the per-square meter property values in each city block. The upcoming conference anticipates the presentation and publication of these results, embodying a multidisciplinary knowledge integration and culminating in a master's thesis.

Keywords: economic valuation, transport economics, pollutant emissions, urban transportation, sustainable mobility

Procedia PDF Downloads 59
77 Groundwater Arsenic Contamination in Gangetic Jharkhand, India: Risk Implications for Human Health and Sustainable Agriculture

Authors: Sukalyan Chakraborty

Abstract:

Arsenic contamination in groundwater has been a matter of serious concern worldwide. Globally, arsenic contaminated water has caused serious chronic human diseases and in the last few decades the transfer of arsenic to human beings via food chain has gained much attention because food represents a further potential exposure pathway to arsenic in instances where crops are irrigated with high arsenic groundwater, grown in contaminated fields or cooked with arsenic laden water. In the present study, the groundwater of Sahibganj district of Jharkhand has been analysed to find the degree of contamination and its probable associated risk due to direct consumption or irrigation. The present study area comprising of three blocks, namely Sahibganj, Rajmahal and Udhwa in Sahibganj district of Jharkhand state, India, situated in the western bank of river Ganga has been investigated for arsenic contamination in groundwater, soil and crops predominantly growing in the region. Associated physicochemical parameters of groundwater including pH, temperature, electrical conductivity (EC), total dissolved solids (TDS), dissolved oxygen (DO), oxidation reduction potential (ORP), ammonium, nitrate and chloride were assessed to understand the mobilisation mechanism and chances of arsenic exposure from soil to crops and further into the food chain. Results suggested the groundwater to be dominantly Ca-HCO3- type with low redox potential and high total dissolved solids load. Major cations followed the order of Ca ˃ Na ˃ Mg ˃ K. The concentration of major anions was found in the order of HCO3− > Cl− > SO42− > NO3− > PO43− varied between 0.009 to 0.20 mg L-1. Fe concentrations of the groundwater samples were below WHO permissible limit varying between 54 to 344 µg L-1. Phosphate concentration was high and showed a significant positive correlation with arsenic. As concentrations ranged from 7 to 115 µg L-1 in premonsoon, between 2 and 98 µg L-1 in monsoon and 1 to 133µg L-1 in postmonsoon season. Arsenic concentration was found to be much higher than the WHO or BIS permissible limit in majority of the villages in the study area. Arsenic was also seen to be positively correlated with iron and phosphate. PCA results demonstrated the role of both geological condition and anthropogenic inputs to influence the water quality. Arsenic was also found to increase with depth up to 100 m from the surface. Calculation of carcinogenic and non-carcinogenic effects of the arsenic concentration in the communities exposed to the groundwater for drinking and other purpose indicated high risk with an average of more than 1 in a 1000 population. Health risk analysis revealed high to very high carcinogenic and non-carcinogenic risk for adults and children in the communities dependent on groundwater of the study area. Observation suggested the groundwater to be considerably polluted with arsenic and posing significant health risk for the exposed communities. The mobilisation mechanism of arsenic also could be identified from the results suggesting reductive dissolution of Fe oxyhydroxides due to high phosphate concentration from agricultural input arsenic release from the sediments along river Ganges.

Keywords: arsenic, physicochemical parameters, mobilisation, health effects

Procedia PDF Downloads 229
76 Strontium and Selenium Doped Bioceramic Incorporated Hydrogel for Faster Apatite Growth and Bone Regeneration Applications

Authors: Nonita Sarin, K.J.Singh, Anuj Kumar, Davinder Singh

Abstract:

Polymeric 3D hydrogels have pivotal role in bone tissue regeneration applications. Hydrogels behave similar to the living tissues because they have large water imbibing capacity in swollen state and adjust their shape according to the tissues during tissue formation after implantation. On the other hand, hydrogels are very soft, fragile and lack mechanical strength. Incorporation of bioceramics can improve mechanical strength. Furthermore, bioceramics synthesized by sol gel technique may enhance the apatite formation and degradation rates which can lead to the increase in faster rates for new bone and tissue regeneration. Simulated body fluid (SBF) induces the poly-condensation of silanol groups which leads to formation of silica matrix and provide active sites for the precipitation of Ca2+ and PO43- ions to form apatite layer which is similar to mineral form of bone. Therefore, authors have synthesized bioceramic incorporated Polyacrylamide-carboxymethylcellulose hydrogels by free radical polymerization and bioceramic compositions of xSrO-(36-x)CaO-45SiO2-ySeO3-(12-y)P2O5-7MgO (where x=0,4 and y=0,2 mol%) were synthesized by sol gel technique. Bioceramics incorporated in polymer matrix induces quicker apatite formation during immersion in SBF by raising the pH with the release of alkaline ions during ion exchange process and the apatite formation takes place in alkaline medium. The behavior of samples PABC-0 (without bioceramics) and PABC-20 (with 20 wt% bioceramics) were evaluated by X-Ray Diffraction and FTIR. In term of bioactivity, it was observed that PABC-20 has shown hydroxyapatite (HA) formation on 1st day of immersion whereas, PABC-0 was shown apatite formation on 7th day of immersion in SBF. The rapid rate of HA growth on 1st day of immersion in SBF signifies easy regeneration of damaged bone tissues. Degradation studies have been undertaken in Phosphate Buffer Saline and PABC-20 exhibited slower degradation rate up to 9%as compared to PABC-0 up to 18%. Slower degradation rate is suitable for new tissue regeneration and cell attachment. Also, Zeta potential studies have been employed to check the surface charge and it has been observed that samples carry negative charge when immersed in SBF. In addition, the swelling test of the samples have been performed and relative swelling ratio % observed for PABC-0 is 607% and PABC-20 is 305%. This indicates that the incorporation of bioceramics leads to the filling up of the voids in between the polymer matrix which in result reduces porosity and increase the mechanical strength by filling the voids. The porosity of PABC-0 is 84% and PABC-20 is 72%. PABC-20 sample demonstrates that bioceramics incorporation reduce the porosity and improves mechanical strength. Also, maximum in vitro cell viability up to 98% with MG63 cell line has been observed which indicate that the bioceramic incorporated hydrogel(PABC-20) provide the alkaline medium which is suitable environment for cell growth.

Keywords: hydrogels, hydroxyapatite, MG63 cell line, zeta potential

Procedia PDF Downloads 140
75 Effect of Organics on Radionuclide Partitioning in Nuclear Fuel Storage Ponds

Authors: Hollie Ashworth, Sarah Heath, Nick Bryan, Liam Abrahamsen, Simon Kellet

Abstract:

Sellafield has a number of fuel storage ponds, some of which have been open to the air for a number of decades. This has caused corrosion of the fuel resulting in a release of some activity into solution, reduced water clarity, and accumulation of sludge at the bottom of the pond consisting of brucite (Mg(OH)2) and other uranium corrosion products. Both of these phases are also present as colloidal material. 90Sr and 137Cs are known to constitute a small volume of the radionuclides present in the pond, but a large fraction of the activity, thus they are most at risk of challenging effluent discharge limits. Organic molecules are known to be present also, due to the ponds being open to the air, with occasional algal blooms restricting visibility further. The contents of the pond need to be retrieved and safely stored, but dealing with such a complex, undefined inventory poses a unique challenge. This work aims to determine and understand the sorption-desorption interactions of 90Sr and 137Cs to brucite and uranium phases, with and without the presence of organic molecules from chemical degradation and bio-organisms. The influence of organics on these interactions has not been widely studied. Partitioning of these radionuclides and organic molecules has been determined through LSC, ICP-AES/MS, and UV-vis spectrophotometry coupled with ultrafiltration in both binary and ternary systems. Further detailed analysis into the surface and bonding environment of these components is being investigated through XAS techniques and PHREEQC modelling. Experiments were conducted in CO2-free or N2 atmosphere across a high pH range in order to best simulate conditions in the pond. Humic acid used in brucite systems demonstrated strong competition against 90Sr for the brucite surface regardless of the order of addition of components. Variance of pH did have a small effect, however this range (10.5-11.5) is close to the pHpzc of brucite, causing the surface to buffer the solution pH towards that value over the course of the experiment. Sorption of 90Sr to UO2 obeyed Ho’s rate equation and demonstrated a slow second-order reaction with respect to the sharing of valence electrons from the strontium atom, with the initial rate clearly dependent on pH, with the equilibrium concentration calculated at close to 100% sorption. There was no influence of humic acid seen when introduced to these systems. Sorption of 137Cs to UO3 was significant, with more than 95% sorbed in just over 24 hours. Again, humic acid showed no influence when introduced into this system. Both brucite and uranium based systems will be studied with the incorporation of cyanobacterial cultures harvested at different stages of growth. Investigation of these systems provides insight into, and understanding of, the effect of organics on radionuclide partitioning to brucite and uranium phases at high pH. The majority of sorption-desorption work for radionuclides has been conducted at neutral to acidic pH values, and mostly without organics. These studies are particularly important for the characterisation of legacy wastes at Sellafield, with a view to their safe retrieval and storage.

Keywords: caesium, legacy wastes, organics, sorption-desorption, strontium, uranium

Procedia PDF Downloads 283
74 Role of Baseline Measurements in Assessing Air Quality Impact of Shale Gas Operations

Authors: Paula Costa, Ana Picado, Filomena Pinto, Justina Catarino

Abstract:

Environmental impact associated with large scale shale gas development is of major concern to the public, policy makers and other stakeholders. To assess this impact on the atmosphere, it is important to monitoring ambient air quality prior to and during all shale gas operation stages. Baseline observations can provide a standard of the pre-shale gas development state of the environment. The lack of baseline concentrations was identified as an important knowledge gap to assess the impact of emissions to the air due to shale gas operations. In fact baseline monitoring of air quality are missing in several regions, where there is a strong possibility of future shale gas exploration. This makes it difficult to properly identify, quantify and characterize environmental impacts that may be associated with shale gas development. The implementation of a baseline air monitoring program is imperative to be able to assess the total emissions related with shale gas operations. In fact, any monitoring programme should be designed to provide indicative information on background levels. A baseline air monitoring program should identify and characterize targeted air pollutants, most frequently described from monitoring and emission measurements, as well as those expected from hydraulic fracturing activities, and establish ambient air conditions prior to start-up of potential emission sources from shale gas operations. This program has to be planned for at least one year accounting for ambient variations. In the literature, in addition to GHG emissions of CH4, CO2 and nitrogen oxides (NOx), fugitive emissions from shale gas production can release volatile organic compounds (VOCs), aldehydes (formaldehyde, acetaldehyde) and hazardous air pollutants (HAPs). The VOCs include a.o., benzene, toluene, ethyl benzene, xylenes, hexanes, 2,2,4-trimethylpentane, styrene. The concentrations of six air pollutants (ozone, particulate matter (PM), carbon monoxide (CO), nitrogen oxides (NOx), sulphur oxides (SOx), and lead) whose regional ambient air levels are regulated by the Environmental Protection Agency (EPA), are often discussed. However, the main concern in the emissions to air associated to shale gas operations, seems to be the leakage of methane. Methane is identified as a compound of major concern due to its strong global warming potential. The identification of methane leakage from shale gas activities is complex due to the existence of several other CH4 sources (e.g. landfill, agricultural activity or gas pipeline/compressor station). An integrated monitoring study of methane emissions may be a suitable mean of distinguishing the contribution of different sources of methane to ambient levels. All data analysis needs to be carefully interpreted taking, also, into account the meteorological conditions of the site. This may require the implementation of a more intensive monitoring programme. So, it is essential the development of a low-cost sampling strategy, suitable for establishing pre-operations baseline data as well as an integrated monitoring program to assess the emissions from shale gas operation sites. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 640715.

Keywords: air emissions, baseline, green house gases, shale gas

Procedia PDF Downloads 330
73 Mixed Monolayer and PEG Linker Approaches to Creating Multifunctional Gold Nanoparticles

Authors: D. Dixon, J. Nicol, J. A. Coulter, E. Harrison

Abstract:

The ease with which they can be functionalized, combined with their excellent biocompatibility, make gold nanoparticles (AuNPs) ideal candidates for various applications in nanomedicine. Indeed several promising treatments are currently undergoing human clinical trials (CYT-6091 and Auroshell). A successful nanoparticle treatment must first evade the immune system, then accumulate within the target tissue, before enter the diseased cells and delivering the payload. In order to create a clinically relevant drug delivery system, contrast agent or radiosensitizer, it is generally necessary to functionalize the AuNP surface with multiple groups; e.g. Polyethylene Glycol (PEG) for enhanced stability, targeting groups such as antibodies, peptides for enhanced internalization, and therapeutic agents. Creating and characterizing the biological response of such complex systems remains a challenge. The two commonly used methods to attach multiple groups to the surface of AuNPs are the creation of a mixed monolayer, or by binding groups to the AuNP surface using a bi-functional PEG linker. While some excellent in-vitro and animal results have been reported for both approaches further work is necessary to directly compare the two methods. In this study AuNPs capped with both PEG and a Receptor Mediated Endocytosis (RME) peptide were prepared using both mixed monolayer and PEG linker approaches. The PEG linker used was SH-PEG-SGA which has a thiol at one end for AuNP attachment, and an NHS ester at the other to bind to the peptide. The work builds upon previous studies carried out at the University of Ulster which have investigated AuNP synthesis, the influence of PEG on stability in a range of media and investigated intracellular payload release. 18-19nm citrate capped AuNPs were prepared using the Turkevich method via the sodium citrate reduction of boiling 0.01wt% Chloroauric acid. To produce PEG capped AuNPs, the required amount of PEG-SH (5000Mw) or SH-PEG-SGA (3000Mw Jenkem Technologies) was added, and the solution stirred overnight at room temperature. The RME (sequence: CKKKKKKSEDEYPYVPN, Biomatik) co-functionalised samples were prepared by adding the required amount of peptide to the PEG capped samples and stirring overnight. The appropriate amounts of PEG-SH and RME peptide were added to the AuNP to produce a mixed monolayer consisting of approximately 50% PEG and 50% RME. The PEG linker samples were first fully capped with bi-functional PEG before being capped with RME peptide. An increase in diameter from 18-19mm for the ‘as synthesized’ AuNPs to 40-42nm after PEG capping was observed via DLS. The presence of PEG and RME peptide on both the mixed monolayer and PEG linker co-functionalized samples was confirmed by both FTIR and TGA. Bi-functional PEG linkers allow the entire AuNP surface to be capped with PEG, enabling in-vitro stability to be achieved using a lower molecular weight PEG. The approach also allows the entire outer surface to be coated with peptide or other biologically active groups, whilst also offering the promise of enhanced biological availability. The effect of mixed monolayer versus PEG linker attachment on both stability and non-specific protein corona interactions was also studied.

Keywords: nanomedicine, gold nanoparticles, PEG, biocompatibility

Procedia PDF Downloads 341
72 Hydro-Mechanical Characterization of PolyChlorinated Biphenyls Polluted Sediments in Interaction with Geomaterials for Landfilling

Authors: Hadi Chahal, Irini Djeran-Maigre

Abstract:

This paper focuses on the hydro-mechanical behavior of polychlorinated biphenyl (PCB) polluted sediments when stored in landfills and the interaction between PCBs and geosynthetic clay liners (GCL) with respect to hydraulic performance of the liner and the overall performance and stability of landfills. A European decree, adopted in the French regulation forbids the reintroducing of contaminated dredged sediments containing more than 0,64mg/kg Σ 7 PCBs to rivers. At these concentrations, sediments are considered hazardous and a remediation process must be adopted to prevent the release of PCBs into the environment. Dredging and landfilling polluted sediments is considered an eco-environmental remediation solution. French regulations authorize the storage of PCBs contaminated components with less than 50mg/kg in municipal solid waste facilities. Contaminant migration via leachate may be possible. The interactions between PCBs contaminated sediments and the GCL barrier present in the bottom of a landfill for security confinement are not known. Moreover, the hydro-mechanical behavior of stored sediments may affect the performance and the stability of the landfill. In this article, hydro-mechanical characterization of the polluted sediment is presented. This characterization led to predict the behavior of the sediment at the storage site. Chemical testing showed that the concentration of PCBs in sediment samples is between 1.7 and 2,0 mg/kg. Physical characterization showed that the sediment is organic silty sand soil (%Silt=65, %Sand=27, %OM=8) characterized by a high plasticity index (Ip=37%). Permeability tests using permeameter and filter press showed that sediment permeability is in the order of 10-9 m/s. Compressibility tests showed that the sediment is a very compressible soil with Cc=0,53 and Cα =0,0086. In addition, effects of PCB on the swelling behavior of bentonite were studied and the hydraulic performance of the GCL in interaction with PCBs was examined. Swelling tests showed that PCBs don’t affect the swelling behavior of bentonite. Permeability tests were conducted on a 1.0 m pilot scale experiment, simulating a storage facility. PCBs contaminated sediments were directly placed over a passive barrier containing GCL to study the influence of the direct contact of polluted sediment leachate with the GCL. An automatic water system has been designed to simulate precipitation. Effluent quantity and quality have been examined. The sediment settlements and the water level in the sediment have been monitored. The results showed that desiccation affected the behavior of the sediment in the pilot test and that laboratory tests alone are not sufficient to predict the behavior of the sediment in landfill facility. Furthermore, the concentration of PCB in the sediment leachate was very low ( < 0,013 µg/l) and that the permeability of the GCL was affected by other components present in the sediment leachate. Desiccation and cracks were the main parameters that affected the hydro-mechanical behavior of the sediment in the pilot test. In order to reduce these infects, the polluted sediment should be stored at a water content inferior to its shrinkage limit (w=39%). We also propose to conduct other pilot tests with the maximum concentration of PCBs allowed in municipal solid waste facility of 50 mg/kg.

Keywords: geosynthetic clay liners, landfill, polychlorinated biphenyl, polluted dredged materials

Procedia PDF Downloads 125
71 Wood Dust and Nanoparticle Exposure among Workers during a New Building Construction

Authors: Atin Adhikari, Aniruddha Mitra, Abbas Rashidi, Imaobong Ekpo, Jefferson Doehling, Alexis Pawlak, Shane Lewis, Jacob Schwartz

Abstract:

Building constructions in the US involve numerous wooden structures. Woods are routinely used in walls, framing floors, framing stairs, and making of landings in building constructions. Cross-laminated timbers are currently being used as construction materials for tall buildings. Numerous workers are involved in these timber based constructions, and wood dust is one of the most common occupational exposures for them. Wood dust is a complex substance composed of cellulose, polyoses and other substances. According to US OSHA, exposure to wood dust is associated with a variety of adverse health effects among workers, including dermatitis, allergic respiratory effects, mucosal and nonallergic respiratory effects, and cancers. The amount and size of particles released as wood dust differ according to the operations performed on woods. For example, shattering of wood during sanding operations produces finer particles than does chipping in sawing and milling industries. To our knowledge, how shattering, cutting and sanding of woods and wood slabs during new building construction release fine particles and nanoparticles are largely unknown. General belief is that the dust generated during timber cutting and sanding tasks are mostly large particles. Consequently, little attention has been given to the generated submicron ultrafine and nanoparticles and their exposure levels. These data are, however, critically important because recent laboratory studies have demonstrated cytotoxicity of nanoparticles on lung epithelial cells. The above-described knowledge gaps were addressed in this study by a novel newly developed nanoparticle monitor and conventional particle counters. This study was conducted in a large new building construction site in southern Georgia primarily during the framing of wooden side walls, inner partition walls, and landings. Exposure levels of nanoparticles (n = 10) were measured by a newly developed nanoparticle counter (TSI NanoScan SMPS Model 3910) at four different distances (5, 10, 15, and 30 m) from the work location. Other airborne particles (number of particles/m3) including PM2.5 and PM10 were monitored using a 6-channel (0.3, 0.5, 1.0, 2.5, 5.0 and 10 µm) particle counter at 15 m, 30 m, and 75 m distances at both upwind and downwind directions. Mass concentration of PM2.5 and PM10 (µg/m³) were measured by using a DustTrak Aerosol Monitor. Temperature and relative humidity levels were recorded. Wind velocity was measured by a hot wire anemometer. Concentration ranges of nanoparticles of 13 particle sizes were: 11.5 nm: 221 – 816/cm³; 15.4 nm: 696 – 1735/cm³; 20.5 nm: 879 – 1957/cm³; 27.4 nm: 1164 – 2903/cm³; 36.5 nm: 1138 – 2640/cm³; 48.7 nm: 938 – 1650/cm³; 64.9 nm: 759 – 1284/cm³; 86.6 nm: 705 – 1019/cm³; 115.5 nm: 494 – 1031/cm³; 154 nm: 417 – 806/cm³; 205.4 nm: 240 – 471/cm³; 273.8 nm: 45 – 92/cm³; and 365.2 nm: Keywords: wood dust, industrial hygiene, aerosol, occupational exposure

Procedia PDF Downloads 189