Search results for: prediction modelling
2167 Design Optimisation of Compound Parabolic Concentrator (CPC) for Improved Performance
Authors: R. Abd-Rahman, M. M. Isa, H. H. Goh
Abstract:
A compound parabolic concentrator (CPC) is a well known non-imaging concentrator that will concentrate the solar radiation onto receiver (PV cell). One of disadvantage of CPC is has tall and narrow height compared to its diameter entry aperture area. Therefore, for economic reason, a truncation had been done by removed from the top of the full height CPC. This is also will lead to the decreases of concentration ratio but it will be negligible. In this paper, the flux distribution of untruncated and truncated 2-D hollow compound parabolic trough concentrator (hCPTC) design is presented. The untruncated design has initial height, H=193.4mm with concentration ratio, C_(2-D)=4. This paper presents the optical simulation of compound parabolic trough concentrator using ray-tracing software TracePro. Results showed that, after the truncation, the height of CPC reduced 45% from initial height with the geometrical concentration ratio only decrease 10%. Thus, the cost of reflector and material dielectric usage can be saved especially at manufacturing site.Keywords: compound parabolic trough concentrator, optical modelling, ray-tracing analysis, improved performance
Procedia PDF Downloads 4632166 Integrating Dynamic Energy Models and Life Cycle Assessment Tools: Overcoming Challenges and Unlocking Opportunities
Authors: Ali Badiei
Abstract:
The increasing urgency of climate change mitigation underscores the necessity for integrating advanced analytical frameworks that encompass both energy dynamics and environmental impacts. This study focuses on the convergence of Dynamic Energy Models (DEMs) and Life Cycle Assessment (LCA) tools, highlighting their combined potential to address the dual challenges of accurate energy system modelling and comprehensive sustainability evaluation. While DEMs excel in simulating time-dependent energy performance, LCAs provide insights into the cumulative environmental impacts over a product or system's lifecycle, including embodied and operational emissions. The integration of these methodologies is fraught with challenges. Discrepancies in data granularity, temporal resolutions, and system boundaries often lead to inconsistencies that hinder seamless interoperability. Furthermore, the computational complexity of merging time-sensitive energy simulations with lifecycle inventories demands innovative approaches to data harmonization and software compatibility. Despite these barriers, such integration offers substantial opportunities for enhancing the precision of sustainability assessments and informing evidence-based policy decisions. This paper examines the state of the art through a comprehensive review of existing frameworks and applications. UK case studies on energy-efficient buildings, particularly those adhering to Passivhaus standards, serve as focal points for evaluating the combined use of DEMs and LCA tools. The findings reveal that, while Passivhaus buildings significantly reduce operational energy consumption—meeting ultra-low energy targets—their embodied carbon emissions often offset initial gains. This underscores the importance of using integrated tools to optimize both operational and embodied carbon reduction strategies. Key outcomes of this research include the identification of gaps in current methodologies and the proposition of a unified framework to bridge these gaps. The study also highlights opportunities to utilize these integrated tools for policy formation and industrial practice innovation. By facilitating a lifecycle-focused understanding of energy systems, the integration of DEMs and LCAs can inform policies that incentivize sustainable construction practices and guide investments in low-carbon technologies. In conclusion, overcoming the technical and methodological challenges of linking DEMs and LCAs is critical for achieving holistic energy system optimization and supporting global net-zero carbon goals. This research advocates for multidisciplinary collaboration between energy modelers, environmental scientists, and policymakers to unlock the full potential of these tools in fostering sustainable development.Keywords: energy, modelling, life cycle assessment, dynamic
Procedia PDF Downloads 102165 Identification of Key Parameters for Benchmarking of Combined Cycle Power Plants Retrofit
Authors: S. Sabzchi Asl, N. Tahouni, M. H. Panjeshahi
Abstract:
Benchmarking of a process with respect to energy consumption, without accomplishing a full retrofit study, can save both engineering time and money. In order to achieve this goal, the first step is to develop a conceptual-mathematical model that can easily be applied to a group of similar processes. In this research, we have aimed to identify a set of key parameters for the model which is supposed to be used for benchmarking of combined cycle power plants. For this purpose, three similar combined cycle power plants were studied. The results showed that ambient temperature, pressure and relative humidity, number of HRSG evaporator pressure levels and relative power in part load operation are the main key parameters. Also, the relationships between these parameters and produced power (by gas/ steam turbine), gas turbine and plant efficiency, temperature and mass flow rate of the stack flue gas were investigated.Keywords: combined cycle power plant, energy benchmarking, modelling, retrofit
Procedia PDF Downloads 3052164 Numerical Computation of Sturm-Liouville Problem with Robin Boundary Condition
Authors: Theddeus T. Akano, Omotayo A. Fakinlede
Abstract:
The modelling of physical phenomena, such as the earth’s free oscillations, the vibration of strings, the interaction of atomic particles, or the steady state flow in a bar give rise to Sturm-Liouville (SL) eigenvalue problems. The boundary applications of some systems like the convection-diffusion equation, electromagnetic and heat transfer problems requires the combination of Dirichlet and Neumann boundary conditions. Hence, the incorporation of Robin boundary condition in the analyses of Sturm-Liouville problem. This paper deals with the computation of the eigenvalues and eigenfunction of generalized Sturm-Liouville problems with Robin boundary condition using the finite element method. Numerical solutions of classical Sturm–Liouville problems are presented. The results show an agreement with the exact solution. High results precision is achieved with higher number of elements.Keywords: Sturm-Liouville problem, Robin boundary condition, finite element method, eigenvalue problems
Procedia PDF Downloads 3622163 Optimal Rotor Design of an 150kW-Class IPMSM through the 3D Voltage-Inductance Map Analysis Method
Authors: Eung-Seok Park, Tae-Chul Jeong, Hyun-Jong Park, Hyun-Woo Jun, Dong-Woo Kang, Ju Lee
Abstract:
This presents a methodology to determine detail design directions of an 150kW-class IPMSM (interior permanent magnet synchronous motor) and its detail design. The basic design of the stator and rotor was conducted. After dividing the designed models into the best cases and the worst cases based on rotor shape parameters, Sensitivity analysis and 3D Voltage-Inductance Map (3D EL-Map) parameters were analyzed. Then, the design direction for the final model was predicted. Based on the prediction, the final model was extracted with Trend analysis. Lastly, the final model was validated with experiments.Keywords: PMSM, optimal design, rotor design, voltage-inductance map
Procedia PDF Downloads 6742162 Modelling the Education Supply Chain with Network Data Envelopment Analysis
Authors: Sourour Ramzi, Claudia Sarrico
Abstract:
Little has been done on network DEA in education, and nobody has attempted to model the whole education supply chain using network DEA. As such the contribution of the present paper is to propose a model for measuring the efficiency of education supply chains using network DEA. First, we use a general survey of data envelopment analysis (DEA) to establish the emergent themes for research in DEA, and focus on the theme of Network DEA. Second, we use a survey on two-stage DEA models, and Network DEA to write a state of the art on Network DEA, particularly applied to supply chain management. Third, we use a survey on DEA applications to establish the most influential papers on DEA education applications, in order to establish the state of the art on applications of DEA in education, in general, and applications of DEA to education using network DEA, in particular. Finally, we propose a model for measuring the performance of education supply chains of different education systems (countries or states within a country, for instance). We then use this model on some empirical data.Keywords: supply chain, education, data envelopment analysis, network DEA
Procedia PDF Downloads 3692161 Development of Method for Detecting Low Concentration of Organophosphate Pesticides in Vegetables Using near Infrared Spectroscopy
Authors: Atchara Sankom, Warapa Mahakarnchanakul, Ronnarit Rittiron, Tanaboon Sajjaanantakul, Thammasak Thongket
Abstract:
Vegetables are frequently contaminated with pesticides residues resulting in the most food safety concern among agricultural products. The objective of this work was to develop a method to detect the organophosphate (OP) pesticides residues in vegetables using Near Infrared (NIR) spectroscopy technique. Low concentration (ppm) of OP pesticides in vegetables were investigated. The experiment was divided into 2 sections. In the first section, Chinese kale spiked with different concentrations of chlorpyrifos pesticide residues (0.5-100 ppm) was chosen as the sample model to demonstrate the appropriate conditions of sample preparation, both for a solution or solid sample. The spiked samples were extracted with acetone. The sample extracts were applied as solution samples, while the solid samples were prepared by the dry-extract system for infrared (DESIR) technique. The DESIR technique was performed by embedding the solution sample on filter paper (GF/A) and then drying. The NIR spectra were measured with the transflectance mode over wavenumber regions of 12,500-4000 cm⁻¹. The QuEChERS method followed by gas chromatography-mass spectrometry (GC-MS) was performed as the standard method. The results from the first section showed that the DESIR technique with NIR spectroscopy demonstrated good accurate calibration result with R² of 0.93 and RMSEP of 8.23 ppm. However, in the case of solution samples, the prediction regarding the NIR-PLSR (partial least squares regression) equation showed poor performance (R² = 0.16 and RMSEP = 23.70 ppm). In the second section, the DESIR technique coupled with NIR spectroscopy was applied to the detection of OP pesticides in vegetables. Vegetables (Chinese kale, cabbage and hot chili) were spiked with OP pesticides (chlorpyrifos ethion and profenofos) at different concentrations ranging from 0.5 to 100 ppm. Solid samples were prepared (based on the DESIR technique), then samples were scanned by NIR spectrophotometer at ambient temperature (25+2°C). The NIR spectra were measured as in the first section. The NIR- PLSR showed the best calibration equation for detecting low concentrations of chlorpyrifos residues in vegetables (Chinese kale, cabbage and hot chili) according to the prediction set of R2 and RMSEP of 0.85-0.93 and 8.23-11.20 ppm, respectively. For ethion residues, the best calibration equation of NIR-PLSR showed good indexes of R² and RMSEP of 0.88-0.94 and 7.68-11.20 ppm, respectively. As well as the results for profenofos pesticide, the NIR-PLSR also showed the best calibration equation for detecting the profenofos residues in vegetables according to the good index of R² and RMSEP of 0.88-0.97 and 5.25-11.00 ppm, respectively. Moreover, the calibration equation developed in this work could rapidly predict the concentrations of OP pesticides residues (0.5-100 ppm) in vegetables, and there was no significant difference between NIR-predicted values and actual values (data from GC-MS) at a confidence interval of 95%. In this work, the proposed method using NIR spectroscopy involving the DESIR technique has proved to be an efficient method for the screening detection of OP pesticides residues at low concentrations, and thus increases the food safety potential of vegetables for domestic and export markets.Keywords: NIR spectroscopy, organophosphate pesticide, vegetable, food safety
Procedia PDF Downloads 1512160 On Flow Consolidation Modelling in Urban Congested Areas
Authors: Serban Stere, Stefan Burciu
Abstract:
The challenging and continuously growing competition in the urban freight transport market emphasizes the need for optimal planning of transportation processes in terms of identifying the solution of consolidating traffic flows in congested urban areas. The aim of the present paper is to present the mathematical framework and propose a methodology of combining urban traffic flows between the distribution centers located at the boundary of a congested urban area. The three scenarios regarding traffic flow between consolidation centers that are taken into consideration in the paper are based on the same characteristics of traffic flows. The scenarios differ in terms of the accessibility of the four consolidation centers given by the infrastructure, the connections between them, and the possibility of consolidating traffic flows for one or multiple destinations. Also, synthetical indicators will allow us to compare the scenarios considered and chose the indicated for our distribution system.Keywords: distribution system, single and multiple destinations, urban consolidation centers, traffic flow consolidation schemes
Procedia PDF Downloads 1572159 Special Case of Trip Distribution Model and Its Use for Estimation of Detailed Transport Demand in the Czech Republic
Authors: Jiri Dufek
Abstract:
The national model of the Czech Republic has been modified in a detailed way to get detailed travel demand in the municipality level (cities, villages over 300 inhabitants). As a technique for this detailed modelling, three-dimensional procedure for calibrating gravity models, was used. Besides of zone production and attraction, which is usual in gravity models, the next additional parameter for trip distribution was introduced. Usually it is called by “third dimension”. In the model, this parameter is a demand between regions. The distribution procedure involved calculation of appropriate skim matrices and its multiplication by three coefficients obtained by iterative balancing of production, attraction and third dimension. This type of trip distribution was processed in R-project and the results were used in the Czech Republic transport model, created in PTV Vision. This process generated more precise results in local level od the model (towns, villages)Keywords: trip distribution, three dimension, transport model, municipalities
Procedia PDF Downloads 1312158 Lake of Neuchatel: Effect of Increasing Storm Events on Littoral Transport and Coastal Structures
Authors: Charlotte Dreger, Erik Bollaert
Abstract:
This paper presents two environmentally-friendly coastal structures realized on the Lake of Neuchâtel. Both structures reflect current environmental issues of concern on the lake and have been strongly affected by extreme meteorological conditions between their period of design and their actual operational period. The Lake of Neuchatel is one of the biggest Swiss lakes and measures around 38 km in length and 8.2 km in width, for a maximum water depth of 152 m. Its particular topographical alignment, situated in between the Swiss Plateau and the Jura mountains, combines strong winds and large fetch values, resulting in significant wave heights during storm events at both north-east and south-west lake extremities. In addition, due to flooding concerns, historically, lake levels have been lowered by several meters during the Jura correction works in the 19th and 20th century. Hence, during storm events, continuous erosion of the vulnerable molasse shorelines and sand banks generate frequent and abundant littoral transport from the center of the lake to its extremities. This phenomenon does not only cause disturbances of the ecosystem, but also generates numerous problems at natural or man-made infrastructures located along the shorelines, such as reed plants, harbor entrances, canals, etc. A first example is provided at the southwestern extremity, near the city of Yverdon, where an ensemble of 11 small islands, the Iles des Vernes, have been artificially created in view of enhancing biological conditions and food availability for bird species during their migration process, replacing at the same time two larger islands that were affected by lack of morphodynamics and general vegetalization of their surfaces. The article will present the concept and dimensioning of these islands based on 2D numerical modelling, as well as the realization and follow-up campaigns. In particular, the influence of several major storm events that occurred immediately after the works will be pointed out. Second, a sediment retention dike is discussed at the northeastern extremity, at the entrance of the Canal de la Broye into the lake. This canal is heavily used for navigation and suffers from frequent and significant sedimentation at its outlet. The new coastal structure has been designed to minimize sediment deposits around the exutory of the canal into the lake, by retaining the littoral transport during storm events. The article will describe the basic assumptions used to design the dike, as well as the construction works and follow-up campaigns. Especially the huge influence of changing meteorological conditions on the littoral transport of the Lake of Neuchatel since project design ten years ago will be pointed out. Not only the intensity and frequency of storm events are increasing, but also the main wind directions alter, affecting in this way the efficiency of the coastal structure in retaining the sediments.Keywords: meteorological evolution, sediment transport, lake of Neuchatel, numerical modelling, environmental measures
Procedia PDF Downloads 862157 Airport Investment Risk Assessment under Uncertainty
Authors: Elena M. Capitanul, Carlos A. Nunes Cosenza, Walid El Moudani, Felix Mora Camino
Abstract:
The construction of a new airport or the extension of an existing one requires massive investments and many times public private partnerships were considered in order to make feasible such projects. One characteristic of these projects is uncertainty with respect to financial and environmental impacts on the medium to long term. Another one is the multistage nature of these types of projects. While many airport development projects have been a success, some others have turned into a nightmare for their promoters. This communication puts forward a new approach for airport investment risk assessment. The approach takes explicitly into account the degree of uncertainty in activity levels prediction and proposes milestones for the different stages of the project for minimizing risk. Uncertainty is represented through fuzzy dual theory and risk management is performed using dynamic programming. An illustration of the proposed approach is provided.Keywords: airports, fuzzy logic, risk, uncertainty
Procedia PDF Downloads 4142156 Case-Based Reasoning for Modelling Random Variables in the Reliability Assessment of Existing Structures
Authors: Francesca Marsili
Abstract:
The reliability assessment of existing structures with probabilistic methods is becoming an increasingly important and frequent engineering task. However probabilistic reliability methods are based on an exhaustive knowledge of the stochastic modeling of the variables involved in the assessment; at the moment standards for the modeling of variables are absent, representing an obstacle to the dissemination of probabilistic methods. The framework according to probability distribution functions (PDFs) are established is represented by the Bayesian statistics, which uses Bayes Theorem: a prior PDF for the considered parameter is established based on information derived from the design stage and qualitative judgments based on the engineer past experience; then, the prior model is updated with the results of investigation carried out on the considered structure, such as material testing, determination of action and structural properties. The application of Bayesian statistics arises two different kind of problems: 1. The results of the updating depend on the engineer previous experience; 2. The updating of the prior PDF can be performed only if the structure has been tested, and quantitative data that can be statistically manipulated have been collected; performing tests is always an expensive and time consuming operation; furthermore, if the considered structure is an ancient building, destructive tests could compromise its cultural value and therefore should be avoided. In order to solve those problems, an interesting research path is represented by investigating Artificial Intelligence (AI) techniques that can be useful for the automation of the modeling of variables and for the updating of material parameters without performing destructive tests. Among the others, one that raises particular attention in relation to the object of this study is constituted by Case-Based Reasoning (CBR). In this application, cases will be represented by existing buildings where material tests have already been carried out and an updated PDFs for the material mechanical parameters has been computed through a Bayesian analysis. Then each case will be composed by a qualitative description of the material under assessment and the posterior PDFs that describe its material properties. The problem that will be solved is the definition of PDFs for material parameters involved in the reliability assessment of the considered structure. A CBR system represent a good candi¬date in automating the modelling of variables because: 1. Engineers already draw an estimation of the material properties based on the experience collected during the assessment of similar structures, or based on similar cases collected in literature or in data-bases; 2. Material tests carried out on structure can be easily collected from laboratory database or from literature; 3. The system will provide the user of a reliable probabilistic description of the variables involved in the assessment that will also serve as a tool in support of the engineer’s qualitative judgments. Automated modeling of variables can help in spreading probabilistic reliability assessment of existing buildings in the common engineering practice, and target at the best intervention and further tests on the structure; CBR represents a technique which may help to achieve this.Keywords: reliability assessment of existing buildings, Bayesian analysis, case-based reasoning, historical structures
Procedia PDF Downloads 3392155 Peristaltic Transport of a Jeffrey Fluid with Double-Diffusive Convection in Nanofluids in the Presence of Inclined Magnetic Field
Authors: Safia Akram
Abstract:
In this article, the effects of peristaltic transport with double-diffusive convection in nanofluids through an asymmetric channel with different waveforms is presented. Mathematical modelling for two-dimensional and two directional flows of a Jeffrey fluid model along with double-diffusive convection in nanofluids are given. Exact solutions are obtained for nanoparticle fraction field, concentration field, temperature field, stream functions, pressure gradient and pressure rise in terms of axial and transverse coordinates under the restrictions of long wavelength and low Reynolds number. With the help of computational and graphical results the effects of Brownian motion, thermophoresis, Dufour, Soret, and Grashof numbers (thermal, concentration, nanoparticles) on peristaltic flow patterns with double-diffusive convection are discussed.Keywords: nanofluid particles, peristaltic flow, Jeffrey fluid, magnetic field, asymmetric channel, different waveforms
Procedia PDF Downloads 3842154 On Virtual Coordination Protocol towards 5G Interference Mitigation: Modelling and Performance Analysis
Authors: Bohli Afef
Abstract:
The fifth-generation (5G) wireless systems is featured by extreme densities of cell stations to overcome the higher future demand. Hence, interference management is a crucial challenge in 5G ultra-dense cellular networks. In contrast to the classical inter-cell interference coordination approach, which is no longer fit for the high density of cell-tiers, this paper proposes a novel virtual coordination based on the dynamic common cognitive monitor channel protocol to deal with the inter-cell interference issue. A tractable and flexible model for the coverage probability of a typical user is developed through the use of the stochastic geometry model. The analyses of the performance of the suggested protocol are illustrated both analytically and numerically in terms of coverage probability.Keywords: ultra dense heterogeneous networks, dynamic common channel protocol, cognitive radio, stochastic geometry, coverage probability
Procedia PDF Downloads 3262153 Optimization of Cu (In, Ga)Se₂ Based Thin Film Solar Cells: Simulation
Authors: Razieh Teimouri
Abstract:
Electrical modelling of Cu (In,Ga)Se₂ thin film solar cells is carried out with compositionally graded absorber and CdS buffer layer. Simulation results are compared with experimental data. Surface defect layers (SDL) are located in CdS/CIGS interface for improving open circuit voltage simulated structure through the analysis of the interface is investigated with or without this layer. When SDL removed, by optimizing the conduction band offset (CBO) position of the buffer/absorber layers with its recombination mechanisms and also shallow donor density in the CdS, the open circuit voltage increased significantly. As a result of simulation, excellent performance can be obtained when the conduction band of window layer positions higher by 0.2 eV than that of CIGS and shallow donor density in the CdS was found about 1×10¹⁸ (cm⁻³).Keywords: CIGS solar cells, thin film, SCAPS, buffer layer, conduction band offset
Procedia PDF Downloads 2302152 Electric Load Forecasting Based on Artificial Neural Network for Iraqi Power System
Authors: Afaneen Anwer, Samara M. Kamil
Abstract:
Load Forecast required prediction accuracy based on optimal operation and maintenance. A good accuracy is the basis of economic dispatch, unit commitment, and system reliability. A good load forecasting system fulfilled fast speed, automatic bad data detection, and ability to access the system automatically to get the needed data. In this paper, the formulation of the load forecasting is discussed and the solution is obtained by using artificial neural network method. A MATLAB environment has been used to solve the load forecasting schedule of Iraqi super grid network considering the daily load for three years. The obtained results showed a good accuracy in predicting the forecasted load.Keywords: load forecasting, neural network, back-propagation algorithm, Iraqi power system
Procedia PDF Downloads 5852151 Queueing Modeling of M/G/1 Fault Tolerant System with Threshold Recovery and Imperfect Coverage
Authors: Madhu Jain, Rakesh Kumar Meena
Abstract:
This paper investigates a finite M/G/1 fault tolerant multi-component machining system. The system incorporates the features such as standby support, threshold recovery and imperfect coverage make the study closer to real time systems. The performance prediction of M/G/1 fault tolerant system is carried out using recursive approach by treating remaining service time as a supplementary variable. The numerical results are presented to illustrate the computational tractability of analytical results by taking three different service time distributions viz. exponential, 3-stage Erlang and deterministic. Moreover, the cost function is constructed to determine the optimal choice of system descriptors to upgrading the system.Keywords: fault tolerant, machine repair, threshold recovery policy, imperfect coverage, supplementary variable technique
Procedia PDF Downloads 2932150 Simulation Modeling and Analysis of In-Plant Logistics at a Cement Manufacturing Plant in India
Authors: Sachin Kamble, Shradha Gawankar
Abstract:
This paper presents the findings of successful implementation of Business Process Reengineering (BPR) of cement dispatch activities in a cement manufacturing plant located in India. Simulation model was developed for the purpose of identifying and analyzing the areas for improvement. The company was facing a problem of low throughput rate and subsequent forced stoppages of the plant leading to a high production loss of 15000MT per month. It was found from the study that the present systems and procedures related to the in-plant logistics plant required significant changes. The major recommendations included process improvement at the entry gate, reducing the cycle time at the security gate and installation of an additional weigh bridge. This paper demonstrates how BPR can be implemented for improving the in-plant logistics process. Various recommendations helped the plant to increase its throughput by 14%.Keywords: in-plant logistics, cement logistics, simulation modelling, business process re-engineering, supply chain management
Procedia PDF Downloads 3002149 Identification of Nonlinear Systems Using Radial Basis Function Neural Network
Authors: C. Pislaru, A. Shebani
Abstract:
This paper uses the radial basis function neural network (RBFNN) for system identification of nonlinear systems. Five nonlinear systems are used to examine the activity of RBFNN in system modeling of nonlinear systems; the five nonlinear systems are dual tank system, single tank system, DC motor system, and two academic models. The feed forward method is considered in this work for modelling the non-linear dynamic models, where the K-Means clustering algorithm used in this paper to select the centers of radial basis function network, because it is reliable, offers fast convergence and can handle large data sets. The least mean square method is used to adjust the weights to the output layer, and Euclidean distance method used to measure the width of the Gaussian function.Keywords: system identification, nonlinear systems, neural networks, radial basis function, K-means clustering algorithm
Procedia PDF Downloads 4732148 Influence of a High-Resolution Land Cover Classification on Air Quality Modelling
Authors: C. Silveira, A. Ascenso, J. Ferreira, A. I. Miranda, P. Tuccella, G. Curci
Abstract:
Poor air quality is one of the main environmental causes of premature deaths worldwide, and mainly in cities, where the majority of the population lives. It is a consequence of successive land cover (LC) and use changes, as a result of the intensification of human activities. Knowing these landscape modifications in a comprehensive spatiotemporal dimension is, therefore, essential for understanding variations in air pollutant concentrations. In this sense, the use of air quality models is very useful to simulate the physical and chemical processes that affect the dispersion and reaction of chemical species into the atmosphere. However, the modelling performance should always be evaluated since the resolution of the input datasets largely dictates the reliability of the air quality outcomes. Among these data, the updated LC is an important parameter to be considered in atmospheric models, since it takes into account the Earth’s surface changes due to natural and anthropic actions, and regulates the exchanges of fluxes (emissions, heat, moisture, etc.) between the soil and the air. This work aims to evaluate the performance of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem), when different LC classifications are used as an input. The influence of two LC classifications was tested: i) the 24-classes USGS (United States Geological Survey) LC database included by default in the model, and the ii) CLC (Corine Land Cover) and specific high-resolution LC data for Portugal, reclassified according to the new USGS nomenclature (33-classes). Two distinct WRF-Chem simulations were carried out to assess the influence of the LC on air quality over Europe and Portugal, as a case study, for the year 2015, using the nesting technique over three simulation domains (25 km2, 5 km2 and 1 km2 horizontal resolution). Based on the 33-classes LC approach, particular emphasis was attributed to Portugal, given the detail and higher LC spatial resolution (100 m x 100 m) than the CLC data (5000 m x 5000 m). As regards to the air quality, only the LC impacts on tropospheric ozone concentrations were evaluated, because ozone pollution episodes typically occur in Portugal, in particular during the spring/summer, and there are few research works relating to this pollutant with LC changes. The WRF-Chem results were validated by season and station typology using background measurements from the Portuguese air quality monitoring network. As expected, a better model performance was achieved in rural stations: moderate correlation (0.4 – 0.7), BIAS (10 – 21µg.m-3) and RMSE (20 – 30 µg.m-3), and where higher average ozone concentrations were estimated. Comparing both simulations, small differences grounded on the Leaf Area Index and air temperature values were found, although the high-resolution LC approach shows a slight enhancement in the model evaluation. This highlights the role of the LC on the exchange of atmospheric fluxes, and stresses the need to consider a high-resolution LC characterization combined with other detailed model inputs, such as the emission inventory, to improve air quality assessment.Keywords: land use, spatial resolution, WRF-Chem, air quality assessment
Procedia PDF Downloads 1592147 Prediction of Nonlinear Torsional Behavior of High Strength RC Beams
Authors: Woo-Young Jung, Minho Kwon
Abstract:
Seismic design criteria based on performance of structures have recently been adopted by practicing engineers in response to destructive earthquakes. A simple but efficient structural-analysis tool capable of predicting both the strength and ductility is needed to analyze reinforced concrete (RC) structures under such event. A three-dimensional lattice model is developed in this study to analyze torsions in high-strength RC members. Optimization techniques for determining optimal variables in each lattice model are introduced. Pure torsion tests of RC members are performed to validate the proposed model. Correlation studies between the numerical and experimental results confirm that the proposed model is well capable of representing salient features of the experimental results.Keywords: torsion, non-linear analysis, three-dimensional lattice, high-strength concrete
Procedia PDF Downloads 3512146 Electromagnetic Assessment of Submarine Power Cable Degradation Using Finite Element Method and Sensitivity Analysis
Authors: N. Boutra, N. Ravot, J. Benoit, O. Picon
Abstract:
Submarine power cables used for offshore wind farms electric energy distribution and transmission are subject to numerous threats. Some of the risks are associated with transport, installation and operating in harsh marine environment. This paper describes the feasibility of an electromagnetic low frequency sensing technique for submarine power cable failure prediction. The impact of a structural damage shape and material variability on the induced electric field is evaluated. The analysis is performed by modeling the cable using the finite element method, we use sensitivity analysis in order to identify the main damage characteristics affecting electric field variation. Lastly, we discuss the results obtained.Keywords: electromagnetism, finite element method, sensitivity analysis, submarine power cables
Procedia PDF Downloads 3572145 Analytical and Statistical Study of the Parameters of Expansive Soil
Authors: A. Medjnoun, R. Bahar
Abstract:
The disorders caused by the shrinking-swelling phenomenon are prevalent in arid and semi-arid in the presence of swelling clay. This soil has the characteristic of changing state under the effect of water solicitation (wetting and drying). A set of geotechnical parameters is necessary for the characterization of this soil type, such as state parameters, physical and chemical parameters and mechanical parameters. Some of these tests are very long and some are very expensive, hence the use or methods of predictions. The complexity of this phenomenon and the difficulty of its characterization have prompted researchers to use several identification parameters in the prediction of swelling potential. This document is an analytical and statistical study of geotechnical parameters affecting the potential of swelling clays. This work is performing on a database obtained from investigations swelling Algerian soil. The obtained observations have helped us to understand the soil swelling structure and its behavior.Keywords: analysis, estimated model, parameter identification, swelling of clay
Procedia PDF Downloads 4172144 Modelling of Multi-Agent Systems for the Scheduling of Multi-EV Charging from Power Limited Sources
Authors: Manan’Iarivo Rasolonjanahary, Chris Bingham, Nigel Schofield, Masoud Bazargan
Abstract:
This paper presents the research and application of model predictive scheduled charging of electric vehicles (EV) subject to limited available power resource. To focus on algorithm and operational characteristics, the EV interface to the source is modelled as a battery state equation during the charging operation. The researched methods allow for the priority scheduling of EV charging in a multi-vehicle regime and when subject to limited source power availability. Priority attribution for each connected EV is described. The validity of the developed methodology is shown through the simulation of different scenarios of charging operation of multiple connected EVs including non-scheduled and scheduled operation with various numbers of vehicles. Performance of the developed algorithms is also reported with the recommendation of the choice of suitable parameters.Keywords: model predictive control, non-scheduled, power limited sources, scheduled and stop-start battery charging
Procedia PDF Downloads 1582143 Modern State of the Universal Modeling for Centrifugal Compressors
Authors: Y. Galerkin, K. Soldatova, A. Drozdov
Abstract:
The 6th version of Universal modeling method for centrifugal compressor stage calculation is described. Identification of the new mathematical model was made. As a result of identification the uniform set of empirical coefficients is received. The efficiency definition error is 0,86 % at a design point. The efficiency definition error at five flow rate points (except a point of the maximum flow rate) is 1,22 %. Several variants of the stage with 3D impellers designed by 6th version program and quasi three-dimensional calculation programs were compared by their gas dynamic performances CFD (NUMECA FINE TURBO). Performance comparison demonstrated general principles of design validity and leads to some design recommendations.Keywords: compressor design, loss model, performance prediction, test data, model stages, flow rate coefficient, work coefficient
Procedia PDF Downloads 4132142 On the Use of Analytical Performance Models to Design a High-Performance Active Queue Management Scheme
Authors: Shahram Jamali, Samira Hamed
Abstract:
One of the open issues in Random Early Detection (RED) algorithm is how to set its parameters to reach high performance for the dynamic conditions of the network. Although original RED uses fixed values for its parameters, this paper follows a model-based approach to upgrade performance of the RED algorithm. It models the routers queue behavior by using the Markov model and uses this model to predict future conditions of the queue. This prediction helps the proposed algorithm to make some tunings over RED's parameters and provide efficiency and better performance. Widespread packet level simulations confirm that the proposed algorithm, called Markov-RED, outperforms RED and FARED in terms of queue stability, bottleneck utilization and dropped packets count.Keywords: active queue management, RED, Markov model, random early detection algorithm
Procedia PDF Downloads 5412141 Using Historical Data for Stock Prediction
Authors: Sofia Stoica
Abstract:
In this paper, we use historical data to predict the stock price of a tech company. To this end, we use a dataset consisting of the stock prices in the past five years of ten major tech companies – Adobe, Amazon, Apple, Facebook, Google, Microsoft, Netflix, Oracle, Salesforce, and Tesla. We experimented with a variety of models– a linear regressor model, K nearest Neighbors (KNN), a sequential neural network – and algorithms - Multiplicative Weight Update, and AdaBoost. We found that the sequential neural network performed the best, with a testing error of 0.18%. Interestingly, the linear model performed the second best with a testing error of 0.73%. These results show that using historical data is enough to obtain high accuracies, and a simple algorithm like linear regression has a performance similar to more sophisticated models while taking less time and resources to implement.Keywords: finance, machine learning, opening price, stock market
Procedia PDF Downloads 1962140 A DFT-Based QSARs Study of Kovats Retention Indices of Adamantane Derivatives
Authors: Z. Bayat
Abstract:
A quantitative structure–property relationship (QSPR) study was performed to develop models those relate the structures of 65 Kovats retention index (RI) of adamantane derivatives. Molecular descriptors derived solely from 3D structures of the molecular compounds. The usefulness of the quantum chemical descriptors, calculated at the level of the DFT theories using 6-311+G** basis set for QSAR study of adamantane derivatives was examined. The use of descriptors calculated only from molecular structure eliminates the need to experimental determination of properties for use in the correlation and allows for the estimation of RI for molecules not yet synthesized. The prediction results are in good agreement with the experimental value. A multi-parametric equation containing maximum Four descriptors at B3LYP/6-31+G** method with good statistical qualities (R2train=0.913, Ftrain=97.67, R2test=0.770, Ftest=3.21, Q2LOO=0.895, R2adj=0.904, Q2LGO=0.844) was obtained by Multiple Linear Regression using stepwise method.Keywords: DFT, adamantane, QSAR, Kovat
Procedia PDF Downloads 3662139 Prediction of the Tunnel Fire Flame Length by Hybrid Model of Neural Network and Genetic Algorithms
Authors: Behzad Niknam, Kourosh Shahriar, Hassan Madani
Abstract:
This paper demonstrates the applicability of Hybrid Neural Networks that combine with back propagation networks (BPN) and Genetic Algorithms (GAs) for predicting the flame length of tunnel fire A hybrid neural network model has been developed to predict the flame length of tunnel fire based parameters such as Fire Heat Release rate, air velocity, tunnel width, height and cross section area. The network has been trained with experimental data obtained from experimental work. The hybrid neural network model learned the relationship for predicting the flame length in just 3000 training epochs. After successful learning, the model predicted the flame length.Keywords: tunnel fire, flame length, ANN, genetic algorithm
Procedia PDF Downloads 6472138 Crude Distillation Process Simulation Using Unisim Design Simulator
Authors: C. Patrascioiu, M. Jamali
Abstract:
The paper deals with the simulation of the crude distillation process using the Unisim Design simulator. The necessity of simulating this process is argued both by considerations related to the design of the crude distillation column, but also by considerations related to the design of advanced control systems. In order to use the Unisim Design simulator to simulate the crude distillation process, the identification of the simulators used in Romania and an analysis of the PRO/II, HYSYS, and Aspen HYSYS simulators were carried out. Analysis of the simulators for the crude distillation process has allowed the authors to elaborate the conclusions of the success of the crude modelling. A first aspect developed by the authors is the implementation of specific problems of petroleum liquid-vapors equilibrium using Unisim Design simulator. The second major element of the article is the development of the methodology and the elaboration of the simulation program for the crude distillation process, using Unisim Design resources. The obtained results validate the proposed methodology and will allow dynamic simulation of the process.Keywords: crude oil, distillation, simulation, Unisim Design, simulators
Procedia PDF Downloads 249