Search results for: participatory air quality network siting
12470 Health Trajectory Clustering Using Deep Belief Networks
Authors: Farshid Hajati, Federico Girosi, Shima Ghassempour
Abstract:
We present a Deep Belief Network (DBN) method for clustering health trajectories. Deep Belief Network (DBN) is a deep architecture that consists of a stack of Restricted Boltzmann Machines (RBM). In a deep architecture, each layer learns more complex features than the past layers. The proposed method depends on DBN in clustering without using back propagation learning algorithm. The proposed DBN has a better a performance compared to the deep neural network due the initialization of the connecting weights. We use Contrastive Divergence (CD) method for training the RBMs which increases the performance of the network. The performance of the proposed method is evaluated extensively on the Health and Retirement Study (HRS) database. The University of Michigan Health and Retirement Study (HRS) is a nationally representative longitudinal study that has surveyed more than 27,000 elderly and near-elderly Americans since its inception in 1992. Participants are interviewed every two years and they collect data on physical and mental health, insurance coverage, financial status, family support systems, labor market status, and retirement planning. The dataset is publicly available and we use the RAND HRS version L, which is easy to use and cleaned up version of the data. The size of sample data set is 268 and the length of the trajectories is equal to 10. The trajectories do not stop when the patient dies and represent 10 different interviews of live patients. Compared to the state-of-the-art benchmarks, the experimental results show the effectiveness and superiority of the proposed method in clustering health trajectories.Keywords: health trajectory, clustering, deep learning, DBN
Procedia PDF Downloads 36912469 A Study of the Implications for the Health and Wellbeing of Energy-Efficient House Occupants: A UK-Based Investigation of Indoor Climate and Indoor Air Quality
Authors: Patricia Kermeci
Abstract:
Policies related to the reduction of both carbon dioxide and energy consumption within the residential sector have contributed towards a growing number of energy-efficient houses being built in several countries. Many of these energy-efficient houses rely on the construction of very well insulated and highly airtight structures, ventilated mechanically. Although energy-efficient houses are indeed more energy efficient than conventional houses, concerns have been raised over the quality of their indoor air and, consequently, the possible adverse health and wellbeing effects for their occupants. Using a longitudinal study design over three different weather seasons (winter, spring and summer), this study has investigated the indoor climate and indoor air quality of different rooms (bedroom, living room and kitchen) in five energy-efficient houses and four conventional houses in the UK. Occupants have kept diaries of their activities during the studied periods and interviews have been conducted to investigate possible behavioural explanations for the findings. Data has been compared with reviews of epidemiological, toxicological and other health related published literature to reveals three main findings. First, it shows that the indoor environment quality of energy-efficient houses cannot be treated as a holistic entity as different rooms presented dissimilar indoor climate and indoor air quality. Thus, such differences might contribute to the health and wellbeing of occupants in different ways. Second, the results show that the indoor environment quality of energy-efficient houses can vary following changes in weather season, leaving occupants at a lower or higher risk of adverse health and wellbeing effects during different weather seasons. Third, one cannot assume that even identical energy-efficient houses provide a similar indoor environment quality. Fourth, the findings reveal that the practices and behaviours of the occupants of energy-efficient houses likely determine whether they enjoy a healthier indoor environment when compared with their control houses. In conclusion, it has been considered vital to understand occupants’ practices and behaviours in order to explain the ways they might contribute to the indoor climate and indoor air quality in energy-efficient houses.Keywords: energy-efficient house, health and wellbeing, indoor environment, indoor air quality
Procedia PDF Downloads 23012468 Mutiple Medical Landmark Detection on X-Ray Scan Using Reinforcement Learning
Authors: Vijaya Yuvaram Singh V M, Kameshwar Rao J V
Abstract:
The challenge with development of neural network based methods for medical is the availability of data. Anatomical landmark detection in the medical domain is a process to find points on the x-ray scan report of the patient. Most of the time this task is done manually by trained professionals as it requires precision and domain knowledge. Traditionally object detection based methods are used for landmark detection. Here, we utilize reinforcement learning and query based method to train a single agent capable of detecting multiple landmarks. A deep Q network agent is trained to detect single and multiple landmarks present on hip and shoulder from x-ray scan of a patient. Here a single agent is trained to find multiple landmark making it superior to having individual agents per landmark. For the initial study, five images of different patients are used as the environment and tested the agents performance on two unseen images.Keywords: reinforcement learning, medical landmark detection, multi target detection, deep neural network
Procedia PDF Downloads 14212467 Performance Comparison of Resource Allocation without Feedback in Wireless Body Area Networks by Various Pseudo Orthogonal Sequences
Authors: Ojin Kwon, Yong-Jin Yoon, Liu Xin, Zhang Hongbao
Abstract:
Wireless Body Area Network (WBAN) is a short-range wireless communication around human body for various applications such as wearable devices, entertainment, military, and especially medical devices. WBAN attracts the attention of continuous health monitoring system including diagnostic procedure, early detection of abnormal conditions, and prevention of emergency situations. Compared to cellular network, WBAN system is more difficult to control inter- and inner-cell interference due to the limited power, limited calculation capability, mobility of patient, and non-cooperation among WBANs. In this paper, we compare the performance of resource allocation scheme based on several Pseudo Orthogonal Codewords (POCs) to mitigate inter-WBAN interference. Previously, the POCs are widely exploited for a protocol sequence and optical orthogonal code. Each POCs have different properties of auto- and cross-correlation and spectral efficiency according to its construction of POCs. To identify different WBANs, several different pseudo orthogonal patterns based on POCs exploits for resource allocation of WBANs. By simulating these pseudo orthogonal resource allocations of WBANs on MATLAB, we obtain the performance of WBANs according to different POCs and can analyze and evaluate the suitability of POCs for the resource allocation in the WBANs system.Keywords: wireless body area network, body sensor network, resource allocation without feedback, interference mitigation, pseudo orthogonal pattern
Procedia PDF Downloads 35312466 Construction of the Large Scale Biological Networks from Microarrays
Authors: Fadhl Alakwaa
Abstract:
One of the sustainable goals of the system biology is understanding gene-gene interactions. Hence, gene regulatory networks (GRN) need to be constructed for understanding the disease ontology and to reduce the cost of drug development. To construct gene regulatory from gene expression we need to overcome many challenges such as data denoising and dimensionality. In this paper, we develop an integrated system to reduce data dimension and remove the noise. The generated network from our system was validated via available interaction databases and was compared to previous methods. The result revealed the performance of our proposed method.Keywords: gene regulatory network, biclustering, denoising, system biology
Procedia PDF Downloads 23912465 Analysis of Unconditional Conservatism and Earnings Quality before and after the IFRS Adoption
Authors: Monica Santi, Evita Puspitasari
Abstract:
International Financial Reporting Standard (IFRS) has developed the principle based accounting standard. Based on this, IASB then eliminated the conservatism concept within accounting framework. Conservatism concept represents a prudent reaction to uncertainty to try to ensure that uncertainties and risk inherent in business situations are adequately considered. The conservatism concept has two ingredients: conditional conservatism or ex-post (news depending prudence) and unconditional conservatism or ex-ante (news-independent prudence). IFRS in substance disregards the unconditional conservatism because the unconditional conservatism can cause the understatement assets or overstated liabilities, and eventually the financial statement would be irrelevance since the information does not represent the real fact. Therefore, the IASB eliminate the conservatism concept. However, it does not decrease the practice of unconditional conservatism in the financial statement reporting. Therefore, we expected the earnings quality would be affected because of this situation, even though the IFRS implementation was expected to increase the earnings quality. The objective of this study was to provide empirical findings about the unconditional conservatism and the earnings quality before and after the IFRS adoption. The earnings per accrual measure were used as the proxy for the unconditional conservatism. If the earnings per accrual were negative (positive), it meant the company was classified as the conservative (not conservative). The earnings quality was defined as the ability of the earnings in reflecting the future earnings by considering the earnings persistence and stability. We used the earnings response coefficient (ERC) as the proxy for the earnings quality. ERC measured the extant of a security’s abnormal market return in response to the unexpected component of reporting earning of the firm issuing that security. The higher ERC indicated the higher earnings quality. The manufacturing companies listed in the Indonesian Stock Exchange (IDX) were used as the sample companies, and the 2009-2010 period was used to represent the condition before the IFRS adoption, and 2011-2013 was used to represent the condition after the IFRS adoption. Data was analyzed using the Mann-Whitney test and regression analysis. We used the firm size as the control variable with the consideration the firm size would affect the earnings quality of the company. This study had proved that the unconditional conservatism had not changed, either before and after the IFRS adoption period. However, we found the different findings for the earnings quality. The earnings quality had decreased after the IFRS adoption period. This empirical results implied that the earnings quality before the IFRS adoption was higher. This study also had found that the unconditional conservatism positively influenced the earnings quality insignificantly. The findings implied that the implementation of the IFRS had not decreased the unconditional conservatism practice and has not altered the earnings quality of the manufacturing company. Further, we found that the unconditional conservatism did not affect the earnings quality. Eventhough the empirical result shows that the unconditional conservatism gave positive influence to the earnings quality, but the influence was not significant. Thus, we concluded that the implementation of the IFRS did not increase the earnings quality.Keywords: earnings quality, earnings response coefficient, IFRS Adoption, unconditional conservatism
Procedia PDF Downloads 26012464 OptiBaha: Design of a Web Based Analytical Tool for Enhancing Quality of Education at AlBaha University
Authors: Nadeem Hassan, Farooq Ahmad
Abstract:
The quality of education has a direct impact on individual, family, society, economy in general and the mankind as a whole. Because of that thousands of research papers and articles are written on the quality of education, billions of dollars are spent and continuously being spent on research and enhancing the quality of education. Academic programs accredited agencies define the various criterion of quality of education; academic institutions obtain accreditation from these agencies to ensure degree programs offered at their institution are of international standards. This R&D aims to build a web based analytical tool (OptiBaha) that finds the gaps in AlBaha University education system by taking input from stakeholders, including students, faculty, staff and management. The input/online-data collected by this tool will be analyzed on core areas of education as proposed by accredited agencies, CAC of ABET and NCAAA of KSA, including student background, language, culture, motivation, curriculum, teaching methodology, assessment and evaluation, performance and progress, facilities, availability of teaching materials, faculty qualification, monitoring, policies and procedures, and more. Based on different analytical reports, gaps will be highlighted, and remedial actions will be proposed. If the tool is implemented and made available through a continuous process the quality of education at AlBaha University can be enhanced, it will also help in fulfilling criterion of accreditation agencies. The tool will be generic in nature and ultimately can be used by any academic institution.Keywords: academic quality, accreditation agencies, higher education, policies and procedures
Procedia PDF Downloads 30112463 Comparative Analysis of Sigmoidal Feedforward Artificial Neural Networks and Radial Basis Function Networks Approach for Localization in Wireless Sensor Networks
Authors: Ashish Payal, C. S. Rai, B. V. R. Reddy
Abstract:
With the increasing use and application of Wireless Sensor Networks (WSN), need has arisen to explore them in more effective and efficient manner. An important area which can bring efficiency to WSNs is the localization process, which refers to the estimation of the position of wireless sensor nodes in an ad hoc network setting, in reference to a coordinate system that may be internal or external to the network. In this paper, we have done comparison and analysed Sigmoidal Feedforward Artificial Neural Networks (SFFANNs) and Radial Basis Function (RBF) networks for developing localization framework in WSNs. The presented work utilizes the Received Signal Strength Indicator (RSSI), measured by static node on 100 x 100 m2 grid from three anchor nodes. The comprehensive evaluation of these approaches is done using MATLAB software. The simulation results effectively demonstrate that FFANNs based sensor motes will show better localization accuracy as compared to RBF.Keywords: localization, wireless sensor networks, artificial neural network, radial basis function, multi-layer perceptron, backpropagation, RSSI, GPS
Procedia PDF Downloads 33912462 Smart Water Main Inspection and Condition Assessment Using a Systematic Approach for Pipes Selection
Authors: Reza Moslemi, Sebastien Perrier
Abstract:
Water infrastructure deterioration can result in increased operational costs owing to increased repair needs and non-revenue water and consequently cause a reduced level of service and customer service satisfaction. Various water main condition assessment technologies have been introduced to the market in order to evaluate the level of pipe deterioration and to develop appropriate asset management and pipe renewal plans. One of the challenges for any condition assessment and inspection program is to determine the percentage of the water network and the combination of pipe segments to be inspected in order to obtain a meaningful representation of the status of the entire water network with a desirable level of accuracy. Traditionally, condition assessment has been conducted by selecting pipes based on age or location. However, this may not necessarily offer the best approach, and it is believed that by using a smart sampling methodology, a better and more reliable estimate of the condition of a water network can be achieved. This research investigates three different sampling methodologies, including random, stratified, and systematic. It is demonstrated that selecting pipes based on the proposed clustering and sampling scheme can considerably improve the ability of the inspected subset to represent the condition of a wider network. With a smart sampling methodology, a smaller data sample can provide the same insight as a larger sample. This methodology offers increased efficiency and cost savings for condition assessment processes and projects.Keywords: condition assessment, pipe degradation, sampling, water main
Procedia PDF Downloads 15012461 Social Support and Quality of Life of Youth Suffering from Cerebral Palsy Temporarily Orphaned Due to Emigration of a Parent
Authors: A. Gagat-Matuła
Abstract:
The article is concerned in the issue of social support and quality of life of youth suffering from cerebral palsy, who are temporarily orphaned due to the emigration of a parent. Migration causes multi-aspect consequences in various spheres of life. They are particularly severe for the functioning of families. Temporal parting of parents and children, especially the disabled, is a difficult situation. In this case, the family structure is changed, as well as the quality of life of its members. Children can handle migration parting in a better or worse way; these can be divided into properly functioning and manifesting behaviour disorders. In conditions of the progressing phenomenon of labour migration of Poles and a wide spectrum of consequences for the whole social life, it is essential to undertake actions aimed at support of migrants and their families. This article focuses mainly on social support and quality of families members, of which, are the labour migrants perceived by youth suffering from cerebral palsy. The quantitative method was used in this study. In the study, the Satisfaction with Life Scale (SWLS) by Diener, was used. The analysed group consisted of 50 persons (37 girls and 13 boys), aged 16 years to 18 years, whose parents are labour migrants. The results indicate that the quality of life and social support for youth suffering from cerebral palsy who are temporarily orphaned is at a low and average level.Keywords: social support, quality of life, migration, cerebral palsy
Procedia PDF Downloads 19112460 Generative Adversarial Network for Bidirectional Mappings between Retinal Fundus Images and Vessel Segmented Images
Authors: Haoqi Gao, Koichi Ogawara
Abstract:
Retinal vascular segmentation of color fundus is the basis of ophthalmic computer-aided diagnosis and large-scale disease screening systems. Early screening of fundus diseases has great value for clinical medical diagnosis. The traditional methods depend on the experience of the doctor, which is time-consuming, labor-intensive, and inefficient. Furthermore, medical images are scarce and fraught with legal concerns regarding patient privacy. In this paper, we propose a new Generative Adversarial Network based on CycleGAN for retinal fundus images. This method can generate not only synthetic fundus images but also generate corresponding segmentation masks, which has certain application value and challenge in computer vision and computer graphics. In the results, we evaluate our proposed method from both quantitative and qualitative. For generated segmented images, our method achieves dice coefficient of 0.81 and PR of 0.89 on DRIVE dataset. For generated synthetic fundus images, we use ”Toy Experiment” to verify the state-of-the-art performance of our method.Keywords: retinal vascular segmentations, generative ad-versarial network, cyclegan, fundus images
Procedia PDF Downloads 14412459 Analyzing the Impact of Code Commenting on Software Quality
Authors: Thulya Premathilake, Tharushi Perera, Hansi Thathsarani, Tharushi Nethmini, Dilshan De Silva, Piyumika Samarasekara
Abstract:
One of the most efficient ways to assist developers in grasping the source code is to make use of comments, which can be found throughout the code. When working in fields such as software development, having comments in your code that are of good quality is a fundamental requirement. Tackling software problems while making use of programs that have already been built. It is essential for the intention of the source code to be made crystal apparent in the comments that are added to the code. This assists programmers in better comprehending the programs they are working on and enables them to complete software maintenance jobs in a more timely manner. In spite of the fact that comments and documentation are meant to improve readability and maintainability, the vast majority of programmers place the majority of their focus on the actual code that is being written. This study provides a complete and comprehensive overview of the previous research that has been conducted on the topic of code comments. The study focuses on four main topics, including automated comment production, comment consistency, comment classification, and comment quality rating. One is able to get the knowledge that is more complete for use in following inquiries if they conduct an analysis of the proper approaches that were used in this study issue.Keywords: code commenting, source code, software quality, quality assurance
Procedia PDF Downloads 8512458 Environmental Related Mortality Rates through Artificial Intelligence Tools
Authors: Stamatis Zoras, Vasilis Evagelopoulos, Theodoros Staurakas
Abstract:
The association between elevated air pollution levels and extreme climate conditions (temperature, particulate matter, ozone levels, etc.) and mental consequences has been, recently, the focus of significant number of studies. It varies depending on the time of the year it occurs either during the hot period or cold periods but, specifically, when extreme air pollution and weather events are observed, e.g. air pollution episodes and persistent heatwaves. It also varies spatially due to different effects of air quality and climate extremes to human health when considering metropolitan or rural areas. An air pollutant concentration and a climate extreme are taking a different form of impact if the focus area is countryside or in the urban environment. In the built environment the climate extreme effects are driven through the formed microclimate which must be studied more efficiently. Variables such as biological, age groups etc may be implicated by different environmental factors such as increased air pollution/noise levels and overheating of buildings in comparison to rural areas. Gridded air quality and climate variables derived from the land surface observations network of West Macedonia in Greece will be analysed against mortality data in a spatial format in the region of West Macedonia. Artificial intelligence (AI) tools will be used for data correction and prediction of health deterioration with climatic conditions and air pollution at local scale. This would reveal the built environment implications against the countryside. The air pollution and climatic data have been collected from meteorological stations and span the period from 2000 to 2009. These will be projected against the mortality rates data in daily, monthly, seasonal and annual grids. The grids will be operated as AI-based warning models for decision makers in order to map the health conditions in rural and urban areas to ensure improved awareness of the healthcare system by taken into account the predicted changing climate conditions. Gridded data of climate conditions, air quality levels against mortality rates will be presented by AI-analysed gridded indicators of the implicated variables. An Al-based gridded warning platform at local scales is then developed for future system awareness platform for regional level.Keywords: air quality, artificial inteligence, climatic conditions, mortality
Procedia PDF Downloads 11312457 The Impact of Implementing European Quality Labeling System on the Supply Chain Performance of Food Industry: An Empirical Study of the Egyptian Traditional Food Sector
Authors: Nourhan A. Saad, Sara Elgazzar, Gehan Saleh
Abstract:
The food industry nowadays is becoming customer-oriented and needs faster response time to deal with food incidents. There is a deep need for good traceability systems to help the supply chain (SC) partners to minimize production and distribution of unsafe or poor quality products, which in turn will enhance the food SC performance. The current food labeling systems implemented in developing countries cannot guarantee that food is authentic, safe and of good quality. Therefore, the use of origin labels, mainly the geographical indications (GIs), allows SC partners to define quality standards and defend their products' reputation. According to our knowledge there are no studies discussed the use of GIs in developing countries. This research represents a research schema about the implementation of European quality labeling system in developing countries and its impact on enhancing SC performance. An empirical study was conducted on the Egyptian traditional food sector based on a sample of seven restaurants implementing the Med-diet labeling system. First, in-depth interviews were carried out to analyze the Egyptian traditional food SC. Then, a framework was developed to link the European quality labeling system and SC performance. Finally, a structured survey was conducted based on the applied framework to investigate the impact of Med-diet labeling system on the SC performance. The research provides an applied framework linking Med-diet quality labeling system to SC performance of traditional food sector in developing countries generally and especially in the Egyptian traditional food sector. The framework can be used as a SC performance management tool to increase the effectiveness and efficiency of food industry's SC performance.Keywords: food supply chain, med-diet labeling system, quality labeling system, supply chain performance
Procedia PDF Downloads 31212456 Application of Artificial Neural Network for Prediction of Load-Haul-Dump Machine Performance Characteristics
Authors: J. Balaraju, M. Govinda Raj, C. S. N. Murthy
Abstract:
Every industry is constantly looking for enhancement of its day to day production and productivity. This can be possible only by maintaining the men and machinery at its adequate level. Prediction of performance characteristics plays an important role in performance evaluation of the equipment. Analytical and statistical approaches will take a bit more time to solve complex problems such as performance estimations as compared with software-based approaches. Keeping this in view the present study deals with an Artificial Neural Network (ANN) modelling of a Load-Haul-Dump (LHD) machine to predict the performance characteristics such as reliability, availability and preventive maintenance (PM). A feed-forward-back-propagation ANN technique has been used to model the Levenberg-Marquardt (LM) training algorithm. The performance characteristics were computed using Isograph Reliability Workbench 13.0 software. These computed values were validated using predicted output responses of ANN models. Further, recommendations are given to the industry based on the performed analysis for improvement of equipment performance.Keywords: load-haul-dump, LHD, artificial neural network, ANN, performance, reliability, availability, preventive maintenance
Procedia PDF Downloads 15012455 Study of the Quality of Surface Water in the Upper Cheliff Basin
Authors: Touhari Fadhila, Mehaiguene Madjid, Meddi Mohamed
Abstract:
This work aims to assess the quality of water dams based on the monitoring of physical-chemical parameters by the National Agency of Water Resources (ANRH) for a period of 10 years (1999-2008). Quality sheets of surface water for the four dams in the region of upper Cheliff (Ghrib, Deurdeur, Harreza, and Ouled Mellouk) show a degradation of the quality (organic pollution expressed in COD and OM) over time. Indeed, the registered amount of COD often exceeds 50 mg/ l, and the OM exceeds 15 mg/l. This pollution is caused by discharges of wastewater and eutrophication. The waters of dams show a very high salinity (TDS = 2574 mg/l in 2008 for the waters of the dam Ghrib, standard = 1500 mg/l). The concentration of nitrogenous substances (NH4+, NO2-) in water is high in 2008 at Ouled Melloukdam. This pollution is caused by the oxidation of nitrogenous organic matter. On the other hand, we studied the relationship between the evolution of quality parameters and filling dams. We observed a decrease in the salinity and COD following an improvement of the filling state of dams, this resides in the dilution water through the contribution of rainwater. While increased levels of nitrates and phosphorus in the waters of four dams studied during the rainy season is compared to the dry period, this increase may be due to leaching from fertilizers used in agricultural soils situated in watersheds.Keywords: surface water quality, pollution, physical-chemical parameters, upper Cheliff basin.
Procedia PDF Downloads 23312454 The Quality Assessment of Seismic Reflection Survey Data Using Statistical Analysis: A Case Study of Fort Abbas Area, Cholistan Desert, Pakistan
Authors: U. Waqas, M. F. Ahmed, A. Mehmood, M. A. Rashid
Abstract:
In geophysical exploration surveys, the quality of acquired data holds significant importance before executing the data processing and interpretation phases. In this study, 2D seismic reflection survey data of Fort Abbas area, Cholistan Desert, Pakistan was taken as test case in order to assess its quality on statistical bases by using normalized root mean square error (NRMSE), Cronbach’s alpha test (α) and null hypothesis tests (t-test and F-test). The analysis challenged the quality of the acquired data and highlighted the significant errors in the acquired database. It is proven that the study area is plain, tectonically least affected and rich in oil and gas reserves. However, subsurface 3D modeling and contouring by using acquired database revealed high degrees of structural complexities and intense folding. The NRMSE had highest percentage of residuals between the estimated and predicted cases. The outcomes of hypothesis testing also proved the biasness and erraticness of the acquired database. Low estimated value of alpha (α) in Cronbach’s alpha test confirmed poor reliability of acquired database. A very low quality of acquired database needs excessive static correction or in some cases, reacquisition of data is also suggested which is most of the time not feasible on economic grounds. The outcomes of this study could be used to assess the quality of large databases and to further utilize as a guideline to establish database quality assessment models to make much more informed decisions in hydrocarbon exploration field.Keywords: Data quality, Null hypothesis, Seismic lines, Seismic reflection survey
Procedia PDF Downloads 16412453 The Application of Artificial Neural Networks for the Performance Prediction of Evacuated Tube Solar Air Collector with Phase Change Material
Authors: Sukhbir Singh
Abstract:
This paper describes the modeling of novel solar air collector (NSAC) system by using artificial neural network (ANN) model. The objective of the study is to demonstrate the application of the ANN model to predict the performance of the NSAC with acetamide as a phase change material (PCM) storage. Input data set consist of time, solar intensity and ambient temperature wherever as outlet air temperature of NSAC was considered as output. Experiments were conducted between 9.00 and 24.00 h in June and July 2014 underneath the prevailing atmospheric condition of Kurukshetra (city of the India). After that, experimental results were utilized to train the back propagation neural network (BPNN) to predict the outlet air temperature of NSAC. The results of proposed algorithm show that the BPNN is effective tool for the prediction of responses. The BPNN predicted results are 99% in agreement with the experimental results.Keywords: Evacuated tube solar air collector, Artificial neural network, Phase change material, solar air collector
Procedia PDF Downloads 12012452 Machine Learning Based Gender Identification of Authors of Entry Programs
Authors: Go Woon Kwak, Siyoung Jun, Soyun Maeng, Haeyoung Lee
Abstract:
Entry is an education platform used in South Korea, created to help students learn to program, in which they can learn to code while playing. Using the online version of the entry, teachers can easily assign programming homework to the student and the students can make programs simply by linking programming blocks. However, the programs may be made by others, so that the authors of the programs should be identified. In this paper, as the first step toward author identification of entry programs, we present an artificial neural network based classification approach to identify genders of authors of a program written in an entry. A neural network has been trained from labeled training data that we have collected. Our result in progress, although preliminary, shows that the proposed approach could be feasible to be applied to the online version of entry for gender identification of authors. As future work, we will first use a machine learning technique for age identification of entry programs, which would be the second step toward the author identification.Keywords: artificial intelligence, author identification, deep neural network, gender identification, machine learning
Procedia PDF Downloads 32412451 Cancer Patients' Quality of Life and Fatigue: A Correlational Study
Authors: Abdul-Monim Batiha
Abstract:
Aim: The aim of this study were to correlate Jordanian cancer patients’ quality of life and fatigue with selected variables (age, sex, religion, marital status, level of education, type of cancer, number of people living in the same household, type of radiotherapy, dose of radiotherapy, and hemoglobin level). Background: Radiotherapy and chemotherapy remain devastating agents that altered patients’ normal lives. Methods: A correlational design was used in this study to 80 cancer patients and required radiotherapy treatment using a convenience sampling procedure. Results: No significant differences were found in the relationship between quality of life scores and selected variables. A significant negative relationship was found between quality of life scores and the side effects of radiotherapy treatment. Significant positive relationships were found between fatigue scores measured by Piper Fatigue Scale and cancer complications, and radiotherapy side effects. Conclusion: Cancer patients’ quality of life and fatigue are affected by radiotherapy’s side effects and cancer complications. Implications for Nursing: Nurses should try to prevent and manage the negative side effects of radiotherapy and complications of cancer. Such an initiative would serve to design specific nursing interventions that have the potential to help patients enjoy their lives and perform their activities.Keywords: cancer patients, piper fatigue scale, fatigue, quality of life, radiotherapy
Procedia PDF Downloads 53812450 An Exploration of Lighting Quality on Sleep Quality of Children in Elementary Schools
Authors: Mohamed Boubekri, Kristen Bub, Jaewook Lee, Kate Kurry
Abstract:
In this study, we explored the impact of light, particularly daylight on sleep time and quality of elementary school children. Sleep actigraphy was used to measure objectively sleep time and sleep efficiency. Our data show a good correlation between light levels and sleep. In some cases, differences of up to 36 minutes were found between students in low light levels and those in high light level classrooms. We recommend, therefore, that classroom design need to pay attention to the daily daylight exposures elementary school children are receiving.Keywords: light, daylight, actigraphy, sleep, circadian rhythm, sustainable architecture, elementary school, children
Procedia PDF Downloads 14212449 Evaluation of Short-Term Load Forecasting Techniques Applied for Smart Micro-Grids
Authors: Xiaolei Hu, Enrico Ferrera, Riccardo Tomasi, Claudio Pastrone
Abstract:
Load Forecasting plays a key role in making today's and future's Smart Energy Grids sustainable and reliable. Accurate power consumption prediction allows utilities to organize in advance their resources or to execute Demand Response strategies more effectively, which enables several features such as higher sustainability, better quality of service, and affordable electricity tariffs. It is easy yet effective to apply Load Forecasting at larger geographic scale, i.e. Smart Micro Grids, wherein the lower available grid flexibility makes accurate prediction more critical in Demand Response applications. This paper analyses the application of short-term load forecasting in a concrete scenario, proposed within the EU-funded GreenCom project, which collect load data from single loads and households belonging to a Smart Micro Grid. Three short-term load forecasting techniques, i.e. linear regression, artificial neural networks, and radial basis function network, are considered, compared, and evaluated through absolute forecast errors and training time. The influence of weather conditions in Load Forecasting is also evaluated. A new definition of Gain is introduced in this paper, which innovatively serves as an indicator of short-term prediction capabilities of time spam consistency. Two models, 24- and 1-hour-ahead forecasting, are built to comprehensively compare these three techniques.Keywords: short-term load forecasting, smart micro grid, linear regression, artificial neural networks, radial basis function network, gain
Procedia PDF Downloads 46812448 Implementation of Total Quality Management in a Small Scale Industry: A Case Study
Authors: Soham Lalwala, Ronita Singh, Yaman Pattanaik
Abstract:
In the present scenario of globalization and privatization, it becomes difficult for small scale industries to sustain due to rapidly increasing competition. In a developing country, most of the gross output is generally obtained from small scale industries. Thus, quality plays a vital role in maintaining customer satisfaction. Total quality management (TQM) is an approach which enables employees to focus on quality rather quantity, further improving the competitiveness, effectiveness and flexibility of the whole organization. The objective of the paper is to present the application of TQM and develop a TQM Model in a small scale industry of narrow fabrics in Surat, India named ‘Rajdhani Lace & Borders’. Further, critical success factors relating all the fabric processes involved were identified. The data was collected by conducting a questionnaire survey. After data was collected, critical areas were visualized using different tools of TQM such as cause and effect diagram, control charts and run charts. Overall, responses were analyzed, and factor analysis was used to develop the model. The study presented here will aid the management of the above-mentioned industry in identifying the weaker areas and thus give a plausible solution to improve the total productivity of the firm along with effective utilization of resources and better customer satisfaction.Keywords: critical success factors, narrow fabrics, quality, small scale industries, total quality management (TQM)
Procedia PDF Downloads 25312447 Bias Prevention in Automated Diagnosis of Melanoma: Augmentation of a Convolutional Neural Network Classifier
Authors: Kemka Ihemelandu, Chukwuemeka Ihemelandu
Abstract:
Melanoma remains a public health crisis, with incidence rates increasing rapidly in the past decades. Improving diagnostic accuracy to decrease misdiagnosis using Artificial intelligence (AI) continues to be documented. Unfortunately, unintended racially biased outcomes, a product of lack of diversity in the dataset used, with a noted class imbalance favoring lighter vs. darker skin tone, have increasingly been recognized as a problem.Resulting in noted limitations of the accuracy of the Convolutional neural network (CNN)models. CNN models are prone to biased output due to biases in the dataset used to train them. Our aim in this study was the optimization of convolutional neural network algorithms to mitigate bias in the automated diagnosis of melanoma. We hypothesized that our proposed training algorithms based on a data augmentation method to optimize the diagnostic accuracy of a CNN classifier by generating new training samples from the original ones will reduce bias in the automated diagnosis of melanoma. We applied geometric transformation, including; rotations, translations, scale change, flipping, and shearing. Resulting in a CNN model that provided a modifiedinput data making for a model that could learn subtle racial features. Optimal selection of the momentum and batch hyperparameter increased our model accuracy. We show that our augmented model reduces bias while maintaining accuracy in the automated diagnosis of melanoma.Keywords: bias, augmentation, melanoma, convolutional neural network
Procedia PDF Downloads 21112446 Potential Risk Assessment Due to Groundwater Quality Deterioration and Quantifying the Major Influencing Factors Using Geographical Detectors in the Gunabay Watershed of Ethiopia
Authors: Asnakew Mulualem Tegegne, Tarun Kumar Lohani, , Abunu Atlabachew Eshete
Abstract:
Groundwater quality has become deteriorated due to natural and anthropogenic activities. Poor water quality has a potential risk to human health and the environment. Therefore, the study aimed to assess the potential risk of groundwater quality contamination levels and public health risks in the Gunabay watershed. For this task, seventy-eight groundwater samples were collected from thirty-nine locations in the dry and wet seasons during 2022. The ground water contamination index was applied to assess the overall quality of groundwater. Six major driving forces (temperature, population density, soil, land cover, recharge, and geology) and their quantitative impact of each factor on groundwater quality deterioration were demonstrated using Geodetector. The results showed that low groundwater quality was detected in urban and agricultural land. Especially nitrate contamination was highly linked to groundwater quality deterioration and public health risks, and a medium contamination level was observed in the area. This indicates that the inappropriate application of fertilizer on agricultural land and wastewater from urban areas has a great impact on shallow aquifers in the study area. Furthermore, the major influencing factors are ranked as soil type (0.33–0.31)>recharge (0.17–0.15)>temperature (0.13–0.08)>population density (0.1–0.08)>land cover types (0.07– 0.04)>lithology (0.05–0.04). The interaction detector revealed that the interaction between soil ∩ recharge, soil ∩ temperature, and soil ∩ land cover, temperature ∩ recharge is more influential to deteriorate groundwater quality in both seasons. Identification and quantification of the major influencing factors may provide new insight into groundwater resource management.Keywords: groundwater contamination index, geographical detectors, public health · influencing factors, and water resources management
Procedia PDF Downloads 1712445 Quality Management and Employees' Attitudes: An Example from Certified Enterprises
Authors: Ala Hanetite
Abstract:
This study aims to investigate the implications of quality management system (QMS) practices in employees' attitudes relating to job involvement, job satisfaction, career satisfaction, and organizational commitment. Design/methodology/approach: This study was accomplished through the use of a questionnaire. Twenty hypotheses related to QMS practices and the employees' attitudes were formulated and tested. Findings: The results indicate that responsibility and teamwork have a significant and positive correlation with job involvement, job satisfaction, career satisfaction, as well as organizational commitment. Ongoing improvement and problem solving have significant implications in organizational commitment. In addition, training and education, as well as customer focus, did not demonstrate any favorable contribution to the employees' attitudes. Originality/value: The study recommends that management should be more committed to the development of quality practices to sustain and enhance employees' positive attitudes toward their job. Such practices are a competitive strategy to attract and retain competent employees.Keywords: attitudes, employee, quality management system, competitive strategy
Procedia PDF Downloads 27612444 Design and Implementation of a Nano-Power Wireless Sensor Device for Smart Home Security
Authors: Chia-Chi Chang
Abstract:
Most battery-driven wireless sensor devices will enter in sleep mode as soon as possible to extend the overall lifetime of a sensor network. It is necessary to turn off unnecessary radio and peripheral functions, especially the radio unit always consumes more energy than other components during wireless communication. The microcontroller is the most important part of the wireless sensor device. It is responsible for the manipulation of sensing data and communication protocols. The microcontroller always has different sleep modes, each with a different level of energy usage. The deeper the sleep, the lower the energy consumption. Most wireless sensor devices can only enter the sleep mode: the external low-frequency oscillator is still running to wake up the sleeping microcontroller when the sleep timer expires. In this paper, our sensor device can enter the extended sleep mode: none of the oscillator is running and the wireless sensor device has the nanoampere consumption and self-awaking ability. Finally, these wireless sensor devices were deployed in a smart home security network.Keywords: wireless sensor network, battery-driven, sleep mode, home security
Procedia PDF Downloads 30712443 Evaluation of Railway Network and Service Performance Based on Transportation Sustainability in DKI Jakarta
Authors: Nur Bella Octoria Bella, Ayomi Dita Rarasati
Abstract:
DKI Jakarta is Indonesia's capital city with the 10th highest congestion rate in the world based on the 2019 traffic index. Other than that based on World Air Quality Report in 2019 showed DKI Jakarta's air pollutant concentrate 49.4 µg and the 5th highest air pollutant in the world. In the urban city nowadays, the mobility rate is high enough and the efficiency for sustainability assessment in transport infrastructure development is needed. This efficiency is the important key for sustainable infrastructure development. DKI Jakarta is nowadays in the process of constructing the railway infrastructure to support the transportation system. The problems appearing are the railway infrastructure networks and the service in DKI Jakarta already planned based on sustainability factors or not. Therefore, the aim of this research is to make the evaluation of railways infrastructure networks performance and services in DKI Jakarta regards on the railway sustainability key factors. Further, this evaluation will be used to make the railway sustainability assessment framework and to offer some of the alternative solutions to improve railway transportation sustainability in DKI Jakarta. Firstly a very detailed literature review of papers that have focused on railway sustainability factors and their improvements of railway sustainability, published in the scientific journal in the period 2011 until 2021. Regarding the sustainability factors from the literature review, further, it is used to assess the current condition of railway infrastructure in DKI Jakarta. The evaluation will be using a Likert rate questionnaire and directed to the transportation railway expert and the passenger. Furthermore, the mapping and evaluation rate based on the sustainability factors will be compared to the effect factors using the Analytical Hierarchical Process (AHP). This research offers the network's performance and service rate impact on the sustainability aspect and the passenger willingness for using the rail public transportation in DKI Jakarta.Keywords: transportation sustainability, railway transportation, sustainability, DKI Jakarta
Procedia PDF Downloads 16312442 Comparative Study on Daily Discharge Estimation of Soolegan River
Authors: Redvan Ghasemlounia, Elham Ansari, Hikmet Kerem Cigizoglu
Abstract:
Hydrological modeling in arid and semi-arid regions is very important. Iran has many regions with these climate conditions such as Chaharmahal and Bakhtiari province that needs lots of attention with an appropriate management. Forecasting of hydrological parameters and estimation of hydrological events of catchments, provide important information that used for design, management and operation of water resources such as river systems, and dams, widely. Discharge in rivers is one of these parameters. This study presents the application and comparison of some estimation methods such as Feed-Forward Back Propagation Neural Network (FFBPNN), Multi Linear Regression (MLR), Gene Expression Programming (GEP) and Bayesian Network (BN) to predict the daily flow discharge of the Soolegan River, located at Chaharmahal and Bakhtiari province, in Iran. In this study, Soolegan, station was considered. This Station is located in Soolegan River at 51° 14՜ Latitude 31° 38՜ longitude at North Karoon basin. The Soolegan station is 2086 meters higher than sea level. The data used in this study are daily discharge and daily precipitation of Soolegan station. Feed Forward Back Propagation Neural Network(FFBPNN), Multi Linear Regression (MLR), Gene Expression Programming (GEP) and Bayesian Network (BN) models were developed using the same input parameters for Soolegan's daily discharge estimation. The results of estimation models were compared with observed discharge values to evaluate performance of the developed models. Results of all methods were compared and shown in tables and charts.Keywords: ANN, multi linear regression, Bayesian network, forecasting, discharge, gene expression programming
Procedia PDF Downloads 56112441 Learning Traffic Anomalies from Generative Models on Real-Time Observations
Authors: Fotis I. Giasemis, Alexandros Sopasakis
Abstract:
This study focuses on detecting traffic anomalies using generative models applied to real-time observations. By integrating a Graph Neural Network with an attention-based mechanism within the Spatiotemporal Generative Adversarial Network framework, we enhance the capture of both spatial and temporal dependencies in traffic data. Leveraging minute-by-minute observations from cameras distributed across Gothenburg, our approach provides a more detailed and precise anomaly detection system, effectively capturing the complex topology and dynamics of urban traffic networks.Keywords: traffic, anomaly detection, GNN, GAN
Procedia PDF Downloads 7