Search results for: network optimization methods
19662 Performance Estimation of Two Port Multiple-Input and Multiple-Output Antenna for Wireless Local Area Network Applications
Authors: Radha Tomar, Satish K. Jain, Manish Panchal, P. S. Rathore
Abstract:
In the presented work, inset fed microstrip patch antenna (IFMPA) based two port MIMO Antenna system has been proposed, which is suitable for wireless local area network (WLAN) applications. IFMPA has been designed, optimized for 2.4 GHz and applied for MIMO formation. The optimized parameters of the proposed IFMPA have been used for fabrication of antenna and two port MIMO in a laboratory. Fabrication of the designed MIMO antenna has been done and tested experimentally for performance parameters like Envelope Correlation Coefficient (ECC), Mean Effective Gain (MEG), Directive Gain (DG), Channel Capacity Loss (CCL), Multiplexing Efficiency (ME) etc and results are compared with simulated parameters extracted with simulated S parameters to validate the results. The simulated and experimentally measured plots and numerical values of these MIMO performance parameters resembles very much with each other. This shows the success of MIMO antenna design methodology.Keywords: multiple-input and multiple-output, wireless local area network, vector network analyzer, envelope correlation coefficient
Procedia PDF Downloads 5419661 A Safety Analysis Method for Multi-Agent Systems
Authors: Ching Louis Liu, Edmund Kazmierczak, Tim Miller
Abstract:
Safety analysis for multi-agent systems is complicated by the, potentially nonlinear, interactions between agents. This paper proposes a method for analyzing the safety of multi-agent systems by explicitly focusing on interactions and the accident data of systems that are similar in structure and function to the system being analyzed. The method creates a Bayesian network using the accident data from similar systems. A feature of our method is that the events in accident data are labeled with HAZOP guide words. Our method uses an Ontology to abstract away from the details of a multi-agent implementation. Using the ontology, our methods then constructs an “Interaction Map,” a graphical representation of the patterns of interactions between agents and other artifacts. Interaction maps combined with statistical data from accidents and the HAZOP classifications of events can be converted into a Bayesian Network. Bayesian networks allow designers to explore “what it” scenarios and make design trade-offs that maintain safety. We show how to use the Bayesian networks, and the interaction maps to improve multi-agent system designs.Keywords: multi-agent system, safety analysis, safety model, integration map
Procedia PDF Downloads 41719660 Resolving Urban Mobility Issues through Network Restructuring of Urban Mass Transport
Authors: Aditya Purohit, Neha Bansal
Abstract:
Unplanned urbanization and multidirectional sprawl of the cities have resulted in increased motorization and deteriorating transport conditions like traffic congestion, longer commuting, pollution, increased carbon footprint, and above all increased fatalities. In order to overcome these problems, various practices have been adopted including– promoting and implementing mass transport; traffic junction channelization; smart transport etc. However, these methods are found to be primarily focusing on vehicular mobility rather than people accessibility. With this research gap, this paper tries to resolve the mobility issues for Ahmedabad city in India, which being the economic capital Gujarat state has a huge commuter and visitor inflow. This research aims to resolve the traffic congestion and urban mobility issues focusing on Gujarat State Regional Transport Corporation (GSRTC) for the city of Ahmadabad by analyzing the existing operations and network structure of GSRTC followed by finding possibilities of integrating it with other modes of urban transport. The network restructuring (NR) methodology is used with appropriate variations, based on commuter demand and growth pattern of the city. To do these ‘scenarios’ based on priority issues (using 12 parameters) and their best possible solution, are established after route network analysis for 2700 population sample of 20 traffic junctions/nodes across the city. Approximately 5% sample (of passenger inflow) at each node is considered using random stratified sampling technique two scenarios are – Scenario 1: Resolving mobility issues by use of Special Purpose Vehicle (SPV) in joint venture to GSRTC and Private Operators for establishing feeder service, which shall provide a transfer service for passenger for movement from inner city area to identified peripheral terminals; and Scenario 2: Augmenting existing mass transport services such as BRTS and AMTS for using them as feeder service to the identified peripheral terminals. Each of these has now been analyzed for the best suitability/feasibility in network restructuring. A desire-line diagram is constructed using this analysis which indicated that on an average 62% of designated GSRTC routes are overlapping with mass transportation service routes of BRTS and AMTS in the city. This has resulted in duplication of bus services causing traffic congestion especially in the Central Bus Station (CBS). Terminating GSRTC services on the periphery of the city is found to be the best restructuring network proposal. This limits the GSRTC buses at city fringe area and prevents them from entering into the city core areas. These end-terminals of GSRTC are integrated with BRTS and AMTS services which help in segregating intra-state and inter-state bus services. The research concludes that absence of integrated multimodal transport network resulted in complexity of transport access to the commuters. As a further scope of research comparing and understanding of value of access time in total travel time and its implication on generalized cost on trip and how it varies city wise may be taken up.Keywords: mass transportation, multi-modal integration, network restructuring, travel behavior, urban transport
Procedia PDF Downloads 19619659 Explainable Graph Attention Networks
Authors: David Pham, Yongfeng Zhang
Abstract:
Graphs are an important structure for data storage and computation. Recent years have seen the success of deep learning on graphs such as Graph Neural Networks (GNN) on various data mining and machine learning tasks. However, most of the deep learning models on graphs cannot easily explain their predictions and are thus often labelled as “black boxes.” For example, Graph Attention Network (GAT) is a frequently used GNN architecture, which adopts an attention mechanism to carefully select the neighborhood nodes for message passing and aggregation. However, it is difficult to explain why certain neighbors are selected while others are not and how the selected neighbors contribute to the final classification result. In this paper, we present a graph learning model called Explainable Graph Attention Network (XGAT), which integrates graph attention modeling and explainability. We use a single model to target both the accuracy and explainability of problem spaces and show that in the context of graph attention modeling, we can design a unified neighborhood selection strategy that selects appropriate neighbor nodes for both better accuracy and enhanced explainability. To justify this, we conduct extensive experiments to better understand the behavior of our model under different conditions and show an increase in both accuracy and explainability.Keywords: explainable AI, graph attention network, graph neural network, node classification
Procedia PDF Downloads 19719658 Plate-Laminated Slotted-Waveguide Fed 2×3 Planar Inverted F Antenna Array
Authors: Badar Muneer, Waseem Shabir, Faisal Karim Shaikh
Abstract:
Substrate Integrated waveguide based 6-element array of Planar Inverted F antenna (PIFA) has been presented and analyzed parametrically in this paper. The antenna is fed with coupled transverse slots on a plate laminated waveguide cavity to ensure wide bandwidth and simplicity of feeding network. The two-layer structure has one layer dedicated for feeding network and the top layer dedicated for radiating elements. It has been demonstrated that the presented feeding technique for feeding such class of array antennas can be far simple in structure and miniaturized in size when it comes to designing large phased array antenna systems. A good return loss and standing wave ratio of 2:1 has been achieved while maintaining properties of typical PIFA.Keywords: feeding network, laminated waveguide, PIFA, transverse slots
Procedia PDF Downloads 30919657 Quantification and Detection of Non-Sewer Water Infiltration and Inflow in Urban Sewer Systems
Authors: M. Beheshti, S. Saegrov, T. M. Muthanna
Abstract:
Separated sewer systems are designed to transfer the wastewater from houses and industrial sections to wastewater treatment plants. Unwanted water in the sewer systems is a well-known problem, i.e. storm-water inflow is around 50% of the foul sewer, and groundwater infiltration to the sewer system can exceed 50% of total wastewater volume in deteriorated networks. Infiltration and inflow of non-sewer water (I/I) into sewer systems is unfavorable in separated sewer systems and can trigger overloading the system and reducing the efficiency of wastewater treatment plants. Moreover, I/I has negative economic, environmental, and social impacts on urban areas. Therefore, for having sustainable management of urban sewer systems, I/I of unwanted water into the urban sewer systems should be considered carefully and maintenance and rehabilitation plan should be implemented on these water infrastructural assets. This study presents a methodology to identify and quantify the level of I/I into the sewer system. Amount of I/I is evaluated by accurate flow measurement in separated sewer systems for specified isolated catchments in Trondheim city (Norway). Advanced information about the characteristics of I/I is gained by CCTV inspection of sewer pipelines with high I/I contribution. Achieving enhanced knowledge about the detection and localization of non-sewer water in foul sewer system during the wet and dry weather conditions will enable the possibility for finding the problem of sewer system and prioritizing them and taking decisions for rehabilitation and renewal planning in the long-term. Furthermore, preventive measures and optimization of sewer systems functionality and efficiency can be executed by maintenance of sewer system. In this way, the exploitation of sewer system can be improved by maintenance and rehabilitation of existing pipelines in a sustainable way by more practical cost-effective and environmental friendly way. This study is conducted on specified catchments with different properties in Trondheim city. Risvollan catchment is one of these catchments with a measuring station to investigate hydrological parameters through the year, which also has a good database. For assessing the infiltration in a separated sewer system, applying the flow rate measurement method can be utilized in obtaining a general view of the network condition from infiltration point of view. This study discusses commonly used and advanced methods of localizing and quantifying I/I in sewer systems. A combination of these methods give sewer operators the possibility to compare different techniques and obtain reliable and accurate I/I data which is vital for long-term rehabilitation plans.Keywords: flow rate measurement, infiltration and inflow (I/I), non-sewer water, separated sewer systems, sustainable management
Procedia PDF Downloads 33319656 Parametric Appraisal of Robotic Arc Welding of Mild Steel Material by Principal Component Analysis-Fuzzy with Taguchi Technique
Authors: Amruta Rout, Golak Bihari Mahanta, Gunji Bala Murali, Bibhuti Bhusan Biswal, B. B. V. L. Deepak
Abstract:
The use of industrial robots for performing welding operation is one of the chief sign of contemporary welding in these days. The weld joint parameter and weld process parameter modeling is one of the most crucial aspects of robotic welding. As weld process parameters affect the weld joint parameters differently, a multi-objective optimization technique has to be utilized to obtain optimal setting of weld process parameter. In this paper, a hybrid optimization technique, i.e., Principal Component Analysis (PCA) combined with fuzzy logic has been proposed to get optimal setting of weld process parameters like wire feed rate, welding current. Gas flow rate, welding speed and nozzle tip to plate distance. The weld joint parameters considered for optimization are the depth of penetration, yield strength, and ultimate strength. PCA is a very efficient multi-objective technique for converting the correlated and dependent parameters into uncorrelated and independent variables like the weld joint parameters. Also in this approach, no need for checking the correlation among responses as no individual weight has been assigned to responses. Fuzzy Inference Engine can efficiently consider these aspects into an internal hierarchy of it thereby overcoming various limitations of existing optimization approaches. At last Taguchi method is used to get the optimal setting of weld process parameters. Therefore, it has been concluded the hybrid technique has its own advantages which can be used for quality improvement in industrial applications.Keywords: robotic arc welding, weld process parameters, weld joint parameters, principal component analysis, fuzzy logic, Taguchi method
Procedia PDF Downloads 17919655 Dry Relaxation Shrinkage Prediction of Bordeaux Fiber Using a Feed Forward Neural
Authors: Baeza S. Roberto
Abstract:
The knitted fabric suffers a deformation in its dimensions due to stretching and tension factors, transverse and longitudinal respectively, during the process in rectilinear knitting machines so it performs a dry relaxation shrinkage procedure and thermal action of prefixed to obtain stable conditions in the knitting. This paper presents a dry relaxation shrinkage prediction of Bordeaux fiber using a feed forward neural network and linear regression models. Six operational alternatives of shrinkage were predicted. A comparison of the results was performed finding neural network models with higher levels of explanation of the variability and prediction. The presence of different reposes are included. The models were obtained through a neural toolbox of Matlab and Minitab software with real data in a knitting company of Southern Guanajuato. The results allow predicting dry relaxation shrinkage of each alternative operation.Keywords: neural network, dry relaxation, knitting, linear regression
Procedia PDF Downloads 58319654 IoT: State-of-the-Art and Future Directions
Authors: Bashir Abdu Muzakkari, Aisha Umar Sulaiman, Mohamed Afendee Muhamad, Sanah Abdullahi Muaz
Abstract:
The field of the Internet of Things (IoT) is rapidly expanding and has the potential to completely change how we work, live, and interact with the world. The Internet of Things (IoT) is the term used to describe a network of networked physical objects, including machinery, vehicles, and buildings, which are equipped with electronics, software, sensors, and network connectivity. This review paper aims to provide a comprehensive overview of the current state of IoT, including its definition, key components, development history, and current applications. The paper will also discuss the challenges and opportunities presented by IoT, as well as its potential impact on various industries, such as healthcare, agriculture, and transportation. In addition, this paper will highlight the ethical and security concerns associated with IoT and the need for effective solutions to address these challenges. The paper concludes by highlighting the prospects of IoT and the directions for future research in this field.Keywords: internet of things, IoT, sensors, network
Procedia PDF Downloads 17119653 Enhancement of Road Defect Detection Using First-Level Algorithm Based on Channel Shuffling and Multi-Scale Feature Fusion
Authors: Yifan Hou, Haibo Liu, Le Jiang, Wandong Su, Binqing Wang
Abstract:
Road defect detection is crucial for modern urban management and infrastructure maintenance. Traditional road defect detection methods mostly rely on manual labor, which is not only inefficient but also difficult to ensure their reliability. However, existing deep learning-based road defect detection models have poor detection performance in complex environments and lack robustness to multi-scale targets. To address this challenge, this paper proposes a distinct detection framework based on the one stage algorithm network structure. This article designs a deep feature extraction network based on RCSDarknet, which applies channel shuffling to enhance information fusion between tensors. Through repeated stacking of RCS modules, the information flow between different channels of adjacent layer features is enhanced to improve the model's ability to capture target spatial features. In addition, a multi-scale feature fusion mechanism with weighted dual flow paths was adopted to fuse spatial features of different scales, thereby further improving the detection performance of the model at different scales. To validate the performance of the proposed algorithm, we tested it using the RDD2022 dataset. The experimental results show that the enhancement algorithm achieved 84.14% mAP, which is 1.06% higher than the currently advanced YOLOv8 algorithm. Through visualization analysis of the results, it can also be seen that our proposed algorithm has good performance in detecting targets of different scales in complex scenes. The above experimental results demonstrate the effectiveness and superiority of the proposed algorithm, providing valuable insights for advancing real-time road defect detection methods.Keywords: roads, defect detection, visualization, deep learning
Procedia PDF Downloads 519652 Parallel 2-Opt Local Search on GPU
Authors: Wen-Bao Qiao, Jean-Charles Créput
Abstract:
To accelerate the solution for large scale traveling salesman problems (TSP), a parallel 2-opt local search algorithm with simple implementation based on Graphics Processing Unit (GPU) is presented and tested in this paper. The parallel scheme is based on technique of data decomposition by dynamically assigning multiple K processors on the integral tour to treat K edges’ 2-opt local optimization simultaneously on independent sub-tours, where K can be user-defined or have a function relationship with input size N. We implement this algorithm with doubly linked list on GPU. The implementation only requires O(N) memory. We compare this parallel 2-opt local optimization against sequential exhaustive 2-opt search along integral tour on TSP instances from TSPLIB with more than 10000 cities.Keywords: parallel 2-opt, double links, large scale TSP, GPU
Procedia PDF Downloads 62019651 Observed Changes in Constructed Precipitation at High Resolution in Southern Vietnam
Authors: Nguyen Tien Thanh, Günter Meon
Abstract:
Precipitation plays a key role in water cycle, defining the local climatic conditions and in ecosystem. It is also an important input parameter for water resources management and hydrologic models. With spatial continuous data, a certainty of discharge predictions or other environmental factors is unquestionably better than without. This is, however, not always willingly available to acquire for a small basin, especially for coastal region in Vietnam due to a low network of meteorological stations (30 stations) on long coast of 3260 km2. Furthermore, available gridded precipitation datasets are not fine enough when applying to hydrologic models. Under conditions of global warming, an application of spatial interpolation methods is a crucial for the climate change impact studies to obtain the spatial continuous data. In recent research projects, although some methods can perform better than others do, no methods draw the best results for all cases. The objective of this paper therefore, is to investigate different spatial interpolation methods for daily precipitation over a small basin (approximately 400 km2) located in coastal region, Southern Vietnam and find out the most efficient interpolation method on this catchment. The five different interpolation methods consisting of cressman, ordinary kriging, regression kriging, dual kriging and inverse distance weighting have been applied to identify the best method for the area of study on the spatio-temporal scale (daily, 10 km x 10 km). A 30-year precipitation database was created and merged into available gridded datasets. Finally, observed changes in constructed precipitation were performed. The results demonstrate that the method of ordinary kriging interpolation is an effective approach to analyze the daily precipitation. The mixed trends of increasing and decreasing monthly, seasonal and annual precipitation have documented at significant levels.Keywords: interpolation, precipitation, trend, vietnam
Procedia PDF Downloads 27419650 Multi-Objective Optimization of Electric Discharge Machining for Inconel 718
Authors: Pushpendra S. Bharti, S. Maheshwari
Abstract:
Electric discharge machining (EDM) is one of the most widely used non-conventional manufacturing process to shape difficult-to-cut materials. The process yield, in terms of material removal rate, surface roughness and tool wear rate, of EDM may considerably be improved by selecting the optimal combination(s) of process parameters. This paper employs Multi-response signal-to-noise (MRSN) ratio technique to find the optimal combination(s) of the process parameters during EDM of Inconel 718. Three cases v.i.z. high cutting efficiency, high surface finish, and normal machining have been taken and the optimal combinations of input parameters have been obtained for each case. Analysis of variance (ANOVA) has been employed to find the dominant parameter(s) in all three cases. The experimental verification of the obtained results has also been made. MRSN ratio technique found to be a simple and effective multi-objective optimization technique.Keywords: electric discharge machining, material removal rate, surface roughness, too wear rate, multi-response signal-to-noise ratio, multi response signal-to-noise ratio, optimization
Procedia PDF Downloads 35219649 Kriging-Based Global Optimization Method for Bluff Body Drag Reduction
Authors: Bingxi Huang, Yiqing Li, Marek Morzynski, Bernd R. Noack
Abstract:
We propose a Kriging-based global optimization method for active flow control with multiple actuation parameters. This method is designed to converge quickly and avoid getting trapped into local minima. We follow the model-free explorative gradient method (EGM) to alternate between explorative and exploitive steps. This facilitates a convergence similar to a gradient-based method and the parallel exploration of potentially better minima. In contrast to EGM, both kinds of steps are performed with Kriging surrogate model from the available data. The explorative step maximizes the expected improvement, i.e., favors regions of large uncertainty. The exploitive step identifies the best location of the cost function from the Kriging surrogate model for a subsequent weight-biased linear-gradient descent search method. To verify the effectiveness and robustness of the improved Kriging-based optimization method, we have examined several comparative test problems of varying dimensions with limited evaluation budgets. The results show that the proposed algorithm significantly outperforms some model-free optimization algorithms like genetic algorithm and differential evolution algorithm with a quicker convergence for a given budget. We have also performed direct numerical simulations of the fluidic pinball (N. Deng et al. 2020 J. Fluid Mech.) on three circular cylinders in equilateral-triangular arrangement immersed in an incoming flow at Re=100. The optimal cylinder rotations lead to 44.0% net drag power saving with 85.8% drag reduction and 41.8% actuation power. The optimal results for active flow control based on this configuration have achieved boat-tailing mechanism by employing Coanda forcing and wake stabilization by delaying separation and minimizing the wake region.Keywords: direct numerical simulations, flow control, kriging, stochastic optimization, wake stabilization
Procedia PDF Downloads 10519648 Mixed Integer Programing for Multi-Tier Rebate with Discontinuous Cost Function
Authors: Y. Long, L. Liu, K. V. Branin
Abstract:
One challenge faced by procurement decision-maker during the acquisition process is how to compare similar products from different suppliers and allocate orders among different products or services. This work focuses on allocating orders among multiple suppliers considering rebate. The objective function is to minimize the total acquisition cost including purchasing cost and rebate benefit. Rebate benefit is complex and difficult to estimate at the ordering step. Rebate rules vary for different suppliers and usually change over time. In this work, we developed a system to collect the rebate policies, standardized the rebate policies and developed two-stage optimization models for ordering allocation. Rebate policy with multi-tiers is considered in modeling. The discontinuous cost function of rebate benefit is formulated for different scenarios. A piecewise linear function is used to approximate the discontinuous cost function of rebate benefit. And a Mixed Integer Programing (MIP) model is built for order allocation problem with multi-tier rebate. A case study is presented and it shows that our optimization model can reduce the total acquisition cost by considering rebate rules.Keywords: discontinuous cost function, mixed integer programming, optimization, procurement, rebate
Procedia PDF Downloads 25719647 Toward an Understanding of the Neurofunctional Dissociation between Animal and Tool Concepts: A Graph Theoretical Analysis
Authors: Skiker Kaoutar, Mounir Maouene
Abstract:
Neuroimaging studies have shown that animal and tool concepts rely on distinct networks of brain areas. Animal concepts depend predominantly on temporal areas while tool concepts rely on fronto-temporo-parietal areas. However, the origin of this neurofunctional distinction for processing animal and tool concepts remains still unclear. Here, we address this question from a network perspective suggesting that the neural distinction between animals and tools might reflect the differences in their structural semantic networks. We build semantic networks for animal and tool concepts derived from Mc Rae and colleagues’s behavioral study conducted on a large number of participants. These two networks are thus analyzed through a large number of graph theoretical measures for small-worldness: centrality, clustering coefficient, average shortest path length, as well as resistance to random and targeted attacks. The results indicate that both animal and tool networks have small-world properties. More importantly, the animal network is more vulnerable to targeted attacks compared to the tool network a result that correlates with brain lesions studies.Keywords: animals, tools, network, semantics, small-world, resilience to damage
Procedia PDF Downloads 54619646 Attention-Based ResNet for Breast Cancer Classification
Authors: Abebe Mulugojam Negash, Yongbin Yu, Ekong Favour, Bekalu Nigus Dawit, Molla Woretaw Teshome, Aynalem Birtukan Yirga
Abstract:
Breast cancer remains a significant health concern, necessitating advancements in diagnostic methodologies. Addressing this, our paper confronts the notable challenges in breast cancer classification, particularly the imbalance in datasets and the constraints in the accuracy and interpretability of prevailing deep learning approaches. We proposed an attention-based residual neural network (ResNet), which effectively combines the robust features of ResNet with an advanced attention mechanism. Enhanced through strategic data augmentation and positive weight adjustments, this approach specifically targets the issue of data imbalance. The proposed model is tested on the BreakHis dataset and achieved accuracies of 99.00%, 99.04%, 98.67%, and 98.08% in different magnifications (40X, 100X, 200X, and 400X), respectively. We evaluated the performance by using different evaluation metrics such as precision, recall, and F1-Score and made comparisons with other state-of-the-art methods. Our experiments demonstrate that the proposed model outperforms existing approaches, achieving higher accuracy in breast cancer classification.Keywords: residual neural network, attention mechanism, positive weight, data augmentation
Procedia PDF Downloads 9919645 Nonlinear Modeling of the PEMFC Based on NNARX Approach
Authors: Shan-Jen Cheng, Te-Jen Chang, Kuang-Hsiung Tan, Shou-Ling Kuo
Abstract:
Polymer Electrolyte Membrane Fuel Cell (PEMFC) is such a time-vary nonlinear dynamic system. The traditional linear modeling approach is hard to estimate structure correctly of PEMFC system. From this reason, this paper presents a nonlinear modeling of the PEMFC using Neural Network Auto-regressive model with eXogenous inputs (NNARX) approach. The multilayer perception (MLP) network is applied to evaluate the structure of the NNARX model of PEMFC. The validity and accuracy of NNARX model are tested by one step ahead relating output voltage to input current from measured experimental of PEMFC. The results show that the obtained nonlinear NNARX model can efficiently approximate the dynamic mode of the PEMFC and model output and system measured output consistently.Keywords: PEMFC, neural network, nonlinear modeling, NNARX
Procedia PDF Downloads 38019644 Software-Defined Networking: A New Approach to Fifth Generation Networks: Security Issues and Challenges Ahead
Authors: Behrooz Daneshmand
Abstract:
Software Defined Networking (SDN) is designed to meet the future needs of 5G mobile networks. The SDN architecture offers a new solution that involves separating the control plane from the data plane, which is usually paired together. Network functions traditionally performed on specific hardware can now be abstracted and virtualized on any device, and a centralized software-based administration approach is based on a central controller, facilitating the development of modern applications and services. These plan standards clear the way for a more adaptable, speedier, and more energetic network beneath computer program control compared with a conventional network. We accept SDN gives modern inquire about openings to security, and it can significantly affect network security research in numerous diverse ways. Subsequently, the SDN architecture engages systems to effectively screen activity and analyze threats to facilitate security approach modification and security benefit insertion. The segregation of the data planes and control and, be that as it may, opens security challenges, such as man-in-the-middle attacks (MIMA), denial of service (DoS) attacks, and immersion attacks. In this paper, we analyze security threats to each layer of SDN - application layer - southbound interfaces/northbound interfaces - controller layer and data layer. From a security point of see, the components that make up the SDN architecture have a few vulnerabilities, which may be abused by aggressors to perform noxious activities and hence influence the network and its administrations. Software-defined network assaults are shockingly a reality these days. In a nutshell, this paper highlights architectural weaknesses and develops attack vectors at each layer, which leads to conclusions about further progress in identifying the consequences of attacks and proposing mitigation strategies.Keywords: software-defined networking, security, SDN, 5G/IMT-2020
Procedia PDF Downloads 9819643 Simulation and Optimization of Hybrid Energy System Autonomous PV-Diesel-Wind Power with Battery Storage for Relay Antenna Telecommunication
Authors: Tahri Toufik, Bouchachia Mohamed, Braikia Oussama
Abstract:
The objective of this work is the design and optimization of a hybrid PV-Diesel-Wind power system with storage in order to power a relay antenna telecommunication isolated in Chlef region. The aim of the simulation of this hybrid system by the HOMER software is to determine the size and the number of each element of the system and to determine the optimal technical and economic configuration using monthly average values per year for a fixed charge antenna relay telecommunication of 22kWh/d.Keywords: HOMER, hybrid, PV-diesel-wind system, relay antenna telecommunication
Procedia PDF Downloads 51319642 Multi-Criteria Optimal Management Strategy for in-situ Bioremediation of LNAPL Contaminated Aquifer Using Particle Swarm Optimization
Authors: Deepak Kumar, Jahangeer, Brijesh Kumar Yadav, Shashi Mathur
Abstract:
In-situ remediation is a technique which can remediate either surface or groundwater at the site of contamination. In the present study, simulation optimization approach has been used to develop management strategy for remediating LNAPL (Light Non-Aqueous Phase Liquid) contaminated aquifers. Benzene, toluene, ethyl benzene and xylene are the main component of LNAPL contaminant. Collectively, these contaminants are known as BTEX. In in-situ bioremediation process, a set of injection and extraction wells are installed. Injection wells supply oxygen and other nutrient which convert BTEX into carbon dioxide and water with the help of indigenous soil bacteria. On the other hand, extraction wells check the movement of plume along downstream. In this study, optimal design of the system has been done using PSO (Particle Swarm Optimization) algorithm. A comprehensive management strategy for pumping of injection and extraction wells has been done to attain a maximum allowable concentration of 5 ppm and 4.5 ppm. The management strategy comprises determination of pumping rates, the total pumping volume and the total running cost incurred for each potential injection and extraction well. The results indicate a high pumping rate for injection wells during the initial management period since it facilitates the availability of oxygen and other nutrients necessary for biodegradation, however it is low during the third year on account of sufficient oxygen availability. This is because the contaminant is assumed to have biodegraded by the end of the third year when the concentration drops to a permissible level.Keywords: groundwater, in-situ bioremediation, light non-aqueous phase liquid, BTEX, particle swarm optimization
Procedia PDF Downloads 44319641 BlueVision: A Visual Tool for Exploring a Blockchain Network
Authors: Jett Black, Jordyn Godsey, Gaby G. Dagher, Steve Cutchin
Abstract:
Despite the growing interest in distributed ledger technology, many data visualizations of blockchain are limited to monotonous tabular displays or overly abstract graphical representations that fail to adequately educate individuals on blockchain components and their functionalities. To address these limitations, it is imperative to develop data visualizations that offer not only comprehensive insights into these domains but education as well. This research focuses on providing a conceptual understanding of the consensus process that underlies blockchain technology. This is accomplished through the implementation of a dynamic network visualization and an interactive educational tool called BlueVision. Further, a controlled user study is conducted to measure the effectiveness and usability of BlueVision. The findings demonstrate that the tool represents significant advancements in the field of blockchain visualization, effectively catering to the educational needs of both novice and proficient users.Keywords: blockchain, visualization, consensus, distributed network
Procedia PDF Downloads 6019640 Gariep Dam Basin Management for Satisfying Ecological Flow Requirements
Authors: Dimeji Abe, Nonso Okoye, Gideon Ikpimi, Prince Idemudia
Abstract:
Multi-reservoir optimization operation has been a critical issue for river basin management. Water, as a scarce resource, is in high demand and the problems associated with the reservoir as its storage facility are enormous. The complexity in balancing the supply and demand of this prime resource has created the need to examine the best way to solve the problem using optimization techniques. The objective of this study is to evaluate the performance of the multi-objective meta-heuristic algorithm for the operation of Gariep Dam for satisfying ecological flow requirements. This study uses an evolutionary algorithm called backtrack search algorithm (BSA) to determine the best way to optimise the dam operations of hydropower production, flood control, and water supply without affecting the environmental flow requirement for the survival of aquatic bodies and sustain life downstream of the dam. To achieve this objective, the operations of the dam that corresponds to different tradeoffs between the objectives are optimized. The results indicate the best model from the algorithm that satisfies all the objectives without any constraint violation. It is expected that hydropower generation will be improved and more water will be available for ecological flow requirements with the use of the algorithm. This algorithm also provides farmers with more irrigation water as well to improve their business.Keywords: BSA evolutionary algorithm, metaheuristics, optimization, river basin management
Procedia PDF Downloads 24419639 Understanding and Improving Neural Network Weight Initialization
Authors: Diego Aguirre, Olac Fuentes
Abstract:
In this paper, we present a taxonomy of weight initialization schemes used in deep learning. We survey the most representative techniques in each class and compare them in terms of overhead cost, convergence rate, and applicability. We also introduce a new weight initialization scheme. In this technique, we perform an initial feedforward pass through the network using an initialization mini-batch. Using statistics obtained from this pass, we initialize the weights of the network, so the following properties are met: 1) weight matrices are orthogonal; 2) ReLU layers produce a predetermined number of non-zero activations; 3) the output produced by each internal layer has a unit variance; 4) weights in the last layer are chosen to minimize the error in the initial mini-batch. We evaluate our method on three popular architectures, and a faster converge rates are achieved on the MNIST, CIFAR-10/100, and ImageNet datasets when compared to state-of-the-art initialization techniques.Keywords: deep learning, image classification, supervised learning, weight initialization
Procedia PDF Downloads 13419638 Critical Evaluation and Analysis of Effects of Different Queuing Disciplines on Packets Delivery and Delay for Different Applications
Authors: Omojokun Gabriel Aju
Abstract:
Communication network is a process of exchanging data between two or more devices via some forms of transmission medium using communication protocols. The data could be in form of text, images, audio, video or numbers which can be grouped into FTP, Email, HTTP, VOIP or Video applications. The effectiveness of such data exchange will be proved if they are accurately delivered within specified time. While some senders will not really mind when the data is actually received by the receiving device, inasmuch as it is acknowledged to have been received by the receiver. The time a data takes to get to a receiver could be very important to another sender, as any delay could cause serious problem or even in some cases rendered the data useless. The validity or invalidity of a data after delay will therefore definitely depend on the type of data (information). It is therefore imperative for the network device (such as router) to be able to differentiate among the packets which are time sensitive and those that are not, when they are passing through the same network. So, here is where the queuing disciplines comes to play, to handle network resources when such network is designed to service widely varying types of traffics and manage the available resources according to the configured policies. Therefore, as part of the resources allocation mechanisms, a router within the network must implement some queuing discipline that governs how packets (data) are buffered while waiting to be transmitted. The implementation of the queuing discipline will regulate how the packets are buffered while waiting to be transmitted. In achieving this, various queuing disciplines are being used to control the transmission of these packets, by determining which of the packets get the highest priority, less priority and which packets are dropped. The queuing discipline will therefore control the packets latency by determining how long a packet can wait to be transmitted or dropped. The common queuing disciplines are first-in-first-out queuing, Priority queuing and Weighted-fair queuing (FIFO, PQ and WFQ). This paper critically evaluates and analyse through the use of Optimized Network Evaluation Tool (OPNET) Modeller, Version 14.5 the effects of three queuing disciplines (FIFO, PQ and WFQ) on the performance of 5 different applications (FTP, HTTP, E-Mail, Voice and Video) within specified parameters using packets sent, packets received and transmission delay as performance metrics. The paper finally suggests some ways in which networks can be designed to provide better transmission performance while using these queuing disciplines.Keywords: applications, first-in-first-out queuing (FIFO), optimised network evaluation tool (OPNET), packets, priority queuing (PQ), queuing discipline, weighted-fair queuing (WFQ)
Procedia PDF Downloads 35819637 A New Graph Theoretic Problem with Ample Practical Applications
Authors: Mehmet Hakan Karaata
Abstract:
In this paper, we first coin a new graph theocratic problem with numerous applications. Second, we provide two algorithms for the problem. The first solution is using a brute-force techniques, whereas the second solution is based on an initial identification of the cycles in the given graph. We then provide a correctness proof of the algorithm. The applications of the problem include graph analysis, graph drawing and network structuring.Keywords: algorithm, cycle, graph algorithm, graph theory, network structuring
Procedia PDF Downloads 38519636 Proposed Fault Detection Scheme on Low Voltage Distribution Feeders
Authors: Adewusi Adeoluwawale, Oronti Iyabosola Busola, Akinola Iretiayo, Komolafe Olusola Aderibigbe
Abstract:
The complex and radial structure of the low voltage distribution network (415V) makes it vulnerable to faults which are due to system and the environmental related factors. Besides these, the protective scheme employed on the low voltage network which is the fuse cannot be monitored remotely such that in the event of sustained fault, the utility will have to rely solely on the complaint brought by customers for loss of supply and this tends to increase the length of outages. A microcontroller based fault detection scheme is hereby developed to detect low voltage and high voltage fault conditions which are common faults on this network. Voltages below 198V and above 242V on the distribution feeders are classified and detected as low voltage and high voltages respectively. Results shows that the developed scheme produced a good response time in the detection of these faults.Keywords: fault detection, low voltage distribution feeders, outage times, sustained faults
Procedia PDF Downloads 54019635 Hybrid Hierarchical Clustering Approach for Community Detection in Social Network
Authors: Radhia Toujani, Jalel Akaichi
Abstract:
Social Networks generally present a hierarchy of communities. To determine these communities and the relationship between them, detection algorithms should be applied. Most of the existing algorithms, proposed for hierarchical communities identification, are based on either agglomerative clustering or divisive clustering. In this paper, we present a hybrid hierarchical clustering approach for community detection based on both bottom-up and bottom-down clustering. Obviously, our approach provides more relevant community structure than hierarchical method which considers only divisive or agglomerative clustering to identify communities. Moreover, we performed some comparative experiments to enhance the quality of the clustering results and to show the effectiveness of our algorithm.Keywords: agglomerative hierarchical clustering, community structure, divisive hierarchical clustering, hybrid hierarchical clustering, opinion mining, social network, social network analysis
Procedia PDF Downloads 36419634 Engineering Topology of Ecological Model for Orientation Impact of Sustainability Urban Environments: The Spatial-Economic Modeling
Authors: Moustafa Osman Mohammed
Abstract:
The modeling of a spatial-economic database is crucial in recitation economic network structure to social development. Sustainability within the spatial-economic model gives attention to green businesses to comply with Earth’s Systems. The natural exchange patterns of ecosystems have consistent and periodic cycles to preserve energy and materials flow in systems ecology. When network topology influences formal and informal communication to function in systems ecology, ecosystems are postulated to valence the basic level of spatial sustainable outcome (i.e., project compatibility success). These referred instrumentalities impact various aspects of the second level of spatial sustainable outcomes (i.e., participant social security satisfaction). The sustainability outcomes are modeling composite structure based on a network analysis model to calculate the prosperity of panel databases for efficiency value, from 2005 to 2025. The database is modeling spatial structure to represent state-of-the-art value-orientation impact and corresponding complexity of sustainability issues (e.g., build a consistent database necessary to approach spatial structure; construct the spatial-economic-ecological model; develop a set of sustainability indicators associated with the model; allow quantification of social, economic and environmental impact; use the value-orientation as a set of important sustainability policy measures), and demonstrate spatial structure reliability. The structure of spatial-ecological model is established for management schemes from the perspective pollutants of multiple sources through the input–output criteria. These criteria evaluate the spillover effect to conduct Monte Carlo simulations and sensitivity analysis in a unique spatial structure. The balance within “equilibrium patterns,” such as collective biosphere features, has a composite index of many distributed feedback flows. The following have a dynamic structure related to physical and chemical properties for gradual prolong to incremental patterns. While these spatial structures argue from ecological modeling of resource savings, static loads are not decisive from an artistic/architectural perspective. The model attempts to unify analytic and analogical spatial structure for the development of urban environments in a relational database setting, using optimization software to integrate spatial structure where the process is based on the engineering topology of systems ecology.Keywords: ecological modeling, spatial structure, orientation impact, composite index, industrial ecology
Procedia PDF Downloads 6719633 GA3C for Anomalous Radiation Source Detection
Authors: Chia-Yi Liu, Bo-Bin Xiao, Wen-Bin Lin, Hsiang-Ning Wu, Liang-Hsun Huang
Abstract:
In order to reduce the risk of radiation damage that personnel may suffer during operations in the radiation environment, the use of automated guided vehicles to assist or replace on-site personnel in the radiation environment has become a key technology and has become an important trend. In this paper, we demonstrate our proof of concept for autonomous self-learning radiation source searcher in an unknown environment without a map. The research uses GPU version of Asynchronous Advantage Actor-Critic network (GA3C) of deep reinforcement learning to search for radiation sources. The searcher network, based on GA3C architecture, has self-directed learned and improved how search the anomalous radiation source by training 1 million episodes under three simulation environments. In each episode of training, the radiation source position, the radiation source intensity, starting position, are all set randomly in one simulation environment. The input for searcher network is the fused data from a 2D laser scanner and a RGB-D camera as well as the value of the radiation detector. The output actions are the linear and angular velocities. The searcher network is trained in a simulation environment to accelerate the learning process. The well-performance searcher network is deployed to the real unmanned vehicle, Dashgo E2, which mounts LIDAR of YDLIDAR G4, RGB-D camera of Intel D455, and radiation detector made by Institute of Nuclear Energy Research. In the field experiment, the unmanned vehicle is enable to search out the radiation source of the 18.5MBq Na-22 by itself and avoid obstacles simultaneously without human interference.Keywords: deep reinforcement learning, GA3C, source searching, source detection
Procedia PDF Downloads 113