Search results for: language learning model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 24181

Search results for: language learning model

22441 The Impact of Training Method on Programming Learning Performance

Authors: Chechen Liao, Chin Yi Yang

Abstract:

Although several factors that affect learning to program have been identified over the years, there continues to be no indication of any consensus in understanding why some students learn to program easily and quickly while others have difficulty. Seldom have researchers considered the problem of how to help the students enhance the programming learning outcome. The research had been conducted at a high school in Taiwan. Students participating in the study consist of 330 tenth grade students enrolled in the Basic Computer Concepts course with the same instructor. Two types of training methods-instruction-oriented and exploration-oriented were conducted. The result of this research shows that the instruction-oriented training method has better learning performance than exploration-oriented training method.

Keywords: learning performance, programming learning, TDD, training method

Procedia PDF Downloads 428
22440 Revolutionizing Healthcare Communication: The Transformative Role of Natural Language Processing and Artificial Intelligence

Authors: Halimat M. Ajose-Adeogun, Zaynab A. Bello

Abstract:

Artificial Intelligence (AI) and Natural Language Processing (NLP) have transformed computer language comprehension, allowing computers to comprehend spoken and written language with human-like cognition. NLP, a multidisciplinary area that combines rule-based linguistics, machine learning, and deep learning, enables computers to analyze and comprehend human language. NLP applications in medicine range from tackling issues in electronic health records (EHR) and psychiatry to improving diagnostic precision in orthopedic surgery and optimizing clinical procedures with novel technologies like chatbots. The technology shows promise in a variety of medical sectors, including quicker access to medical records, faster decision-making for healthcare personnel, diagnosing dysplasia in Barrett's esophagus, boosting radiology report quality, and so on. However, successful adoption requires training for healthcare workers, fostering a deep understanding of NLP components, and highlighting the significance of validation before actual application. Despite prevailing challenges, continuous multidisciplinary research and collaboration are critical for overcoming restrictions and paving the way for the revolutionary integration of NLP into medical practice. This integration has the potential to improve patient care, research outcomes, and administrative efficiency. The research methodology includes using NLP techniques for Sentiment Analysis and Emotion Recognition, such as evaluating text or audio data to determine the sentiment and emotional nuances communicated by users, which is essential for designing a responsive and sympathetic chatbot. Furthermore, the project includes the adoption of a Personalized Intervention strategy, in which chatbots are designed to personalize responses by merging NLP algorithms with specific user profiles, treatment history, and emotional states. The synergy between NLP and personalized medicine principles is critical for tailoring chatbot interactions to each user's demands and conditions, hence increasing the efficacy of mental health care. A detailed survey corroborated this synergy, revealing a remarkable 20% increase in patient satisfaction levels and a 30% reduction in workloads for healthcare practitioners. The poll, which focused on health outcomes and was administered to both patients and healthcare professionals, highlights the improved efficiency and favorable influence on the broader healthcare ecosystem.

Keywords: natural language processing, artificial intelligence, healthcare communication, electronic health records, patient care

Procedia PDF Downloads 76
22439 Multi-Level Air Quality Classification in China Using Information Gain and Support Vector Machine

Authors: Bingchun Liu, Pei-Chann Chang, Natasha Huang, Dun Li

Abstract:

Machine Learning and Data Mining are the two important tools for extracting useful information and knowledge from large datasets. In machine learning, classification is a wildly used technique to predict qualitative variables and is generally preferred over regression from an operational point of view. Due to the enormous increase in air pollution in various countries especially China, Air Quality Classification has become one of the most important topics in air quality research and modelling. This study aims at introducing a hybrid classification model based on information theory and Support Vector Machine (SVM) using the air quality data of four cities in China namely Beijing, Guangzhou, Shanghai and Tianjin from Jan 1, 2014 to April 30, 2016. China's Ministry of Environmental Protection has classified the daily air quality into 6 levels namely Serious Pollution, Severe Pollution, Moderate Pollution, Light Pollution, Good and Excellent based on their respective Air Quality Index (AQI) values. Using the information theory, information gain (IG) is calculated and feature selection is done for both categorical features and continuous numeric features. Then SVM Machine Learning algorithm is implemented on the selected features with cross-validation. The final evaluation reveals that the IG and SVM hybrid model performs better than SVM (alone), Artificial Neural Network (ANN) and K-Nearest Neighbours (KNN) models in terms of accuracy as well as complexity.

Keywords: machine learning, air quality classification, air quality index, information gain, support vector machine, cross-validation

Procedia PDF Downloads 235
22438 [Keynote Talk]: Animation of Objects on the Website by Application of CSS3 Language

Authors: Vladimir Simovic, Matija Varga, Robert Svetlacic

Abstract:

Scientific work analytically explores and demonstrates techniques that can animate objects and geometric characters using CSS3 language by applying proper formatting and positioning of elements. This paper presents examples of optimum application of the CSS3 descriptive language when generating general web animations (e.g., billiards and movement of geometric characters, etc.). The paper presents analytically, the optimal development and animation design with the frames within which the animated objects are. The originally developed content is based on the upgrading of existing CSS3 descriptive language animations with more complex syntax and project-oriented work. The purpose of the developed animations is to provide an overview of the interactive features of CSS3 descriptive language design for computer games and the animation of important analytical data based on the web view. It has been analytically demonstrated that CSS3 as a descriptive language allows inserting of various multimedia elements into websites for public and internal sites.

Keywords: web animation recording, KML GML HTML5 forms, Cascading Style Sheets 3, Google Earth Professional

Procedia PDF Downloads 335
22437 Investigating Self-Confidence Influence on English as a Foreign Language Student English Language Proficiency Level

Authors: Ali A. Alshahrani

Abstract:

This study aims to identify Saudi English as a Foreign Language (EFL) students' perspectives towards using the English language in their studies. The study explores students' self-confident and its association with students' actual performance in English courses in their different academic programs. A multimodal methodology was used to fulfill the research purpose and answer the research questions. A 25-item survey questionnaire and final examination grades were used to collect data. Two hundred forty-one students agreed to participate in the study. They completed the questionnaire and agreed to release their final grades to be a part of the collected data. The data were coded and analyzed by SPSS software. The findings indicated a significant difference in students' performance in English courses between participants' academic programs on the one hand. Students' self-confidence in their English language skills, on the other hand, was not significantly different between participants' academic programs. Data analysis also revealed no correlational relationship between students' self-confidence level and their language skills and their performance. The study raises more questions about other vital factors such as course instructors' views of the materials, faculty members of the target department, family belief in the usefulness of the program, potential employers. These views and beliefs shape the student's preparation process and, therefore, should be explored further.

Keywords: English language intensive program, language proficiency, performance, self-confidence

Procedia PDF Downloads 136
22436 Programming Language Extension Using Structured Query Language for Database Access

Authors: Chapman Eze Nnadozie

Abstract:

Relational databases constitute a very vital tool for the effective management and administration of both personal and organizational data. Data access ranges from a single user database management software to a more complex distributed server system. This paper intends to appraise the use a programming language extension like structured query language (SQL) to establish links to a relational database (Microsoft Access 2013) using Visual C++ 9 programming language environment. The methodology used involves the creation of tables to form a database using Microsoft Access 2013, which is Object Linking and Embedding (OLE) database compliant. The SQL command is used to query the tables in the database for easy extraction of expected records inside the visual C++ environment. The findings of this paper reveal that records can easily be accessed and manipulated to filter exactly what the user wants, such as retrieval of records with specified criteria, updating of records, and deletion of part or the whole records in a table.

Keywords: data access, database, database management system, OLE, programming language, records, relational database, software, SQL, table

Procedia PDF Downloads 187
22435 Motivating Factors of Mobile Device Applications toward Learning

Authors: Yen-Mei Lee

Abstract:

Mobile learning (m-learning) has been applied in the education field not only because it is an alternative to web-based learning but also it possesses the ‘anytime, anywhere’ learning features. However, most studies focus on the technology-related issue, such as usability and functionality instead of addressing m-learning from the motivational perspective. Accordingly, the main purpose of the current paper is to integrate critical factors from different motivational theories and related findings to have a better understand the catalysts of an individual’s learning motivation toward m-learning. The main research question for this study is stated as follows: based on different motivational perspectives, what factors of applying mobile devices as medium can facilitate people’s learning motivations? Self-Determination Theory (SDT), Uses and Gratification Theory (UGT), Malone and Lepper’s taxonomy of intrinsic motivation theory, and different types of motivation concepts were discussed in the current paper. In line with the review of relevant studies, three motivating factors with five essential elements are proposed. The first key factor is autonomy. Learning on one’s own path and applying personalized format are two critical elements involved in the factor of autonomy. The second key factor is to apply a build-in instant feedback system during m-learning. The third factor is creating an interaction system, including communication and collaboration spaces. These three factors can enhance people’s learning motivations when applying mobile devices as medium toward learning. To sum up, in the currently proposed paper, with different motivational perspectives to discuss the m-learning is different from previous studies which are simply focused on the technical or functional design. Supported by different motivation theories, researchers can clearly understand how the mobile devices influence people’s leaning motivation. Moreover, instructional designers and educators can base on the proposed factors to build up their unique and efficient m-learning environments.

Keywords: autonomy, learning motivation, mobile learning (m-learning), motivational perspective

Procedia PDF Downloads 181
22434 Moderate Holism as an Explanation for Linguistic Phenomena

Authors: Kênio Angelo Dantas Freitas Estrela

Abstract:

Traditionally meaning holism is a theory that is related to the meaning attributed to words and their relationships to other words in a language. This theory can be more specifically defined as a defense of the mutual interdependence of all items of linguistic knowledge, so that, for example, to understand the meaning of a given expression, it is necessary to understand a large sector of the language in question or, even the complete language. The aim of this paper is to present a moderate version of meaning holism, which argues that, among other things, meaning holism does not imply the thesis of instability - if there is the change of belief about an object, there is a change of meaning - and, in this way, it is possible to attribute meanings to objects admitting changes of opinions and then beliefs. It will be shown how this version of holism gives an account of the main criticisms made of meaning holism in the last decades and also show how this theory can justify linguistic phenomena (like vagueness and polysemy) that are often treated as problems of language. Finally, it will also be argued that these linguistic phenomena are intrinsic to languages and that the moderate version of meaning holism can justify the occurrence of these phenomena.

Keywords: linguistics, meaning holism, philosophy of language, semantics

Procedia PDF Downloads 258
22433 Cyber Attacks Management in IoT Networks Using Deep Learning and Edge Computing

Authors: Asmaa El Harat, Toumi Hicham, Youssef Baddi

Abstract:

This survey delves into the complex realm of Internet of Things (IoT) security, highlighting the urgent need for effective cybersecurity measures as IoT devices become increasingly common. It explores a wide array of cyber threats targeting IoT devices and focuses on mitigating these attacks through the combined use of deep learning and machine learning algorithms, as well as edge and cloud computing paradigms. The survey starts with an overview of the IoT landscape and the various types of attacks that IoT devices face. It then reviews key machine learning and deep learning algorithms employed in IoT cybersecurity, providing a detailed comparison to assist in selecting the most suitable algorithms. Finally, the survey provides valuable insights for cybersecurity professionals and researchers aiming to enhance security in the intricate world of IoT.

Keywords: internet of things (IoT), cybersecurity, machine learning, deep learning

Procedia PDF Downloads 33
22432 Timbuktu Pattern of Islamic Education: A Role Model for the Establishment of Islamic Educational System in Sokoto Caliphate

Authors: A. M. Gada, H. U. Malami

Abstract:

Timbuktu is one of the eight regions in the present day the Republic of Mali. It flourished as one of the earliest centres of Islamic learning in West Africa in the eleventh century CE. The famous Islamic centre in Timbuktu is situated in the Sankore mosque, which is known to be one of the earliest established Islamic University. This centre produced scholars who were zealous in disseminating Islamic education to different parts of West Africa and beyond. As a result, most of these centres adopted the Timbuktu pattern of learning. Some of the beneficiaries of this noble activity are Muslim scholars which are responsible for the establishment of the Sokoto Caliphate in the early nineteenth century. This paper intends to reflect on the pattern of Islamic education of the Timbuktu scholars and see how it impacted on the Islamic centres of learning established by these Jihad-scholars who were successful in the establishment of an Islamic state known as the Sokoto Caliphate.

Keywords: Timbuktu, Sankore, Islamic educational system, Sokoto Caliphate, centres of Islamic learning

Procedia PDF Downloads 417
22431 Examination of the Satisfaction Levels of Pre-Service Teachers Concerning E-Learning Process in Terms of Different Variables

Authors: Agah Tugrul Korucu

Abstract:

Significant changes have taken place for the better in the bulk of information and in the use of technology available in the field of education induced by technological changes in the 21st century. It is mainly the job of the teachers and pre-service teachers to integrate information and communication technologies into education by means of conveying the use of technology to individuals. While the pre-service teachers are conducting lessons by using technology, the methods they have developed are important factors for the requirements of the lesson and for the satisfaction levels of the students. The study of this study is to examine the satisfaction levels of pre-service teachers as regards e-learning in a technological environment in which there are lesson activities conducted through an online learning environment in terms of various variables. The study group of the research is composed of 156 pre-service teachers that were students in the departments of Computer and Teaching Technologies, Art Teaching and Pre-school Teaching in the academic year of 2014 - 2015. The qualitative research method was adopted for this study; the scanning model was employed in collecting the data. “The Satisfaction Scale regarding the E-learning Process”, developed by Gülbahar, and the personal information form, which was developed by the researcher, were used as means of collecting the data. Cronbach α reliability coefficient, which is the internal consistency coefficient of the scale, is 0.91. SPSS computerized statistical package program and the techniques of medium, standard deviation, percentage, correlation, t-test and variance analysis were used in the analysis of the data.

Keywords: online learning environment, integration of information technologies, e-learning, e-learning satisfaction, pre-service teachers

Procedia PDF Downloads 353
22430 Modeling False Statements in Texts

Authors: Francielle A. Vargas, Thiago A. S. Pardo

Abstract:

According to the standard philosophical definition, lying is saying something that you believe to be false with the intent to deceive. For deception detection, the FBI trains its agents in a technique named statement analysis, which attempts to detect deception based on parts of speech (i.e., linguistics style). This method is employed in interrogations, where the suspects are first asked to make a written statement. In this poster, we model false statements using linguistics style. In order to achieve this, we methodically analyze linguistic features in a corpus of fake news in the Portuguese language. The results show that they present substantial lexical, syntactic and semantic variations, as well as punctuation and emotion distinctions.

Keywords: deception detection, linguistics style, computational linguistics, natural language processing

Procedia PDF Downloads 218
22429 An Intergenerational Study of Iranian Migrant Families in Australia: Exploring Language, Identity, and Acculturation

Authors: Alireza Fard Kashani

Abstract:

This study reports on the experiences and attitudes of six Iranian migrant families, from two groups of asylum seekers and skilled workers, with regard to their language, identity, and acculturation in Australia. The participants included first generation parents and 1.5-generation adolescents, who had lived in Australia for a minimum of three years. For this investigation, Mendoza’s (1984, 2016) acculturation model, as well as poststructuralist views of identity, were employed. The semi-structured interview results have highlighted that Iranian parents and adolescents face low degrees of intergenerational conflicts in most domains of their acculturation. However, the structural and lawful patterns in Australia have caused some internal conflicts for the parents, especially fathers (e.g., their power status within the family or their children’s freedom). Furthermore, while most participants reported ‘cultural eclecticism’ as their preferred acculturation orientation, female participants seemed to be more eclectic than their male counterparts who showed inclination towards keeping more aspects of their home culture. This finding, however, highlights a meaningful effort on the part of husbands that in order to make their married lives continue well in Australia they need to re-consider the traditional male-dominated customs they used to have in Iran. As for identity, not only the parents but also the adolescents proudly identified themselves as Persians. In addition, with respect to linguistic behaviour, almost all adolescents showed enthusiasm to retain the Persian language at home to be able to maintain contacts with their relatives and friends in Iran and to enjoy many other benefits the language may offer them in the future.

Keywords: acculturation, asylum seekers, identity, intergenerational conflicts, language, skilled workers, 1.5 generation

Procedia PDF Downloads 239
22428 Development of EREC IF Model to Increase Critical Thinking and Creativity Skills of Undergraduate Nursing Students

Authors: Kamolrat Turner, Boontuan Wattanakul

Abstract:

Critical thinking and creativity are prerequisite skills for working professionals in the 21st century. A survey conducted in 2014 at the Boromarajonani College of Nursing, Chon Buri, Thailand, revealed that these skills within students across all academic years was at a low to moderate level. An action research study was conducted to develop the EREC IF Model, a framework which includes the concepts of experience, reflection, engagement, culture and language, ICT, and flexibility and fun, to guide pedagogic activities for 75 sophomores of the undergraduate nursing science program at the college. The model was applied to all professional nursing courses. Prior to implementation, workshops were held to prepare lecturers and students. Both lecturers and students initially expressed their discomfort and pointed to the difficulties with the model. However, later they felt more comfortable, and by the end of the project they expressed their understanding and appreciation of the model. A survey conducted four and eight months after implementation found that the critical thinking and creativity skills of the sophomores were significantly higher than those recorded in the pretest. It could be concluded that the EREC IF model is efficient for fostering critical thinking and creativity skills in the undergraduate nursing science program. This model should be used for other levels of students.

Keywords: critical thinking, creativity, undergraduate nursing students, EREC IF model

Procedia PDF Downloads 322
22427 A Study of Variables Affecting on a Quality Assessment of Mathematics Subject in Thailand by Using Value Added Analysis on TIMSS 2011

Authors: Ruangdech Sirikit

Abstract:

The purposes of this research were to study the variables affecting the quality assessment of mathematics subject in Thailand by using value-added analysis on TIMSS 2011. The data used in this research is the secondary data from the 2011 Trends in International Mathematics and Science Study (TIMSS), collected from 6,124 students in 172 schools from Thailand, studying only mathematics subjects. The data were based on 14 assessment tests of knowledge in mathematics. There were 3 steps of data analysis: 1) To analyze descriptive statistics 2) To estimate competency of students from the assessment of their mathematics proficiency by using MULTILOG program; 3) analyze value added in the model of quality assessment using Value-Added Model with Hierarchical Linear Modeling (HLM) and 2 levels of analysis. The research results were as follows: 1. Student level variables that had significant effects on the competency of students at .01 levels were Parental care, Resources at home, Enjoyment of learning mathematics and Extrinsic motivation in learning mathematics. Variable that had significant effects on the competency of students at .05 levels were Education of parents and self-confident in learning mathematics. 2. School level variable that had significant effects on competency of students at .01 levels was Extra large school. Variable that had significant effects on competency of students at .05 levels was medium school.

Keywords: quality assessment, value-added model, TIMSS, mathematics, Thailand

Procedia PDF Downloads 283
22426 The Results of Research Based-Learning for Developing the Learning and Innovation Skills of Undergraduate Students

Authors: Jatuphum Ketchatturat

Abstract:

The objective of this research was to study the learning and innovation skills of undergraduate students after Research-Based Learning had been applied. Eighty research participants were selected from undergraduate students enrolled in Educational Research Program using the Purposive Sampling Method. Research Methodology was Descriptive Research, the research took one semester to complete. The research instruments consisted of (1) Research Skill Assessment Form, (2) Research Quality Assessment Form, (3) Scale of learning and innovation skills 25 items. The quantitative data were analysed using descriptive statistics including, frequency, percentage, average and standard deviation. The qualitative data were analyzed using content analysis. The research results were (1) The students were able to conduct research that focused on educational research, which has a fair to the excellent level of standards of a research learning outcome, research skills, and research quality. The student’s learning and innovation skills have relating to research skills and research quality. (2) The findings found that the students have been developed to be learning and innovation skills such as systematic thinking, analytical thinking, critical thinking, creative problem solving, collaborative, research-creation, communication, and knowledge and experience sharing to friends, community and society.

Keywords: learning and innovation skills, research based learning, research skills, undergraduate students

Procedia PDF Downloads 179
22425 Resilient Machine Learning in the Nuclear Industry: Crack Detection as a Case Study

Authors: Anita Khadka, Gregory Epiphaniou, Carsten Maple

Abstract:

There is a dramatic surge in the adoption of machine learning (ML) techniques in many areas, including the nuclear industry (such as fault diagnosis and fuel management in nuclear power plants), autonomous systems (including self-driving vehicles), space systems (space debris recovery, for example), medical surgery, network intrusion detection, malware detection, to name a few. With the application of learning methods in such diverse domains, artificial intelligence (AI) has become a part of everyday modern human life. To date, the predominant focus has been on developing underpinning ML algorithms that can improve accuracy, while factors such as resiliency and robustness of algorithms have been largely overlooked. If an adversarial attack is able to compromise the learning method or data, the consequences can be fatal, especially but not exclusively in safety-critical applications. In this paper, we present an in-depth analysis of five adversarial attacks and three defence methods on a crack detection ML model. Our analysis shows that it can be dangerous to adopt machine learning techniques in security-critical areas such as the nuclear industry without rigorous testing since they may be vulnerable to adversarial attacks. While common defence methods can effectively defend against different attacks, none of the three considered can provide protection against all five adversarial attacks analysed.

Keywords: adversarial machine learning, attacks, defences, nuclear industry, crack detection

Procedia PDF Downloads 158
22424 The Code-Mixing of Japanese, English, and Thai in Line Chat

Authors: Premvadee Na Nakornpanom

Abstract:

Language mixing in spontaneous speech has been widely discussed, but not in virtual situations; especially in context of the third language learning students. Thus, this study was an attempt to explore the characteristics of the mixing of Japanese, English and Thai in a mobile chat room by students with their background of Japanese, English, and Thai. The result found that Insertion of Thai and English content words was a very common linguistic phenomenon embedded in the utterances. As chatting is to be ‘relational’ or ‘interactional’, it affected the style of lexical choices to be speech-like, more personal and emotional-related. A Japanese sentence-final question particle“か”(ka) was added to the end of the sentence based on Thai grammar rule. Moreover, some unique characteristics were created. The non-verbal cues were represented in personal, Thai styles by inserting textual representations of images or feelings available on the websites into streams of conversations.

Keywords: code-mixing, Japanese, English, Thai, line chat

Procedia PDF Downloads 652
22423 Working within the Zone of Proximal Development: Does It Help for Reading Strategy?

Authors: Mahmood Dehqan, Peyman Peyvasteh

Abstract:

In recent years there has been a growing interest in issues concerning the impact of sociocultural theory (SCT) of learning on different aspects of second/foreign language learning. This study aimed to find the possible effects of sociocultural teaching techniques on reading strategy of EFL learners. Indeed, the present research compared the impact of peer and teacher scaffolding on EFL learners’ reading strategy use across two proficiency levels. To this end, a pre-test post-test quasi-experimental research design was used and two instruments were utilized to collect the data: Nelson English language test and reading strategy questionnaire. Ninety five university students participated in this study were divided into two groups of teacher and peer scaffolding. Teacher scaffolding group received scaffolded help from the teacher based on three mechanisms of effective help within ZPD: graduated, contingent, dialogic. In contrast, learners of peer scaffolding group were unleashed from the teacher-fronted classroom as they were asked to carry out the reading comprehension tasks with the feedback they provided for each other. Results obtained from ANOVA revealed that teacher scaffolding group outperformed the peer scaffolding group in terms of reading strategy use. It means teacher’s scaffolded help provided within the learners’ ZPD led to better reading strategy improvement compared with the peer scaffolded help. However, the interaction effect between proficiency factor and teaching technique was non-significant, leading to the conclusion that strategy use of the learners was not affected by their proficiency level in either teacher or peer scaffolding groups.

Keywords: peer scaffolding, proficiency level, reading strategy, sociocultural theory, teacher scaffolding

Procedia PDF Downloads 381
22422 Using Q-Learning to Auto-Tune PID Controller Gains for Online Quadcopter Altitude Stabilization

Authors: Y. Alrubyli

Abstract:

Unmanned Arial Vehicles (UAVs), and more specifically, quadcopters need to be stable during their flights. Altitude stability is usually achieved by using a PID controller that is built into the flight controller software. Furthermore, the PID controller has gains that need to be tuned to reach optimal altitude stabilization during the quadcopter’s flight. For that, control system engineers need to tune those gains by using extensive modeling of the environment, which might change from one environment and condition to another. As quadcopters penetrate more sectors, from the military to the consumer sectors, they have been put into complex and challenging environments more than ever before. Hence, intelligent self-stabilizing quadcopters are needed to maneuver through those complex environments and situations. Here we show that by using online reinforcement learning with minimal background knowledge, the altitude stability of the quadcopter can be achieved using a model-free approach. We found that by using background knowledge instead of letting the online reinforcement learning algorithm wander for a while to tune the PID gains, altitude stabilization can be achieved faster. In addition, using this approach will accelerate development by avoiding extensive simulations before applying the PID gains to the real-world quadcopter. Our results demonstrate the possibility of using the trial and error approach of reinforcement learning combined with background knowledge to achieve faster quadcopter altitude stabilization in different environments and conditions.

Keywords: reinforcement learning, Q-leanring, online learning, PID tuning, unmanned aerial vehicle, quadcopter

Procedia PDF Downloads 174
22421 The Liability of Renewal: The Impact of Changes in Organizational Capability, Performance, Legitimacy and Pressure for Change

Authors: Alshehri Sultan

Abstract:

Organizational change has remained an important subject for many researchers in the field of organizations theory. We propose the importance of organizational liability of renewal through a model that examines how an organization can overcome potential rigidities in organizational capabilities from learning by changing capabilities. We examine whether an established organization can overcome liability of renewal by changes in organizational capabilities and how the organizational renewal process reflect on the balance between the dynamic aspect of organizational learning as demonstrated by changes in capabilities and the stabilizing aspects of organizational inertia. We found both positive relationship between organizational learning and performance, and between legitimacy and performance. Performance and legitimacy have, however, a negative relationship on the pressure for change.

Keywords: organizational capabilities, organizational liability, liability of renewal, pressure for change

Procedia PDF Downloads 527
22420 A New Nonlinear State-Space Model and Its Application

Authors: Abdullah Eqal Al Mazrooei

Abstract:

In this work, a new nonlinear model will be introduced. The model is in the state-space form. The nonlinearity of this model is in the state equation where the state vector is multiplied by its self. This technique makes our model generalizes many famous models as Lotka-Volterra model and Lorenz model which have many applications in the real life. We will apply our new model to estimate the wind speed by using a new nonlinear estimator which suitable to work with our model.

Keywords: nonlinear systems, state-space model, Kronecker product, nonlinear estimator

Procedia PDF Downloads 691
22419 The Effectiveness of Gamified Learning on Student Learning in Computer Science Education: A Systematic Review (2010-2018)

Authors: Shurui Bai, Biyun Huang, Khe Foon Hew

Abstract:

Gamification is defined as the use of game design elements in non-game contexts. The primary purpose of using gamification in an educational context is to engage students in school activities such that their likelihood of completion is increased. But how actually effective is gamification in improving student learning? In order to answer this question, this paper provides a systematic review of prior research studies on gamification in K-12 and university contexts limited to computer science discipline. Unlike other published gamification review works, we specifically analyzed comparison-based studies in quasi-experiment, historical control, and randomization rather than studies with mere anecdotal or phenomenological results. The main purpose for this is to discuss possible causal effects of gamified practices on student performance, behavior change, and perceptual skills following an integrative model. Implications for practice are discussed, along with several suggestions for future research studies.

Keywords: computer science, gamification, learning performance, systematic review

Procedia PDF Downloads 131
22418 User Intention Generation with Large Language Models Using Chain-of-Thought Prompting Title

Authors: Gangmin Li, Fan Yang

Abstract:

Personalized recommendation is crucial for any recommendation system. One of the techniques for personalized recommendation is to identify the intention. Traditional user intention identification uses the user’s selection when facing multiple items. This modeling relies primarily on historical behaviour data resulting in challenges such as the cold start, unintended choice, and failure to capture intention when items are new. Motivated by recent advancements in Large Language Models (LLMs) like ChatGPT, we present an approach for user intention identification by embracing LLMs with Chain-of-Thought (CoT) prompting. We use the initial user profile as input to LLMs and design a collection of prompts to align the LLM's response through various recommendation tasks encompassing rating prediction, search and browse history, user clarification, etc. Our tests on real-world datasets demonstrate the improvements in recommendation by explicit user intention identification and, with that intention, merged into a user model.

Keywords: personalized recommendation, generative user modelling, user intention identification, large language models, chain-of-thought prompting

Procedia PDF Downloads 55
22417 Understanding Cognitive Fatigue From FMRI Scans With Self-supervised Learning

Authors: Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Fillia Makedon, Glenn Wylie

Abstract:

Functional magnetic resonance imaging (fMRI) is a neuroimaging technique that records neural activations in the brain by capturing the blood oxygen level in different regions based on the task performed by a subject. Given fMRI data, the problem of predicting the state of cognitive fatigue in a person has not been investigated to its full extent. This paper proposes tackling this issue as a multi-class classification problem by dividing the state of cognitive fatigue into six different levels, ranging from no-fatigue to extreme fatigue conditions. We built a spatio-temporal model that uses convolutional neural networks (CNN) for spatial feature extraction and a long short-term memory (LSTM) network for temporal modeling of 4D fMRI scans. We also applied a self-supervised method called MoCo (Momentum Contrast) to pre-train our model on a public dataset BOLD5000 and fine-tuned it on our labeled dataset to predict cognitive fatigue. Our novel dataset contains fMRI scans from Traumatic Brain Injury (TBI) patients and healthy controls (HCs) while performing a series of N-back cognitive tasks. This method establishes a state-of-the-art technique to analyze cognitive fatigue from fMRI data and beats previous approaches to solve this problem.

Keywords: fMRI, brain imaging, deep learning, self-supervised learning, contrastive learning, cognitive fatigue

Procedia PDF Downloads 190
22416 Bidirectional Encoder Representations from Transformers Sentiment Analysis Applied to Three Presidential Pre-Candidates in Costa Rica

Authors: Félix David Suárez Bonilla

Abstract:

A sentiment analysis service to detect polarity (positive, neural, and negative), based on transfer learning, was built using a Spanish version of BERT and applied to tweets written in Spanish. The dataset that was used consisted of 11975 reviews, which were extracted from Google Play using the google-play-scrapper package. The BETO trained model used: the AdamW optimizer, a batch size of 16, a learning rate of 2x10⁻⁵ and 10 epochs. The system was tested using tweets of three presidential pre-candidates from Costa Rica. The system was finally validated using human labeled examples, achieving an accuracy of 83.3%.

Keywords: NLP, transfer learning, BERT, sentiment analysis, social media, opinion mining

Procedia PDF Downloads 174
22415 Comparative Study of Traditional Classroom Learning and Distance Learning in Pakistan

Authors: Muhammad Afzal Malik

Abstract:

Traditional Learning & Distance based learning are the two systems prevailing in Pakistan. These systems affect the level of education standard. The purpose of this study was to compare the traditional classroom learning and distance learning in Pakistan: (a) To explore the effectiveness of the traditional to Distance learning in Pakistan; (b) To identify the factors that affect traditional and distance learning. This review found that, on average, students in traditional classroom conditions performed better than those receiving education in and distance learning. The difference between student outcomes for traditional Classroom and distance learning classes —measured as the difference between treatment and control means, divided by the pooled standard deviation— was larger in those studies contrasting conditions that blended elements of online and face-to-face instruction with conditions taught entirely face-to-face. This research was conducted to highlight the impact of distance learning education system on education standard. The education standards were institutional support, course development, learning process, student support, faculty support, evaluation and assessment. A well developed questionnaire was administered and distributed among 26 faculty members of GCET, H-9 and Virtual University of Pakistan from each. Data was analyzed through correlation and regression analysis. Results confirmed that there is a significant relationship and impact of DLE system on education standards. This will also provide baseline for future research. It will add value to the existing body of knowledge.

Keywords: distance learning education, higher education, education standards, student performance

Procedia PDF Downloads 280
22414 Exploring Academic Writing Challenges of First Year English as an Additional Language Students at an ODeL Institution in South Africa

Authors: Tumelo Jaquiline Ntsopi

Abstract:

This study explored the academic writing challenges of first-year students who use English as an Additional Language (EAL) registered in the EAW101 module at an ODeL institution. Research shows that academic writing is a challenge for EAL teaching and learning contexts across the globe in higher education institutions (HEIs). Academic writing is an important aspect of academic literacy in any institution of higher learning, more so in an ODeL institution. This has probed research that shows that academic writing is and continues to pose challenges for EAL teaching and learning contexts in higher education institutions. This study stems from the researcher’s experience in teaching academic writing to first-year students in the EAW101 module. The motivation for this study emerged from the fact that EAW101 is a writing module that has a high number of students in the Department of English Studies with an average of between 50-80 percent pass rate. These statistics elaborate on the argument that most students registered in this module struggle with academic writing, and they need intervention to assist and support them in achieving competence in the module. This study is underpinned by Community of Inquiry (CoI) framework and Transactional distance theory. This study adopted a qualitative research methodology and utilised a case study approach as a research design. Furthermore, the study gathered data from first year students and the EAW101 module’s student support initiatives. To collect data, focus group discussions, structured open-ended evaluation questions, and an observation schedule were used to gather data. The study is vital towards exploring academic writing challenges that first-year students in EAW101 encounter so that lecturers in the module may consider re-evaluating their methods of teaching to improve EAL students’ academic writing skills. This study may help lecturers towards enhancing academic writing in a ODeL context by assisting first year students through using student support interventions.

Keywords: academic writing, academic writing challenge, ODeL, EAL

Procedia PDF Downloads 105
22413 Neighborhood Graph-Optimized Preserving Discriminant Analysis for Image Feature Extraction

Authors: Xiaoheng Tan, Xianfang Li, Tan Guo, Yuchuan Liu, Zhijun Yang, Hongye Li, Kai Fu, Yufang Wu, Heling Gong

Abstract:

The image data collected in reality often have high dimensions, and it contains noise and redundant information. Therefore, it is necessary to extract the compact feature expression of the original perceived image. In this process, effective use of prior knowledge such as data structure distribution and sample label is the key to enhance image feature discrimination and robustness. Based on the above considerations, this paper proposes a local preserving discriminant feature learning model based on graph optimization. The model has the following characteristics: (1) Locality preserving constraint can effectively excavate and preserve the local structural relationship between data. (2) The flexibility of graph learning can be improved by constructing a new local geometric structure graph using label information and the nearest neighbor threshold. (3) The L₂,₁ norm is used to redefine LDA, and the diagonal matrix is introduced as the scale factor of LDA, and the samples are selected, which improves the robustness of feature learning. The validity and robustness of the proposed algorithm are verified by experiments in two public image datasets.

Keywords: feature extraction, graph optimization local preserving projection, linear discriminant analysis, L₂, ₁ norm

Procedia PDF Downloads 149
22412 Situated Professional Development: Examining Strengths, Challenges, and Ways Forward

Authors: Youmen Chaaban

Abstract:

The study examined the influence of a situated professional development program (PD) aimed at enhancing English language teachers’ knowledge and skills and improving their instructional practices. The PD model under examination was developed upon sound theoretical underpinnings, taking into consideration research-based principles of effective PD. However, the implementation of the PD model within several school contexts required further investigation from the perspectives of the teachers, who were receiving the PD activities, and the instructional coaches, who were providing them. The paper, thus, presents the results of a qualitative study examining the perceptions of seventeen English language teachers and nineteen instructional coaches about the strengths of the PD program, the challenges they faced in the implementation of the program, and their suggestions for the improvement of the program’s implementation and outcomes. Comparisons were further made between the two groups of participants to uncover agreements and contradictions in their perceptions. Data were collected from the teachers through in-depth interviews and observations, while the data collected from the instructional coaches were open-ended surveys followed by focus group interviews. The findings of the study confirm the necessity of structuring PD activities around sound theoretical underpinnings. However, practical considerations specific to the contexts where the PD activities take place should be considered when evaluating the PD’s effectiveness. Finally, the study provides several recommendations for maximizing the influence of the PD program on teachers’ practices and beliefs.

Keywords: English language teachers, situated professional development, teacher beliefs, teacher practices

Procedia PDF Downloads 159