Search results for: graph representation of circuit networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4954

Search results for: graph representation of circuit networks

3214 Irish Film Tourism, Neocolonialism and Star Wars: Charting a Course Towards Ecologically and Culturally Considered Representation and Tourism on Skellig Michael

Authors: Rachel Gough

Abstract:

In 2014, Skellig Michael, an island off Ireland’s western seaboard and UNESCO world heritage site became a major setting in Disney’s Star Wars franchise. The subsequent influx of tourists to the site has proven to be a point of contention nationally. The increased visitor numbers have uplifted certain areas of the local economy, the mainland, but have caused irreparable damage to historic monuments and to endangered bird populations who breed on the island. Recent research carried out by a state body suggests far-reaching and longterm negative impacts on the island’s culture and environment, should the association with the Star Wars franchise persist. In spite of this, the film has been widely endorsed by the Irish government as providing a vital economic boost to historically marginalised rural areas through film tourism. This paper argues quite plainly that what is taking place on Skellig is neocolonialism. Skellig Michael’s unique resources, its aesthetic qualities, its ecosystem, and its cultural currency have been sold by the state to a multinational corporation, who profit from their use. Meanwhile, locals are left to do their best to turn a market trend into sustainable business at the expense of culture ecology and community. This paper intends to be the first dedicated study into the psychogeographic and cultural impact of Skellig Michael’s deterioration as a result of film tourism. It will discuss the projected impact of this incident on Irish culture more broadly and finally will attempt to lay out a roadmap for more collaborative filmmaking and touristic approach, which allows local cultures and ecosystem’s to thrive without drastically inhibiting cultural production. This paper will ultimately find that the consequences of this representation call for a requirement to read tourism as a split concept — namely into what we might loosely call “eco-tourism” and more capital-based “profit-bottom-line tourism.”

Keywords: ecology, film tourism, neocolonialism, sustainability

Procedia PDF Downloads 206
3213 Switched Ultracapacitors for Maximizing Energy Supply

Authors: Nassouh K. Jaber

Abstract:

Supercapacitors (S.C.) are presently attracting attention for driving general purpose (12VDC to 220VAC) inverters in renewable energy systems. Unfortunately, when the voltage of the S.C supplying the inverter reaches the minimal threshold of 7-8VDC the inverter shuts down leaving the remaining 40% of the valuable energy stored inside the ultracapacitor un-usable. In this work a power electronic circuit is proposed which switches 2 banks of supercapacitors from parallel connection when both are fully charged at 14VDC to serial connection when their voltages drop down to 7 volts, thus keeping the inverter working within its operating limits for a longer time and advantageously tapping almost 92% of the stored energy in the supercapacitors.

Keywords: ultra capacitor, switched ultracapacitors, inverter, supercapacitor, parallel connection, serial connection, battery limitation

Procedia PDF Downloads 412
3212 Comparison of Deep Convolutional Neural Networks Models for Plant Disease Identification

Authors: Megha Gupta, Nupur Prakash

Abstract:

Identification of plant diseases has been performed using machine learning and deep learning models on the datasets containing images of healthy and diseased plant leaves. The current study carries out an evaluation of some of the deep learning models based on convolutional neural network (CNN) architectures for identification of plant diseases. For this purpose, the publicly available New Plant Diseases Dataset, an augmented version of PlantVillage dataset, available on Kaggle platform, containing 87,900 images has been used. The dataset contained images of 26 diseases of 14 different plants and images of 12 healthy plants. The CNN models selected for the study presented in this paper are AlexNet, ZFNet, VGGNet (four models), GoogLeNet, and ResNet (three models). The selected models are trained using PyTorch, an open-source machine learning library, on Google Colaboratory. A comparative study has been carried out to analyze the high degree of accuracy achieved using these models. The highest test accuracy and F1-score of 99.59% and 0.996, respectively, were achieved by using GoogLeNet with Mini-batch momentum based gradient descent learning algorithm.

Keywords: comparative analysis, convolutional neural networks, deep learning, plant disease identification

Procedia PDF Downloads 199
3211 Commutativity of Fractional Order Linear Time-Varying System

Authors: Salisu Ibrahim

Abstract:

The paper studies the commutativity associated with fractional order linear time-varying systems (LTVSs), which is an important area of study in control systems engineering. In this paper, we explore the properties of these systems and their ability to commute. We proposed the necessary and sufficient condition for commutativity for fractional order LTVSs. Through a simulation and mathematical analysis, we demonstrate that these systems exhibit commutativity under certain conditions. Our findings have implications for the design and control of fractional order systems in practical applications, science, and engineering. An example is given to show the effectiveness of the proposed method which is been computed by Mathematica and validated by the use of Matlab (Simulink).

Keywords: fractional differential equation, physical systems, equivalent circuit, and analog control

Procedia PDF Downloads 77
3210 Free and Open Source Licences, Software Programmers, and the Social Norm of Reciprocity

Authors: Luke McDonagh

Abstract:

Over the past three decades, free and open source software (FOSS) programmers have developed new, innovative and legally binding licences that have in turn enabled the creation of innumerable pieces of everyday software, including Linux, Mozilla Firefox and Open Office. That FOSS has been highly successful in competing with 'closed source software' (e.g. Microsoft Office) is now undeniable, but in noting this success, it is important to examine in detail why this system of FOSS has been so successful. One key reason is the existence of networks or communities of programmers, who are bound together by a key shared social norm of 'reciprocity'. At the same time, these FOSS networks are not unitary – they are highly diverse and there are large divergences of opinion between members regarding which licences are generally preferable: some members favour the flexible ‘free’ or 'no copyleft' licences, such as BSD and MIT, while other members favour the ‘strong open’ or 'strong copyleft' licences such as GPL. This paper argues that without both the existence of the shared norm of reciprocity and the diversity of licences, it is unlikely that the innovative legal framework provided by FOSS would have succeeded to the extent that it has.

Keywords: open source, copyright, licensing, copyleft

Procedia PDF Downloads 373
3209 Advances in Machine Learning and Deep Learning Techniques for Image Classification and Clustering

Authors: R. Nandhini, Gaurab Mudbhari

Abstract:

Ranging from the field of health care to self-driving cars, machine learning and deep learning algorithms have revolutionized the field with the proper utilization of images and visual-oriented data. Segmentation, regression, classification, clustering, dimensionality reduction, etc., are some of the Machine Learning tasks that helped Machine Learning and Deep Learning models to become state-of-the-art models for the field where images are key datasets. Among these tasks, classification and clustering are essential but difficult because of the intricate and high-dimensional characteristics of image data. This finding examines and assesses advanced techniques in supervised classification and unsupervised clustering for image datasets, emphasizing the relative efficiency of Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), Deep Embedded Clustering (DEC), and self-supervised learning approaches. Due to the distinctive structural attributes present in images, conventional methods often fail to effectively capture spatial patterns, resulting in the development of models that utilize more advanced architectures and attention mechanisms. In image classification, we investigated both CNNs and ViTs. One of the most promising models, which is very much known for its ability to detect spatial hierarchies, is CNN, and it serves as a core model in our study. On the other hand, ViT is another model that also serves as a core model, reflecting a modern classification method that uses a self-attention mechanism which makes them more robust as this self-attention mechanism allows them to lean global dependencies in images without relying on convolutional layers. This paper evaluates the performance of these two architectures based on accuracy, precision, recall, and F1-score across different image datasets, analyzing their appropriateness for various categories of images. In the domain of clustering, we assess DEC, Variational Autoencoders (VAEs), and conventional clustering techniques like k-means, which are used on embeddings derived from CNN models. DEC, a prominent model in the field of clustering, has gained the attention of many ML engineers because of its ability to combine feature learning and clustering into a single framework and its main goal is to improve clustering quality through better feature representation. VAEs, on the other hand, are pretty well known for using latent embeddings for grouping similar images without requiring for prior label by utilizing the probabilistic clustering method.

Keywords: machine learning, deep learning, image classification, image clustering

Procedia PDF Downloads 11
3208 Identifying a Drug Addict Person Using Artificial Neural Networks

Authors: Mustafa Al Sukar, Azzam Sleit, Abdullatif Abu-Dalhoum, Bassam Al-Kasasbeh

Abstract:

Use and abuse of drugs by teens is very common and can have dangerous consequences. The drugs contribute to physical and sexual aggression such as assault or rape. Some teenagers regularly use drugs to compensate for depression, anxiety or a lack of positive social skills. Teen resort to smoking should not be minimized because it can be "gateway drugs" for other drugs (marijuana, cocaine, hallucinogens, inhalants, and heroin). The combination of teenagers' curiosity, risk taking behavior, and social pressure make it very difficult to say no. This leads most teenagers to the questions: "Will it hurt to try once?" Nowadays, technological advances are changing our lives very rapidly and adding a lot of technologies that help us to track the risk of drug abuse such as smart phones, Wireless Sensor Networks (WSNs), Internet of Things (IoT), etc. This technique may help us to early discovery of drug abuse in order to prevent an aggravation of the influence of drugs on the abuser. In this paper, we have developed a Decision Support System (DSS) for detecting the drug abuse using Artificial Neural Network (ANN); we used a Multilayer Perceptron (MLP) feed-forward neural network in developing the system. The input layer includes 50 variables while the output layer contains one neuron which indicates whether the person is a drug addict. An iterative process is used to determine the number of hidden layers and the number of neurons in each one. We used multiple experiment models that have been completed with Log-Sigmoid transfer function. Particularly, 10-fold cross validation schemes are used to access the generalization of the proposed system. The experiment results have obtained 98.42% classification accuracy for correct diagnosis in our system. The data had been taken from 184 cases in Jordan according to a set of questions compiled from Specialists, and data have been obtained through the families of drug abusers.

Keywords: drug addiction, artificial neural networks, multilayer perceptron (MLP), decision support system

Procedia PDF Downloads 299
3207 Political Communication in Twitter Interactions between Government, News Media and Citizens in Mexico

Authors: Jorge Cortés, Alejandra Martínez, Carlos Pérez, Anaid Simón

Abstract:

The presence of government, news media, and general citizenry in social media allows considering interactions between them as a form of political communication (i.e. the public exchange of contradictory discourses about politics). Twitter’s asymmetrical following model (users can follow, mention or reply to other users that do not follow them) could foster alternative democratic practices and have an impact on Mexican political culture, which has been marked by a lack of direct communication channels between these actors. The research aim is to assess Twitter’s role in political communication practices through the analysis of interaction dynamics between government, news media, and citizens by extracting and visualizing data from Twitter’s API to observe general behavior patterns. The hypothesis is that regardless the fact that Twitter’s features enable direct and horizontal interactions between actors, users repeat traditional dynamics of interaction, without taking full advantage of the possibilities of this medium. Through an interdisciplinary team including Communication Strategies, Information Design, and Interaction Systems, the activity on Twitter generated by the controversy over the presence of Uber in Mexico City was analysed; an issue of public interest, involving aspects such as public opinion, economic interests and a legal dimension. This research includes techniques from social network analysis (SNA), a methodological approach focused on the comprehension of the relationships between actors through the visual representation and measurement of network characteristics. The analysis of the Uber event comprised data extraction, data categorization, corpus construction, corpus visualization and analysis. On the recovery stage TAGS, a Google Sheet template, was used to extract tweets that included the hashtags #UberSeQueda and #UberSeVa, posts containing the string Uber and tweets directed to @uber_mx. Using scripts written in Python, the data was filtered, discarding tweets with no interaction (replies, retweets or mentions) and locations outside of México. Considerations regarding bots and the omission of anecdotal posts were also taken into account. The utility of graphs to observe interactions of political communication in general was confirmed by the analysis of visualizations generated with programs such as Gephi and NodeXL. However, some aspects require improvements to obtain more useful visual representations for this type of research. For example, link¬crossings complicates following the direction of an interaction forcing users to manipulate the graph to see it clearly. It was concluded that some practices prevalent in political communication in Mexico are replicated in Twitter. Media actors tend to group together instead of interact with others. The political system tends to tweet as an advertising strategy rather than to generate dialogue. However, some actors were identified as bridges establishing communication between the three spheres, generating a more democratic exercise and taking advantage of Twitter’s possibilities. Although interactions in Twitter could become an alternative to political communication, this potential depends on the intentions of the participants and to what extent they are aiming for collaborative and direct communications. Further research is needed to get a deeper understanding on the political behavior of Twitter users and the possibilities of SNA for its analysis.

Keywords: interaction, political communication, social network analysis, Twitter

Procedia PDF Downloads 221
3206 An Embedded System for Early Detection of Gas Leakage in Hospitals and Industries

Authors: Sehreen Moorat, Hiba, Maham Mahnoor, Faryal Soomro

Abstract:

Leakage of gases in a system makes infrastructures and users vulnerable; it can occur due to its environmental conditions or old groundwork. In hospitals and industries, it is very important to detect any small level of gas leakage because of their sensitivity. In this research, a portable detection system for the small leakage of gases has been developed, gas sensor (MQ-2) is used to find leakage when it’s at its initial phase. The sensor and transmitting module senses the change in level of gas by using a sensing circuit. When a concentration of gas reach at a specified threshold level, it will activate an alarm and send the alarming situation notification to receiver through GSM module. The proposed system works well in hospitals, home, and industries.

Keywords: gases, detection, Arduino, MQ-2, alarm

Procedia PDF Downloads 206
3205 Human Performance Evaluating of Advanced Cardiac Life Support Procedure Using Fault Tree and Bayesian Network

Authors: Shokoufeh Abrisham, Seyed Mahmoud Hossieni, Elham Pishbin

Abstract:

In this paper, a hybrid method based on the fault tree analysis (FTA) and Bayesian networks (BNs) are employed to evaluate the team performance quality of advanced cardiac life support (ACLS) procedures in emergency department. According to American Heart Association (AHA) guidelines, a category relying on staff action leading to clinical incidents and also some discussions with emergency medicine experts, a fault tree model for ACLS procedure is obtained based on the human performance. The obtained FTA model is converted into BNs, and some different scenarios are defined to demonstrate the efficiency and flexibility of the presented model of BNs. Also, a sensitivity analysis is conducted to indicate the effects of team leader presence and uncertainty knowledge of experts on the quality of ACLS. The proposed model based on BNs shows that how the results of risk analysis can be closed to reality comparing to the obtained results based on only FTA in medical procedures.

Keywords: advanced cardiac life support, fault tree analysis, Bayesian belief networks, numan performance, healthcare systems

Procedia PDF Downloads 147
3204 Use of Smartphones in 6th and 7th Grade (Elementary Schools) in Istria: Pilot Study

Authors: Maja Ruzic-Baf, Vedrana Keteles, Andrea Debeljuh

Abstract:

Younger and younger children are now using a smartphone, a device which has become ‘a must have’ and the life of children would be almost ‘unthinkable’ without one. Devices are becoming lighter and lighter but offering an array of options and applications as well as the unavoidable access to the Internet, without which it would be almost unusable. Numerous features such as taking of photographs, listening to music, information search on the Internet, access to social networks, usage of some of the chatting and messaging services, are only some of the numerous features offered by ‘smart’ devices. They have replaced the alarm clock, home phone, camera, tablet and other devices. Their use and possession have become a part of the everyday image of young people. Apart from the positive aspects, the use of smartphones has also some downsides. For instance, free time was usually spent in nature, playing, doing sports or other activities enabling children an adequate psychophysiological growth and development. The greater usage of smartphones during classes to check statuses on social networks, message your friends, play online games, are just some of the possible negative aspects of their application. Considering that the age of the population using smartphones is decreasing and that smartphones are no longer ‘foreign’ to children of pre-school age (smartphones are used at home or in coffee shops or shopping centers while waiting for their parents, playing video games often inappropriate to their age), particular attention must be paid to a very sensitive group, the teenagers who almost never separate from their ‘pets’. This paper is divided into two sections, theoretical and empirical ones. The theoretical section gives an overview of the pros and cons of the usage of smartphones, while the empirical section presents the results of a research conducted in three elementary schools regarding the usage of smartphones and, specifically, their usage during classes, during breaks and to search information on the Internet, check status updates and 'likes’ on the Facebook social network.

Keywords: education, smartphone, social networks, teenagers

Procedia PDF Downloads 453
3203 Impact of Instrument Transformer Secondary Connections on Performance of Protection System: Experiences from Indian POWERGRID

Authors: Pankaj Kumar Jha, Mahendra Singh Hada, Brijendra Singh, Sandeep Yadav

Abstract:

Protective relays are commonly connected to the secondary windings of instrument transformers, i.e., current transformers (CTs) and/or capacitive voltage transformers (CVTs). The purpose of CT and CVT is to provide galvanic isolation from high voltages and reduce primary currents and voltages to a nominal quantity recognized by the protective relays. Selecting the correct instrument transformers for an application is imperative: failing to do so may compromise the relay’s performance, as the output of the instrument transformer may no longer be an accurately scaled representation of the primary quantity. Having an accurately rated instrument transformer is of no use if these devices are not properly connected. The performance of the protective relay is reliant on its programmed settings and on the current and voltage inputs from the instrument transformers secondary. This paper will help in understanding the fundamental concepts of the connections of Instrument Transformers to the protection relays and the effect of incorrect connection on the performance of protective relays. Multiple case studies of protection system mal-operations due to incorrect connections of instrument transformers will be discussed in detail in this paper. Apart from the connection issue of instrument transformers to protective relays, this paper will also discuss the effect of multiple earthing of CTs and CVTs secondary on the performance of the protection system. Case studies presented in this paper will help the readers to analyse the problem through real-world challenges in complex power system networks. This paper will also help the protection engineer in better analysis of disturbance records. CT and CVT connection errors can lead to undesired operations of protection systems. However, many of these operations can be avoided by adhering to industry standards and implementing tried-and-true field testing and commissioning practices. Understanding the effect of missing neutral of CVT, multiple earthing of CVT secondary, and multiple grounding of CT star points on the performance of the protection system through real-world case studies will help the protection engineer in better commissioning the protection system and maintenance of the protection system.

Keywords: bus reactor, current transformer, capacitive voltage transformer, distance protection, differential protection, directional earth fault, disturbance report, instrument transformer, ICT, REF protection, shunt reactor, voltage selection relay, VT fuse failure

Procedia PDF Downloads 81
3202 Photovoltaic Cells Characteristics Measurement Systems

Authors: Rekioua T., Rekioua D., Aissou S., Ouhabi A.

Abstract:

Power provided by the photovoltaic array varies with solar radiation and temperature, since these parameters influence the electrical characteristic (Ipv-Vpv) of solar cells. In Scientific research, there are different methods to obtain these characteristics. In this paper, we present three methods. A simulation one using Matlab/Simulink. The second one is the standard experimental voltage method and the third one is by using LabVIEW software. This latter is based on an electronic circuit to test PV modules. All details of this electronic schemes are presented and obtained results of the three methods with a comparison and under different meteorological conditions are presented. The proposed method is simple and very efficiency for testing and measurements of electrical characteristic curves of photovoltaic panels.

Keywords: photovoltaic cells, measurement standards, temperature sensors, data acquisition

Procedia PDF Downloads 461
3201 [Keynote Talk]: Knowledge Codification and Innovation Success within Digital Platforms

Authors: Wissal Ben Arfi, Lubica Hikkerova, Jean-Michel Sahut

Abstract:

This study examines interfirm networks in the digital transformation era, and in particular, how tacit knowledge codification affects innovation success within digital platforms. Hence, one of the most important features of digital transformation and innovation process outcomes is the emergence of digital platforms, as an interfirm network, at the heart of open innovation. This research aims to illuminate how digital platforms influence inter-organizational innovation through virtual team interactions and knowledge sharing practices within an interfirm network. Consequently, it contributes to the respective strategic management literature on new product development (NPD), open innovation, industrial management, and its emerging interfirm networks’ management. The empirical findings show, on the one hand, that knowledge conversion may be enhanced, especially by the socialization which seems to be the most important phase as it has played a crucial role to hold the virtual team members together. On the other hand, in the process of socialization, the tacit knowledge codification is crucial because it provides the structure needed for the interfirm network actors to interact and act to reach common goals which favor the emergence of open innovation. Finally, our results offer several conditions necessary, but not always sufficient, for interfirm managers involved in NPD and innovation concerning strategies to increasingly shape interconnected and borderless markets and business collaborations. In the digital transformation era, the need for adaptive and innovative business models as well as new and flexible network forms is becoming more significant than ever. Supported by technological advancements and digital platforms, companies could benefit from increased market opportunities and creating new markets for their innovations through alliances and collaborative strategies, as a mode of reducing or eliminating uncertainty environments or entry barriers. Consequently, an efficient and well-structured interfirm network is essential to create network capabilities, to ensure tacit knowledge sharing, to enhance organizational learning and to foster open innovation success within digital platforms.

Keywords: interfirm networks, digital platform, virtual teams, open innovation, knowledge sharing

Procedia PDF Downloads 130
3200 Transboundary Pollution after Natural Disasters: Scenario Analyses for Uranium at Kyrgyzstan-Uzbekistan Border

Authors: Fengqing Li, Petra Schneider

Abstract:

Failure of tailings management facilities (TMF) of radioactive residues is an enormous challenge worldwide and can result in major catastrophes. Particularly in transboundary regions, such failure is most likely to lead to international conflict. This risk occurs in Kyrgyzstan and Uzbekistan, where the current major challenge is the quantification of impacts due to pollution from uranium legacy sites and especially the impact on river basins after natural hazards (i.e., landslides). By means of GoldSim, a probabilistic simulation model, the amount of tailing material that flows into the river networks of Mailuu Suu in Kyrgyzstan after pond failure was simulated for three scenarios, namely 10%, 20%, and 30% of material inputs. Based on Muskingum-Cunge flood routing procedure, the peak value of uranium flood wave along the river network was simulated. Among the 23 TMF, 19 ponds are close to the river networks. The spatiotemporal distributions of uranium along the river networks were then simulated for all the 19 ponds under three scenarios. Taking the TP7 which is 30 km far from the Kyrgyzstan-Uzbekistan border as one example, the uranium concentration decreased continuously along the longitudinal gradient of the river network, the concentration of uranium was observed at the border after 45 min of the pond failure and the highest value was detected after 69 min. The highest concentration of uranium at the border were 16.5, 33, and 47.5 mg/L under scenarios of 10%, 20%, and 30% of material inputs, respectively. In comparison to the guideline value of uranium in drinking water (i.e., 30 µg/L) provided by the World Health Organization, the observed concentrations of uranium at the border were 550‒1583 times higher. In order to mitigate the transboundary impact of a radioactive pollutant release, an integrated framework consisting of three major strategies were proposed. Among, the short-term strategy can be used in case of emergency event, the medium-term strategy allows both countries handling the TMF efficiently based on the benefit-sharing concept, and the long-term strategy intends to rehabilitate the site through the relocation of all TMF.

Keywords: Central Asia, contaminant transport modelling, radioactive residue, transboundary conflict

Procedia PDF Downloads 118
3199 A Bayesian Network Approach to Customer Loyalty Analysis: A Case Study of Home Appliances Industry in Iran

Authors: Azam Abkhiz, Abolghasem Nasir

Abstract:

To achieve sustainable competitive advantage in the market, it is necessary to provide and improve customer satisfaction and Loyalty. To reach this objective, companies need to identify and analyze their customers. Thus, it is critical to measure the level of customer satisfaction and Loyalty very carefully. This study attempts to build a conceptual model to provide clear insights of customer loyalty. Using Bayesian networks (BNs), a model is proposed to evaluate customer loyalty and its consequences, such as repurchase and positive word-of-mouth. BN is a probabilistic approach that predicts the behavior of a system based on observed stochastic events. The most relevant determinants of customer loyalty are identified by the literature review. Perceived value, service quality, trust, corporate image, satisfaction, and switching costs are the most important variables that explain customer loyalty. The data are collected by use of a questionnaire-based survey from 1430 customers of a home appliances manufacturer in Iran. Four scenarios and sensitivity analyses are performed to run and analyze the impact of different determinants on customer loyalty. The proposed model allows businesses to not only set their targets but proactively manage their customer behaviors as well.

Keywords: customer satisfaction, customer loyalty, Bayesian networks, home appliances industry

Procedia PDF Downloads 140
3198 Optimization of Monitoring Networks for Air Quality Management in Urban Hotspots

Authors: Vethathirri Ramanujam Srinivasan, S. M. Shiva Nagendra

Abstract:

Air quality management in urban areas is a serious concern in both developed and developing countries. In this regard, more number of air quality monitoring stations are planned to mitigate air pollution in urban areas. In India, Central Pollution Control Board has set up 574 air quality monitoring stations across the country and proposed to set up another 500 stations in the next few years. The number of monitoring stations for each city has been decided based on population data. The setting up of ambient air quality monitoring stations and their operation and maintenance are highly expensive. Therefore, there is a need to optimize monitoring networks for air quality management. The present paper discusses the various methods such as Indian Standards (IS) method, US EPA method and European Union (EU) method to arrive at the minimum number of air quality monitoring stations. In addition, optimization of rain-gauge method and Inverse Distance Weighted (IDW) method using Geographical Information System (GIS) are also explored in the present work for the design of air quality network in Chennai city. In summary, additionally 18 stations are required for Chennai city, and the potential monitoring locations with their corresponding land use patterns are ranked and identified from the 1km x 1km sized grids.

Keywords: air quality monitoring network, inverse distance weighted method, population based method, spatial variation

Procedia PDF Downloads 189
3197 Design of a Compact Microstrip Patch Antenna for LTE Applications by Applying FDSC Model

Authors: Settapong Malisuwan, Jesada Sivaraks, Peerawat Promkladpanao, Nattakit Suriyakrai, Navneet Madan

Abstract:

In this paper, a compact microstrip patch antenna is designed for mobile LTE applications by applying the frequency-dependent Smith-Chart (FDSC) model. The FDSC model is adopted in this research to reduce the error on the frequency-dependent characteristics. The Ansoft HFSS and various techniques is applied to meet frequency and size requirements. The proposed method within this research is suitable for use in computer-aided microstrip antenna design and RF integrated circuit (RFIC) design.

Keywords: frequency-dependent, smith-chart, microstrip, antenna, LTE, CAD

Procedia PDF Downloads 374
3196 Training a Neural Network to Segment, Detect and Recognize Numbers

Authors: Abhisek Dash

Abstract:

This study had three neural networks, one for number segmentation, one for number detection and one for number recognition all of which are coupled to one another. All networks were trained on the MNIST dataset and were convolutional. It was assumed that the images had lighter background and darker foreground. The segmentation network took 28x28 images as input and had sixteen outputs. Segmentation training starts when a dark pixel is encountered. Taking a window(7x7) over that pixel as focus, the eight neighborhood of the focus was checked for further dark pixels. The segmentation network was then trained to move in those directions which had dark pixels. To this end the segmentation network had 16 outputs. They were arranged as “go east”, ”don’t go east ”, “go south east”, “don’t go south east”, “go south”, “don’t go south” and so on w.r.t focus window. The focus window was resized into a 28x28 image and the network was trained to consider those neighborhoods which had dark pixels. The neighborhoods which had dark pixels were pushed into a queue in a particular order. The neighborhoods were then popped one at a time stitched to the existing partial image of the number one at a time and trained on which neighborhoods to consider when the new partial image was presented. The above process was repeated until the image was fully covered by the 7x7 neighborhoods and there were no more uncovered black pixels. During testing the network scans and looks for the first dark pixel. From here on the network predicts which neighborhoods to consider and segments the image. After this step the group of neighborhoods are passed into the detection network. The detection network took 28x28 images as input and had two outputs denoting whether a number was detected or not. Since the ground truth of the bounds of a number was known during training the detection network outputted in favor of number not found until the bounds were not met and vice versa. The recognition network was a standard CNN that also took 28x28 images and had 10 outputs for recognition of numbers from 0 to 9. This network was activated only when the detection network votes in favor of number detected. The above methodology could segment connected and overlapping numbers. Additionally the recognition unit was only invoked when a number was detected which minimized false positives. It also eliminated the need for rules of thumb as segmentation is learned. The strategy can also be extended to other characters as well.

Keywords: convolutional neural networks, OCR, text detection, text segmentation

Procedia PDF Downloads 161
3195 Categorical Metadata Encoding Schemes for Arteriovenous Fistula Blood Flow Sound Classification: Scaling Numerical Representations Leads to Improved Performance

Authors: George Zhou, Yunchan Chen, Candace Chien

Abstract:

Kidney replacement therapy is the current standard of care for end-stage renal diseases. In-center or home hemodialysis remains an integral component of the therapeutic regimen. Arteriovenous fistulas (AVF) make up the vascular circuit through which blood is filtered and returned. Naturally, AVF patency determines whether adequate clearance and filtration can be achieved and directly influences clinical outcomes. Our aim was to build a deep learning model for automated AVF stenosis screening based on the sound of blood flow through the AVF. A total of 311 patients with AVF were enrolled in this study. Blood flow sounds were collected using a digital stethoscope. For each patient, blood flow sounds were collected at 6 different locations along the patient’s AVF. The 6 locations are artery, anastomosis, distal vein, middle vein, proximal vein, and venous arch. A total of 1866 sounds were collected. The blood flow sounds are labeled as “patent” (normal) or “stenotic” (abnormal). The labels are validated from concurrent ultrasound. Our dataset included 1527 “patent” and 339 “stenotic” sounds. We show that blood flow sounds vary significantly along the AVF. For example, the blood flow sound is loudest at the anastomosis site and softest at the cephalic arch. Contextualizing the sound with location metadata significantly improves classification performance. How to encode and incorporate categorical metadata is an active area of research1. Herein, we study ordinal (i.e., integer) encoding schemes. The numerical representation is concatenated to the flattened feature vector. We train a vision transformer (ViT) on spectrogram image representations of the sound and demonstrate that using scalar multiples of our integer encodings improves classification performance. Models are evaluated using a 10-fold cross-validation procedure. The baseline performance of our ViT without any location metadata achieves an AuROC and AuPRC of 0.68 ± 0.05 and 0.28 ± 0.09, respectively. Using the following encodings of Artery:0; Arch: 1; Proximal: 2; Middle: 3; Distal 4: Anastomosis: 5, the ViT achieves an AuROC and AuPRC of 0.69 ± 0.06 and 0.30 ± 0.10, respectively. Using the following encodings of Artery:0; Arch: 10; Proximal: 20; Middle: 30; Distal 40: Anastomosis: 50, the ViT achieves an AuROC and AuPRC of 0.74 ± 0.06 and 0.38 ± 0.10, respectively. Using the following encodings of Artery:0; Arch: 100; Proximal: 200; Middle: 300; Distal 400: Anastomosis: 500, the ViT achieves an AuROC and AuPRC of 0.78 ± 0.06 and 0.43 ± 0.11. respectively. Interestingly, we see that using increasing scalar multiples of our integer encoding scheme (i.e., encoding “venous arch” as 1,10,100) results in progressively improved performance. In theory, the integer values do not matter since we are optimizing the same loss function; the model can learn to increase or decrease the weights associated with location encodings and converge on the same solution. However, in the setting of limited data and computation resources, increasing the importance at initialization either leads to faster convergence or helps the model escape a local minimum.

Keywords: arteriovenous fistula, blood flow sounds, metadata encoding, deep learning

Procedia PDF Downloads 88
3194 Undirected Endo-Cayley Digraphs of Cyclic Groups of Order Primes

Authors: Chanon Promsakon, Sayan Panma

Abstract:

Let S be a finite semigroup, A a subset of S and f an endomorphism on S. The endo-Cayley digraph of a semigroup S corresponding to a connecting set A and an endomorphism f, denoted by endo − Cayf (S, A) is a digraph whose vertex set is S and a vertex u is adjacent to a vertex v if and only if v = f(u)a for some a ∈ A. A digraph D is called undirected if any edge uv in D, there exists an edge vu in D. We consider the undirectedness of an endo-Cayley of a cyclic group of order prime, Zp. In this work, we investigate conditions for connecting sets and endomorphisms to make endo-Cayley digraphs of cyclic groups of order primes be undirected. Moreover, we give some conditions for an undirected endo-Cayley of cycle group of any order.

Keywords: endo-Cayley graph, undirected digraphs, cyclic groups, endomorphism

Procedia PDF Downloads 351
3193 Achieving Product Robustness through Variation Simulation: An Industrial Case Study

Authors: Narendra Akhadkar, Philippe Delcambre

Abstract:

In power protection and control products, assembly process variations due to the individual parts manufactured from single or multi-cavity tooling is a major problem. The dimensional and geometrical variations on the individual parts, in the form of manufacturing tolerances and assembly tolerances, are sources of clearance in the kinematic joints, polarization effect in the joints, and tolerance stack-up. All these variations adversely affect the quality of product, functionality, cost, and time-to-market. Variation simulation analysis may be used in the early product design stage to predict such uncertainties. Usually, variations exist in both manufacturing processes and materials. In the tolerance analysis, the effect of the dimensional and geometrical variations of the individual parts on the functional characteristics (conditions) of the final assembled products are studied. A functional characteristic of the product may be affected by a set of interrelated dimensions (functional parameters) that usually form a geometrical closure in a 3D chain. In power protection and control products, the prerequisite is: when a fault occurs in the electrical network, the product must respond quickly to react and break the circuit to clear the fault. Usually, the response time is in milliseconds. Any failure in clearing the fault may result in severe damage to the equipment or network, and human safety is at stake. In this article, we have investigated two important functional characteristics that are associated with the robust performance of the product. It is demonstrated that the experimental data obtained at the Schneider Electric Laboratory prove the very good prediction capabilities of the variation simulation performed using CETOL (tolerance analysis software) in an industrial context. Especially, this study allows design engineers to better understand the critical parts in the product that needs to be manufactured with good, capable tolerances. On the contrary, some parts are not critical for the functional characteristics (conditions) of the product and may lead to some reduction of the manufacturing cost, ensuring robust performance. The capable tolerancing is one of the most important aspects in product and manufacturing process design. In the case of miniature circuit breaker (MCB), the product's quality and its robustness are mainly impacted by two aspects: (1) allocation of design tolerances between the components of a mechanical assembly and (2) manufacturing tolerances in the intermediate machining steps of component fabrication.

Keywords: geometrical variation, product robustness, tolerance analysis, variation simulation

Procedia PDF Downloads 164
3192 Altered States of Consciousness in Narrative Cinema: Subjective Film Sound

Authors: Mladen Milicevic

Abstract:

In this paper, subjective film sound will be addressed as it gets represented in narrative cinema. First, 'meta-diegetic' sound will be briefly explained followed by transition to “oneiric” sound. The representation of oneiric sound refers to a situation where film characters are experiencing some sort of an altered state of consciousness. Looking at an antlered state of consciousness in terms of human brain processes will point out to the cinematic ways of expression, which 'mimic' those processes. Using several examples for different films will illustrate these points.

Keywords: oneiric, ASC, film, sound

Procedia PDF Downloads 375
3191 From Mathematics Project-Based Learning to Commercial Product Using Geometer’s Sketchpad (GSP)

Authors: Krongthong Khairiree

Abstract:

The purpose of this research study is to explore mathematics project-based learning approach and the use of technology in the context of school mathematics in Thailand. Data of the study were collected from 6 sample secondary schools and the students were 6-14 years old. Research findings show that through mathematics project-based learning approach and the use of GSP, students were able to make mathematics learning fun and challenging. Based on the students’ interviews they revealed that, with GSP, they were able to visualize and create graphical representations, which will enable them to develop their mathematical thinking skills, concepts and understanding. The students had fun in creating variety of graphs of functions which they can not do by drawing on graph paper. In addition, there are evidences to show the students’ abilities in connecting mathematics to real life outside the classroom and commercial products, such as weaving, patterning of broomstick, and ceramics design.

Keywords: mathematics, project-based learning, Geometer’s Sketchpad (GSP), commercial products

Procedia PDF Downloads 336
3190 Media, Politics and Power in the Representation of the Refugee and Migration Crisis in Europe

Authors: Evangelia-Matroni Tomara

Abstract:

This thesis answers the question whether the media representations and reporting in 2015-2016 - especially, after the image of the drowned three-year-old Syrian boy in the Mediterranean Sea which made global headlines in the beginning of September 2015 -, the European Commission regulatory sources material and related reporting, have the power to challenge the conceptualization of humanitarianism or even redefine it. The theoretical foundations of the thesis are based on humanitarianism and its core definitions, the power of media representations and the relative portrayal of migrants, refugees and/or asylum seekers, as well as the dominant migration discourse and EU migration governance. Using content analysis for the media portrayal of migrants (436 newspaper articles) and qualitative content analysis for the European Commission Communication documents from May 2015 until June 2016 that required various depths of interpretation, this thesis allowed us to revise the concept of humanitarianism, realizing that the current crisis may seem to be a turning point for Europe but is not enough to overcome the past hostile media discourses and suppress the historical perspective of security and control-oriented EU migration policies. In particular, the crisis helped to shift the intensity of hostility and the persistence in the state-centric, border-oriented securitization in Europe into a narration of victimization rather than threat where mercy and charity dynamics are dominated and into operational mechanisms, noting the emergency of immediate management of the massive migrations flows, respectively. Although, the understanding of a rights-based response to the ongoing migration crisis, is being followed discursively in both political and media stage, the nexus described, points out that the binary between ‘us’ and ‘them’ still exists, with only difference that the ‘invaders’ are now ‘pathetic’ but still ‘invaders’. In this context, the migration crisis challenges the concept of humanitarianism because rights dignify migrants as individuals only in a discursive or secondary level while the humanitarian work is mostly related with the geopolitical and economic interests of the ‘savior’ states.

Keywords: European Union politics, humanitarianism, immigration, media representation, policy-making, refugees, security studies

Procedia PDF Downloads 293
3189 A Low-Area Fully-Reconfigurable Hardware Design of Fast Fourier Transform System for 3GPP-LTE Standard

Authors: Xin-Yu Shih, Yue-Qu Liu, Hong-Ru Chou

Abstract:

This paper presents a low-area and fully-reconfigurable Fast Fourier Transform (FFT) hardware design for 3GPP-LTE communication standard. It can fully support 32 different FFT sizes, up to 2048 FFT points. Besides, a special processing element is developed for making reconfigurable computing characteristics possible, while first-in first-out (FIFO) scheduling scheme design technique is proposed for hardware-friendly FIFO resource arranging. In a synthesis chip realization via TSMC 40 nm CMOS technology, the hardware circuit only occupies core area of 0.2325 mm2 and dissipates 233.5 mW at maximal operating frequency of 250 MHz.

Keywords: reconfigurable, fast Fourier transform (FFT), single-path delay feedback (SDF), 3GPP-LTE

Procedia PDF Downloads 278
3188 Ordinary Differentiation Equations (ODE) Reconstruction of High-Dimensional Genetic Networks through Game Theory with Application to Dissecting Tree Salt Tolerance

Authors: Libo Jiang, Huan Li, Rongling Wu

Abstract:

Ordinary differentiation equations (ODE) have proven to be powerful for reconstructing precise and informative gene regulatory networks (GRNs) from dynamic gene expression data. However, joint modeling and analysis of all genes, essential for the systematical characterization of genetic interactions, are challenging due to high dimensionality and a complex pattern of genetic regulation including activation, repression, and antitermination. Here, we address these challenges by unifying variable selection and game theory through ODE. Each gene within a GRN is co-expressed with its partner genes in a way like a game of multiple players, each of which tends to choose an optimal strategy to maximize its “fitness” across the whole network. Based on this unifying theory, we designed and conducted a real experiment to infer salt tolerance-related GRNs for Euphrates poplar, a hero tree that can grow in the saline desert. The pattern and magnitude of interactions between several hub genes within these GRNs were found to determine the capacity of Euphrates poplar to resist to saline stress.

Keywords: gene regulatory network, ordinary differential equation, game theory, LASSO, saline resistance

Procedia PDF Downloads 639
3187 A Review of Current Trends in Grid Balancing Technologies

Authors: Kulkarni Rohini D.

Abstract:

While emerging as plausible sources of energy generation, new technologies, including photovoltaic (PV) solar panels, home battery energy storage systems, and electric vehicles (EVs), are exacerbating the operations of power distribution networks for distribution network operators (DNOs). Renewable energy production fluctuates, stemming in over- and under-generation energy, further complicating the issue of storing excess power and using it when necessary. Though renewable sources are non-exhausting and reoccurring, power storage of generated energy is almost as paramount as to its production process. Hence, to ensure smooth and efficient power storage at different levels, Grid balancing technologies are consequently the next theme to address in the sustainable space and growth sector. But, since hydrogen batteries were used in the earlier days to achieve this balance in power grids, new, recent advancements are more efficient and capable per unit of storage space while also being distinctive in terms of their underlying operating principles. The underlying technologies of "Flow batteries," "Gravity Solutions," and "Graphene Batteries" already have entered the market and are leading the race for efficient storage device solutions that will improve and stabilize Grid networks, followed by Grid balancing technologies.

Keywords: flow batteries, grid balancing, hydrogen batteries, power storage, solar

Procedia PDF Downloads 70
3186 Estimating the Technological Deviation Impact on the Value of the Output Parameter of the Induction Converter

Authors: Marinka K. Baghdasaryan, Siranush M. Muradyan, Avgen A. Gasparyan

Abstract:

Based on the experimental data, the impact of resistance and reactance of the winding, as well as the magnetic permeability of the magnetic circuit steel material on the value of the electromotive force of the induction converter is investigated. The obtained results allow to estimate the main technological spreads and determine the maximum level of the electromotive force change. By the method of experiment planning, the expression of a polynomial for the electromotive force which can be used to estimate the adequacy of mathematical models to be used at the investigation and design of induction converters is obtained.

Keywords: induction converter, electromotive force, expectation, technological spread, deviation, planning an experiment, polynomial, confidence level

Procedia PDF Downloads 464
3185 Performance Enrichment of Deep Feed Forward Neural Network and Deep Belief Neural Networks for Fault Detection of Automobile Gearbox Using Vibration Signal

Authors: T. Praveenkumar, Kulpreet Singh, Divy Bhanpuriya, M. Saimurugan

Abstract:

This study analysed the classification accuracy for gearbox faults using Machine Learning Techniques. Gearboxes are widely used for mechanical power transmission in rotating machines. Its rotating components such as bearings, gears, and shafts tend to wear due to prolonged usage, causing fluctuating vibrations. Increasing the dependability of mechanical components like a gearbox is hampered by their sealed design, which makes visual inspection difficult. One way of detecting impending failure is to detect a change in the vibration signature. The current study proposes various machine learning algorithms, with aid of these vibration signals for obtaining the fault classification accuracy of an automotive 4-Speed synchromesh gearbox. Experimental data in the form of vibration signals were acquired from a 4-Speed synchromesh gearbox using Data Acquisition System (DAQs). Statistical features were extracted from the acquired vibration signal under various operating conditions. Then the extracted features were given as input to the algorithms for fault classification. Supervised Machine Learning algorithms such as Support Vector Machines (SVM) and unsupervised algorithms such as Deep Feed Forward Neural Network (DFFNN), Deep Belief Networks (DBN) algorithms are used for fault classification. The fusion of DBN & DFFNN classifiers were architected to further enhance the classification accuracy and to reduce the computational complexity. The fault classification accuracy for each algorithm was thoroughly studied, tabulated, and graphically analysed for fused and individual algorithms. In conclusion, the fusion of DBN and DFFNN algorithm yielded the better classification accuracy and was selected for fault detection due to its faster computational processing and greater efficiency.

Keywords: deep belief networks, DBN, deep feed forward neural network, DFFNN, fault diagnosis, fusion of algorithm, vibration signal

Procedia PDF Downloads 114