Search results for: automated monitoring system.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20071

Search results for: automated monitoring system.

18331 Assessment of Air Quality Status Using Pollution Indicators in Industrial Zone of Brega City

Authors: Tawfig Falani, Abdulalaziz Saleh

Abstract:

Air pollution has become a major environmental issue with definitive repercussions on human health. Global concerns have been raised about the health effects of deteriorating air quality due mainly to widespread industrialization and urbanization. To assess the quality of air in Brega, air quality indicators were calculated using the U.S. Environmental Protection Agency procedure. Air quality was monitored from 01/10/2019 to 28/02/2021 with a daily average measuring six pollutants of particulate matter <2.5µm (PM2.5), and <10µm (PM₁₀), sulfur dioxide (SO₂), nitrogen dioxide (NO₂), ozone (O₃), and carbon monoxide (CO). The result indicated that air pollution at general air quality monitoring sites for sulphur dioxide, carbon monoxide, PM₁₀ and PM2.5 and nitrogen dioxide are always within the permissible limit. Referring to a monthly average of Pollutants in the Brega Industrial area, all months were out of AQG limit for NO₂, and the same with O₃ except for two months. For PM2.5 and PM₁₀ 7, 5 out of 17 months were out of limits, respectively. Relative AQI for ozone is found in the range of moderate category of general air pollution, and the worst month was Nov. 2020, which was marked as Very Unhealthy category, then the next two months (Dec. 2020 and Jan. 2021 ) were Unhealthy categories. It's the first time that we have used the AQI in SOC, and not usually used in Libya to identify the quality of air pollution. So, I think it will be useful if AQI is used as guidance for specified air pollution. That dictate putting monitoring stations beside any industrial activity that has emissions of the six major air pollutants.

Keywords: air quality, air pollutants, air quality index (AQI), particulate matter

Procedia PDF Downloads 54
18330 A Versatile Data Processing Package for Ground-Based Synthetic Aperture Radar Deformation Monitoring

Authors: Zheng Wang, Zhenhong Li, Jon Mills

Abstract:

Ground-based synthetic aperture radar (GBSAR) represents a powerful remote sensing tool for deformation monitoring towards various geohazards, e.g. landslides, mudflows, avalanches, infrastructure failures, and the subsidence of residential areas. Unlike spaceborne SAR with a fixed revisit period, GBSAR data can be acquired with an adjustable temporal resolution through either continuous or discontinuous operation. However, challenges arise from processing high temporal-resolution continuous GBSAR data, including the extreme cost of computational random-access-memory (RAM), the delay of displacement maps, and the loss of temporal evolution. Moreover, repositioning errors between discontinuous campaigns impede the accurate measurement of surface displacements. Therefore, a versatile package with two complete chains is developed in this study in order to process both continuous and discontinuous GBSAR data and address the aforementioned issues. The first chain is based on a small-baseline subset concept and it processes continuous GBSAR images unit by unit. Images within a window form a basic unit. By taking this strategy, the RAM requirement is reduced to only one unit of images and the chain can theoretically process an infinite number of images. The evolution of surface displacements can be detected as it keeps temporarily-coherent pixels which are present only in some certain units but not in the whole observation period. The chain supports real-time processing of the continuous data and the delay of creating displacement maps can be shortened without waiting for the entire dataset. The other chain aims to measure deformation between discontinuous campaigns. Temporal averaging is carried out on a stack of images in a single campaign in order to improve the signal-to-noise ratio of discontinuous data and minimise the loss of coherence. The temporal-averaged images are then processed by a particular interferometry procedure integrated with advanced interferometric SAR algorithms such as robust coherence estimation, non-local filtering, and selection of partially-coherent pixels. Experiments are conducted using both synthetic and real-world GBSAR data. Displacement time series at the level of a few sub-millimetres are achieved in several applications (e.g. a coastal cliff, a sand dune, a bridge, and a residential area), indicating the feasibility of the developed GBSAR data processing package for deformation monitoring of a wide range of scientific and practical applications.

Keywords: ground-based synthetic aperture radar, interferometry, small baseline subset algorithm, deformation monitoring

Procedia PDF Downloads 163
18329 Profiling Risky Code Using Machine Learning

Authors: Zunaira Zaman, David Bohannon

Abstract:

This study explores the application of machine learning (ML) for detecting security vulnerabilities in source code. The research aims to assist organizations with large application portfolios and limited security testing capabilities in prioritizing security activities. ML-based approaches offer benefits such as increased confidence scores, false positives and negatives tuning, and automated feedback. The initial approach using natural language processing techniques to extract features achieved 86% accuracy during the training phase but suffered from overfitting and performed poorly on unseen datasets during testing. To address these issues, the study proposes using the abstract syntax tree (AST) for Java and C++ codebases to capture code semantics and structure and generate path-context representations for each function. The Code2Vec model architecture is used to learn distributed representations of source code snippets for training a machine-learning classifier for vulnerability prediction. The study evaluates the performance of the proposed methodology using two datasets and compares the results with existing approaches. The Devign dataset yielded 60% accuracy in predicting vulnerable code snippets and helped resist overfitting, while the Juliet Test Suite predicted specific vulnerabilities such as OS-Command Injection, Cryptographic, and Cross-Site Scripting vulnerabilities. The Code2Vec model achieved 75% accuracy and a 98% recall rate in predicting OS-Command Injection vulnerabilities. The study concludes that even partial AST representations of source code can be useful for vulnerability prediction. The approach has the potential for automated intelligent analysis of source code, including vulnerability prediction on unseen source code. State-of-the-art models using natural language processing techniques and CNN models with ensemble modelling techniques did not generalize well on unseen data and faced overfitting issues. However, predicting vulnerabilities in source code using machine learning poses challenges such as high dimensionality and complexity of source code, imbalanced datasets, and identifying specific types of vulnerabilities. Future work will address these challenges and expand the scope of the research.

Keywords: code embeddings, neural networks, natural language processing, OS command injection, software security, code properties

Procedia PDF Downloads 109
18328 Blockchain-Based Assignment Management System

Authors: Amogh Katti, J. Sai Asritha, D. Nivedh, M. Kalyan Srinivas, B. Somnath Chakravarthi

Abstract:

Today's modern education system uses Learning Management System (LMS) portals for the scoring and grading of student performances, to maintain student records, and teachers are instructed to accept assignments through online submissions of .pdf,.doc,.ppt, etc. There is a risk of data tampering in the traditional portals; we will apply the Blockchain model instead of this traditional model to avoid data tampering and also provide a decentralized mechanism for overall fairness. Blockchain technology is a better and also recommended model because of the following features: consensus mechanism, decentralized system, cryptographic encryption, smart contracts, Ethereum blockchain. The proposed system ensures data integrity and tamper-proof assignment submission and grading, which will be helpful for both students and also educators.

Keywords: education technology, learning management system, decentralized applications, blockchain

Procedia PDF Downloads 84
18327 Monitor Student Concentration Levels on Online Education Sessions

Authors: M. K. Wijayarathna, S. M. Buddika Harshanath

Abstract:

Monitoring student engagement has become a crucial part of the educational process and a reliable indicator of the capacity to retain information. As online learning classrooms are now more common these days, students' attention levels have become increasingly important, making it more difficult to check each student's concentration level in an online classroom setting. To profile student attention to various gradients of engagement, a study is a plan to conduct using machine learning models. Using a convolutional neural network, the findings and confidence score of the high accuracy model are obtained. In this research, convolutional neural networks are using to help discover essential emotions that are critical in defining various levels of participation. Students' attention levels were shown to be influenced by emotions such as calm, enjoyment, surprise, and fear. An improved virtual learning system was created as a result of these data, which allowed teachers to focus their support and advise on those students who needed it. Student participation has formed as a crucial component of the learning technique and a consistent predictor of a student's capacity to retain material in the classroom. Convolutional neural networks have a plan to implement the platform. As a preliminary step, a video of the pupil would be taken. In the end, researchers used a convolutional neural network utilizing the Keras toolkit to take pictures of the recordings. Two convolutional neural network methods are planned to use to determine the pupils' attention level. Finally, those predicted student attention level results plan to display on the graphical user interface of the System.

Keywords: HTML5, JavaScript, Python flask framework, AI, graphical user

Procedia PDF Downloads 101
18326 An Optimized Method for Calculating the Linear and Nonlinear Response of SDOF System Subjected to an Arbitrary Base Excitation

Authors: Hossein Kabir, Mojtaba Sadeghi

Abstract:

Finding the linear and nonlinear responses of a typical single-degree-of-freedom system (SDOF) is always being regarded as a time-consuming process. This study attempts to provide modifications in the renowned Newmark method in order to make it more time efficient than it used to be and make it more accurate by modifying the system in its own non-linear state. The efficacy of the presented method is demonstrated by assigning three base excitations such as Tabas 1978, El Centro 1940, and MEXICO CITY/SCT 1985 earthquakes to a SDOF system, that is, SDOF, to compute the strength reduction factor, yield pseudo acceleration, and ductility factor.

Keywords: single-degree-of-freedom system (SDOF), linear acceleration method, nonlinear excited system, equivalent displacement method, equivalent energy method

Procedia PDF Downloads 320
18325 Robust State feedback Controller for an Active Suspension System

Authors: Hussein Altartouri

Abstract:

The purpose of this paper is to present a modeling and control of the active suspension system using robust state feedback controller implemented for a half car model. This system represents a mechatronic system which contains all the essential components to be considered a complete mechatronic system. This system must adapt different conditions which are difficult to compromise, such as disturbances, slippage, and motion on rough road (that contains rocks, stones, and other miscellanies). Some current automobile suspension systems use passive components only by utilizing spring and damping coefficient with fixed rates. Vehicle suspensions systems are used to provide good road handling and improve passenger comfort. Passive suspensions only offer compromise between these two conflicting criteria. Active suspension poses the ability to reduce the traditional design as a compromise between handling and comfort by directly controlling the suspensions force actuators. In this study, the robust state feedback controller implemented to the active suspensions system for half car model.

Keywords: half-car model, active suspension system, state feedback, road profile

Procedia PDF Downloads 393
18324 Faculty Attendance Management System (FAMS)

Authors: G. C. Almiranez, J. Mercado, L. U. Aumentado, J. M. Mahaguay, J. P. Cruz, M. L. Saballe

Abstract:

This research project focused on the development of an application that aids the university administrators to establish an efficient and effective system in managing faculty attendance and discourage unnecessary absences. The Faculty Attendance Management System (FAMS) is a web based and mobile application which is proven to be efficient and effective in handling and recording data, generating updated reports and analytics needed in managing faculty attendance. The FAMS can facilitate not only a convenient and faster way of gathering and recording of data but it can also provide data analytics, immediate feedback system mechanism and analysis. The software database architecture uses MySQL for web based and SQLite for mobile applications. The system includes different modules that capture daily attendance of faculty members, generate faculty attendance reports and analytics, absences notification system for faculty members, chairperson and dean regarding absences, and immediate communication system concerning the absences incurred. Quantitative and qualitative evaluation showed that the system satisfactory meet the stakeholder’s requirements. The functionality, usability, reliability, performance, and security all turned out to be above average. System testing, integration testing and user acceptance testing had been conducted. Results showed that the system performed very satisfactory and functions as designed. Performance of the system is also affected by Internet infrastructure or connectivity of the university. The faculty analytics generated from the system may not only be used by Deans and Chairperson in their evaluation of faculty performance but as well as the individual faculty to increase awareness on their attendance in class. Hence, the system facilitates effective communication between system stakeholders through FAMS feedback mechanism and up to date posting of information.

Keywords: faculty attendance management system, MySQL, SQLite, FAMS, analytics

Procedia PDF Downloads 439
18323 A Community Solution to Address Extensive Nitrate Contamination in the Lower Yakima Valley Aquifer

Authors: Melanie Redding

Abstract:

Historic widespread nitrate contamination of the Lower Yakima Valley aquifer in Washington State initiated a community-based effort to reduce nitrate concentrations to below-drinking water standards. This group commissioned studies on characterizing local nitrogen sources, deep soil assessments, drinking water, and assessing nitrate concentrations at the water table. Nitrate is the most prevalent groundwater contaminant with common sources from animal and human waste, fertilizers, plants and precipitation. It is challenging to address groundwater contamination when common sources, such as agriculture, on-site sewage systems, and animal production, are widespread. Remediation is not possible, so mitigation is essential. The Lower Yakima Valley is located over 175,000 acres, with a population of 56,000 residents. Approximately 25% of the population do not have access to safe, clean drinking water, and 20% of the population is at or below the poverty level. Agriculture is the primary economic land-use activity. Irrigated agriculture and livestock production make up the largest percentage of acreage and nitrogen load. Commodities include apples, grapes, hops, dairy, silage corn, triticale, alfalfa and cherries. These commodities are important to the economic viability of the residents of the Lower Yakima Valley, as well as Washington State. Mitigation of nitrate in groundwater is challenging. The goal is to ensure everyone has safe drinking water. There are no easy remedies due to the extensive and pervasiveness of the contamination. Monitoring at the water table indicates that 45% of the 30 spatially distributed monitoring wells exceeded the drinking water standard. This indicates that there are multiple sources that are impacting water quality. Washington State has several areas which have extensive groundwater nitrate contamination. The groundwater in these areas continues to degrade over time. However, the Lower Yakima Valley is being successful in addressing this health issue because of the following reasons: the community is engaged and committed; there is one common goal; there has been extensive public education and outreach to citizens; and generating credible data using sound scientific methods. Work in this area is continuing as an ambient groundwater monitoring network is established to assess the condition of the aquifer over time. Nitrate samples are being collected from 170 wells, spatially distributed across the aquifer. This research entails quarterly sampling for two years to characterize seasonal variability and then continue annually afterward. This assessment will provide the data to statistically determine trends in nitrate concentrations across the aquifer, over time. Thirty-three of these wells are monitoring wells that are screened across the aquifer. The water quality from these wells are indicative of activities at the land surface. Additional work is being conducted to identify land use management practices that are effective in limiting nitrate migration through the soil column. Tracking nitrate in the soil column every season is an important component of bridging land-use practices with the fate and transport of nitrate through the subsurface. Patience, tenacity, and the ability to think outside the box are essential for dealing with widespread nitrate contamination of groundwater.

Keywords: community, groundwater, monitoring, nitrate

Procedia PDF Downloads 178
18322 Numerical Approach of RC Structural MembersExposed to Fire and After-Cooling Analysis

Authors: Ju-young Hwang, Hyo-Gyoung Kwak, Hong Jae Yim

Abstract:

This paper introduces a numerical analysis method for reinforced-concrete (RC) structures exposed to fire and compares the result with experimental results. The proposed analysis method for RC structure under the high temperature consists of two procedures. First step is to decide the temperature distribution across the section through the heat transfer analysis by using the time-temperature curve. After determination of the temperature distribution, the nonlinear analysis is followed. By considering material and geometrical non-linearity with the temperature distribution, nonlinear analysis predicts the behavior of RC structure under the fire by the exposed time. The proposed method is validated by the comparison with the experimental results. Finally, Prediction model to describe the status of after-cooling concrete can also be introduced based on the results of additional experiment. The product of this study is expected to be embedded for smart structure monitoring system against fire in u-City.

Keywords: RC structures, heat transfer analysis, nonlinear analysis, after-cooling concrete model

Procedia PDF Downloads 369
18321 Long Short-Term Memory Stream Cruise Control Method for Automated Drift Detection and Adaptation

Authors: Mohammad Abu-Shaira, Weishi Shi

Abstract:

Adaptive learning, a commonly employed solution to drift, involves updating predictive models online during their operation to react to concept drifts, thereby serving as a critical component and natural extension for online learning systems that learn incrementally from each example. This paper introduces LSTM-SCCM “Long Short-Term Memory Stream Cruise Control Method”, a drift adaptation-as-a-service framework for online learning. LSTM-SCCM automates drift adaptation through prompt detection, drift magnitude quantification, dynamic hyperparameter tuning, performing shortterm optimization and model recalibration for immediate adjustments, and, when necessary, conducting long-term model recalibration to ensure deeper enhancements in model performance. LSTM-SCCM is incorporated into a suite of cutting-edge online regression models, assessing their performance across various types of concept drift using diverse datasets with varying characteristics. The findings demonstrate that LSTM-SCCM represents a notable advancement in both model performance and efficacy in handling concept drift occurrences. LSTM-SCCM stands out as the sole framework adept at effectively tackling concept drifts within regression scenarios. Its proactive approach to drift adaptation distinguishes it from conventional reactive methods, which typically rely on retraining after significant degradation to model performance caused by drifts. Additionally, LSTM-SCCM employs an in-memory approach combined with the Self-Adjusting Memory (SAM) architecture to enhance real-time processing and adaptability. The framework incorporates variable thresholding techniques and does not assume any particular data distribution, making it an ideal choice for managing high-dimensional datasets and efficiently handling large-scale data. Our experiments, which include abrupt, incremental, and gradual drifts across both low- and high-dimensional datasets with varying noise levels, and applied to four state-of-the-art online regression models, demonstrate that LSTM-SCCM is versatile and effective, rendering it a valuable solution for online regression models to address concept drift.

Keywords: automated drift detection and adaptation, concept drift, hyperparameters optimization, online and adaptive learning, regression

Procedia PDF Downloads 17
18320 Automated Transformation of 3D Point Cloud to BIM Model: Leveraging Algorithmic Modeling for Efficient Reconstruction

Authors: Radul Shishkov, Orlin Davchev

Abstract:

The digital era has revolutionized architectural practices, with building information modeling (BIM) emerging as a pivotal tool for architects, engineers, and construction professionals. However, the transition from traditional methods to BIM-centric approaches poses significant challenges, particularly in the context of existing structures. This research introduces a technical approach to bridge this gap through the development of algorithms that facilitate the automated transformation of 3D point cloud data into detailed BIM models. The core of this research lies in the application of algorithmic modeling and computational design methods to interpret and reconstruct point cloud data -a collection of data points in space, typically produced by 3D scanners- into comprehensive BIM models. This process involves complex stages of data cleaning, feature extraction, and geometric reconstruction, which are traditionally time-consuming and prone to human error. By automating these stages, our approach significantly enhances the efficiency and accuracy of creating BIM models for existing buildings. The proposed algorithms are designed to identify key architectural elements within point clouds, such as walls, windows, doors, and other structural components, and to translate these elements into their corresponding BIM representations. This includes the integration of parametric modeling techniques to ensure that the generated BIM models are not only geometrically accurate but also embedded with essential architectural and structural information. Our methodology has been tested on several real-world case studies, demonstrating its capability to handle diverse architectural styles and complexities. The results showcase a substantial reduction in time and resources required for BIM model generation while maintaining high levels of accuracy and detail. This research contributes significantly to the field of architectural technology by providing a scalable and efficient solution for the integration of existing structures into the BIM framework. It paves the way for more seamless and integrated workflows in renovation and heritage conservation projects, where the accuracy of existing conditions plays a critical role. The implications of this study extend beyond architectural practices, offering potential benefits in urban planning, facility management, and historic preservation.

Keywords: BIM, 3D point cloud, algorithmic modeling, computational design, architectural reconstruction

Procedia PDF Downloads 67
18319 Innovative Three Wire Capacitor Circuit System for Efficiency and Comfort Improvement of Ceiling Fans

Authors: R. K. Saket, K. S. Anand Kumar

Abstract:

This paper presents an innovative 3-wire capacitor circuit system used to increase the efficiency and comfort improvement of permanent split-capacitor ceiling fan. In this innovative circuit, current has been reduced to save electrical power. The system could be used to replace standard single phase motor 2-wire capacitor configuration by cost effective split value X rated of optimized AC capacitors with the auxiliary winding to provide reliable ceiling fan operation and improved machine performance to save power. In basic system operations, comparisons with conventional ceiling fan are described.

Keywords: permanent split-capacitor motor, innovative 3-wire capacitor circuit system, standard 2-wire capacitor circuit system, metalized film X-rated capacitor

Procedia PDF Downloads 523
18318 Vibration Control of Two Adjacent Structures Using a Non-Linear Damping System

Authors: Soltani Amir, Wang Xuan

Abstract:

The advantage of using non-linear passive damping system in vibration control of two adjacent structures is investigated under their base excitation. The base excitation is El Centro earthquake record acceleration. The damping system is considered as an optimum and effective non-linear viscous damper that is connected between two adjacent structures. A Matlab program is developed to produce the stiffness and damping matrices and to determine a time history analysis of the dynamic motion of the system. One structure is assumed to be flexible while the other has a rule as laterally supporting structure with rigid frames. The response of the structure has been calculated and the non-linear damping coefficient is determined using optimum LQR algorithm in an optimum vibration control system. The non-linear parameter of damping system is estimated and it has shown a significant advantage of application of this system device for vibration control of two adjacent tall building.

Keywords: active control, passive control, viscous dampers, structural control, vibration control, tall building

Procedia PDF Downloads 515
18317 Location Management in Wireless Sensor Networks with Mobility

Authors: Amrita Anil Agashe, Sumant Tapas, Ajay Verma Yogesh Sonavane, Sourabh Yeravar

Abstract:

Due to advancement in MEMS technology today wireless sensors network has gained a lot of importance. The wide range of its applications includes environmental and habitat monitoring, object localization, target tracking, security surveillance etc. Wireless sensor networks consist of tiny sensor devices called as motes. The constrained computation power, battery power, storage capacity and communication bandwidth of the tiny motes pose challenging problems in the design and deployment of such systems. In this paper, we propose a ubiquitous framework for Real-Time Tracking, Sensing and Management System using IITH motes. Also, we explain the algorithm that we have developed for location management in wireless sensor networks with the aspect of mobility. Our developed framework and algorithm can be used to detect emergency events and safety threats and provides warning signals to handle the emergency.

Keywords: mobility management, motes, multihop, wireless sensor networks

Procedia PDF Downloads 421
18316 Sustainability Modelling and Sustainability Evaluation of a Mechanical System in a Concurrent Engineering Environment: A Digraph and Matrix Approach

Authors: Anand Ankush, Wani Mohammed Farooq

Abstract:

A procedure based on digraph and matrix method is developed for modelling and evaluation of sustainability of Mechanical System in a concurrent engineering environment.The sustainability parameters of a Mechanical System are identified and are called sustainability attributes. Consideration of attributes and their interrelations is rudiment in modeling and evaluation of sustainability index. Sustainability attributes of a Mechanical System are modelled in termsof sustainability digraph. The graph is represented by a one-to-one matrix for sustainability expression which is based on sustainability attributes. A variable sustainability relationship permanent matrix is defined to develop sustainability expression(VPF-t) which is also useful in comparing two systems in a concurrent environment. The sustainability index of Mechanical System is obtained from permanent of matrix by substituting the numerical values of attributes and their interrelations. A higher value of index implies better sustainability of system.The ideal value of index is obtained from matrix expression which is useful in assessing relative sustainability of a Mechanical System in a concurrent engineering environment. The procedure is not only useful for evaluation of sustainability of a Mechanical System at conceptual design stage but can also be used for design and development of systems at system design stage. A step-by-step procedure for evaluation of sustainability index is also suggested and is illustrated by means of an example.

Keywords: digraph, matrix method, mechanical system, sustainability

Procedia PDF Downloads 366
18315 Forest Harvesting Policies and Practices in Tropical Forest of Terengganu, Malaysia: Industry Experiences

Authors: Mohd Zaki Hamzah, Roslan Rani, Ahmad Bazli Razali, Satiful Bahri Mamat, Abdul Hadi Ripin, Mohd Harun Esa

Abstract:

Ever since 1901, forest management and silviculture practices in Malaysia have been frequently reviewed and updated to take into account changes in forest conditions, markets, timber demand/supply and technical advances that can be achieved in industrial processes, logging and forest harvesting, and currently, the forest management system practiced in Peninsular Malaysia is the Selective Management System (SMS) which was introduced in 1978. This system requires the selection of management regime (felling) based on Pre-Felling Forest Inventory (Pre-F) data to ensure economical harvesting and also ensuring adequate standing stands for subsequent rounds of felling, while maintaining ecological balance and environmental quality. SMS regulates forest harvesting through area and volume controls, with the cutting cycle 30 years. Most of the forest management units (FMU) (in Peninsular Malaysia) implementing SMS have been certified by Forest Stewardship Council (FSC) and/or Program for Endorsement of Forest Certification (PEFC), and one such FMU belongs to Kumpulan Pengurusan Kayu Kayan Terengganu (KPKKT). KPKKT, a timber management subsidiary of Golden Pharos Berhad (GPB), adopts the SMS to manage its 108,900 ha of timber concessionary areas in its role as logs’ supplier for the consumption of three subsidiaries of GPB. KPKKT is also responsible for the sustainable development and management of its concession in accordance with the Sustainable Forest Management (SFM) standards to ensure that it addresses the loss of forest cover and forest degradation, forest-based economic, social and environmental benefits, and ecologically protecting forests while mobilising financial resources for the implementation of sustainable forest management planning, harvesting, monitoring and the marketing of products. This paper will detail out the management and harvesting guidelines imposed by the controlling government agency, and harvesting processes taken by KPKKT to comply with guidelines and eventually supplying timber to the relevant subsidiaries (downstream mills under GPB).

Keywords: sustainable forest management, silviculture, reduce impact logging, forest certification

Procedia PDF Downloads 100
18314 Design and Development of Motorized Placer for Balloon Uterine Stents in Gynecology

Authors: Metehan Mutlu, Meltem Elitas

Abstract:

This study aims to provide an automated method for placing the balloon uterine stents after hysteroscopy adhesiolysis. Currently, there are no automatized tools to place the balloon uterine stent; therefore, surgeons into the endometrial cavity manually fit it. However, it is very hard to pass the balloon stent through the cervical canal, which is roughly 10mm after the surgery. Our method aims to provide an effective and practical way of placing the stent, by automating the procedure through our designed device. Furthermore, our device does the required tasks fast compared to traditional methods, reduces the narcosis time, and decreases the bacterial contamination risks.

Keywords: balloon uterine stent, endometrial cavity, hysteroscopy, motorized-tool

Procedia PDF Downloads 280
18313 Effective Validation Model and Use of Mobile-Health Apps for Elderly People

Authors: Leonardo Ramirez Lopez, Edward Guillen Pinto, Carlos Ramos Linares

Abstract:

The controversy brought about by the increasing use of mHealth apps and their effectiveness for disease prevention and diagnosis calls for immediate control. Although a critical topic in research areas such as medicine, engineering, economics, among others, this issue lacks reliable implementation models. However, projects such as Open Web Application Security Project (OWASP) and various studies have helped to create useful and reliable apps. This research is conducted under a quality model to optimize two mHealth apps for older adults. Results analysis on the use of two physical activity monitoring apps - AcTiv (physical activity) and SMCa (energy expenditure) - is positive and ideal. Through a theoretical and practical analysis, precision calculations and personal information control of older adults for disease prevention and diagnosis were performed. Finally, apps are validated by a physician and, as a result, they may be used as health monitoring tools in physical performance centers or any other physical activity. The results obtained provide an effective validation model for this type of mobile apps, which, in turn, may be applied by other software developers that along with medical staff would offer digital healthcare tools for elderly people.

Keywords: model, validation, effective, healthcare, elderly people, mobile app

Procedia PDF Downloads 219
18312 The Importance of Applying Established Web Site Design Principles on an Online Performance Management System

Authors: R. W. Brown, P. J. Blignaut

Abstract:

An online performance management system was evaluated, and recommendations were made to improve the system. The study shows the effects of not adhering to the established web design principles and conventions. Furthermore, the study indicates that if the online performance management system is not well designed, it may have negative effects on the overall usability of the system and these negative effects will have consequences for both the employer and employees. The evaluation was done in terms of the usability metrics of effectiveness, efficiency and user satisfaction. Effectiveness was measured in terms of the success rate with which users could execute prescribed tasks in a sandbox system. Efficiency was expressed in terms of the time it took participants to understand what is expected of them and to execute the tasks. Post-test questionnaires were used in order to determine the satisfaction of the participants. Recommendations were made to improve the usability of the online performance management system.

Keywords: eye tracking, human resource management, performance management, usability

Procedia PDF Downloads 205
18311 A Case-Based Reasoning-Decision Tree Hybrid System for Stock Selection

Authors: Yaojun Wang, Yaoqing Wang

Abstract:

Stock selection is an important decision-making problem. Many machine learning and data mining technologies are employed to build automatic stock-selection system. A profitable stock-selection system should consider the stock’s investment value and the market timing. In this paper, we present a hybrid system including both engage for stock selection. This system uses a case-based reasoning (CBR) model to execute the stock classification, uses a decision-tree model to help with market timing and stock selection. The experiments show that the performance of this hybrid system is better than that of other techniques regarding to the classification accuracy, the average return and the Sharpe ratio.

Keywords: case-based reasoning, decision tree, stock selection, machine learning

Procedia PDF Downloads 421
18310 Nonlinear Estimation Model for Rail Track Deterioration

Authors: M. Karimpour, L. Hitihamillage, N. Elkhoury, S. Moridpour, R. Hesami

Abstract:

Rail transport authorities around the world have been facing a significant challenge when predicting rail infrastructure maintenance work for a long period of time. Generally, maintenance monitoring and prediction is conducted manually. With the restrictions in economy, the rail transport authorities are in pursuit of improved modern methods, which can provide precise prediction of rail maintenance time and location. The expectation from such a method is to develop models to minimize the human error that is strongly related to manual prediction. Such models will help them in understanding how the track degradation occurs overtime under the change in different conditions (e.g. rail load, rail type, rail profile). They need a well-structured technique to identify the precise time that rail tracks fail in order to minimize the maintenance cost/time and secure the vehicles. The rail track characteristics that have been collected over the years will be used in developing rail track degradation prediction models. Since these data have been collected in large volumes and the data collection is done both electronically and manually, it is possible to have some errors. Sometimes these errors make it impossible to use them in prediction model development. This is one of the major drawbacks in rail track degradation prediction. An accurate model can play a key role in the estimation of the long-term behavior of rail tracks. Accurate models increase the track safety and decrease the cost of maintenance in long term. In this research, a short review of rail track degradation prediction models has been discussed before estimating rail track degradation for the curve sections of Melbourne tram track system using Adaptive Network-based Fuzzy Inference System (ANFIS) model.

Keywords: ANFIS, MGT, prediction modeling, rail track degradation

Procedia PDF Downloads 337
18309 Enhanced Method of Conceptual Sizing of Aircraft Electro-Thermal De-Icing System

Authors: Ahmed Shinkafi, Craig Lawson

Abstract:

There is a great advancement towards the All-Electric Aircraft (AEA) technology. The AEA concept assumes that all aircraft systems will be integrated into one electrical power source in the future. The principle of the electro-thermal system is to transfer the energy required for anti/de-icing to the protected areas in electrical form. However, powering a large aircraft anti-icing system electrically could be quite excessive in cost and system weight. Hence, maximising the anti/de-icing efficiency of the electro-thermal system in order to minimise its power demand has become crucial to electro-thermal de-icing system sizing. In this work, an enhanced methodology has been developed for conceptual sizing of aircraft electro-thermal de-icing System. The work factored those critical terms overlooked in previous studies which were critical to de-icing energy consumption. A case study of a typical large aircraft wing de-icing was used to test and validate the model. The model was used to optimise the system performance by a trade-off between the de-icing peak power and system energy consumption. The optimum melting surface temperatures and energy flux predicted enabled the reduction in the power required for de-icing. The weight penalty associated with electro-thermal anti-icing/de-icing method could be eliminated using this method without under estimating the de-icing power requirement.

Keywords: aircraft, de-icing system, electro-thermal, in-flight icing

Procedia PDF Downloads 519
18308 The Strategies to Improve the Pedestrian System in the Context of Old Aging

Authors: Yuxiao Jiang, Dong Ma, Mengyu Zhan, Yingxia Yun

Abstract:

China now is entering the phase of old aging and the aging speed is on acceleration. The proportion of the aged citizens in the urban areas is getting larger. Traveling on foot is one of the main travel methods for the old, but the bad walking environment and unsystematic pedestrian system cause inconvenience to the old who travel on foot. The paper analyzes the behavioral characteristics and the spatial preferences of the elderly group as well as the new traffic demands of them, finding out that some problems exist in the current pedestrian system. Thus, the paper proposes strategies in the areas of planning and design, and engineering technology so as to promote the traffic environment and perfect the pedestrian system for the old people.

Keywords: old aging, pedestrian system, perfection strategies, travel characteristics, future demand

Procedia PDF Downloads 395
18307 Implementation of a Monostatic Microwave Imaging System using a UWB Vivaldi Antenna

Authors: Babatunde Olatujoye, Binbin Yang

Abstract:

Microwave imaging is a portable, noninvasive, and non-ionizing imaging technique that employs low-power microwave signals to reveal objects in the microwave frequency range. This technique has immense potential for adoption in commercial and scientific applications such as security scanning, material characterization, and nondestructive testing. This work presents a monostatic microwave imaging setup using an Ultra-Wideband (UWB), low-cost, miniaturized Vivaldi antenna with a bandwidth of 1 – 6 GHz. The backscattered signals (S-parameters) of the Vivaldi antenna used for scanning targets were measured in the lab using a VNA. An automated two-dimensional (2-D) scanner was employed for the 2-D movement of the transceiver to collect the measured scattering data from different positions. The targets consist of four metallic objects, each with a distinct shape. Similar setup was also simulated in Ansys HFSS. A high-resolution Back Propagation Algorithm (BPA) was applied to both the simulated and experimental backscattered signals. The BPA utilizes the phase and amplitude information recorded over a two-dimensional aperture of 50 cm × 50 cm with a discreet step size of 2 cm to reconstruct a focused image of the targets. The adoption of BPA was demonstrated by coherently resolving and reconstructing reflection signals from conventional time-of-flight profiles. For both the simulation and experimental data, BPA accurately reconstructed a high resolution 2D image of the targets in terms of shape and location. An improvement of the BPA, in terms of target resolution, was achieved by applying the filtering method in frequency domain.

Keywords: back propagation, microwave imaging, monostatic, vivialdi antenna, ultra wideband

Procedia PDF Downloads 23
18306 Long-term Monitoring on Rangelands in Southwest Algeria and Impact of Overgrazing and Droughts on Biodiversity and Soil: Case of the Rogassa Steppe (Wilaya of El Bayadh)

Authors: Slimani Halima

Abstract:

One of the main problems of degradation of arid steppe rangelands in the southern Mediterranean is the loss of plant diversity and changes in soil properties. During the last decades, these rangelands faced two main driving forces: climate through more or less lasting and recurrent droughts and overgrazing by sheep. In the present work, the preexisting system was an arid steppe with alfa grass (Stipa tenacissima L.) as the dominant plant, which was considered to be the "keystone" species toward the whole ecosystem structure and functioning. Vegetation and soil change was monitored for 45 years along a grazing intensity gradient. Changes in species richness and diversity, in the vegetation and in the soil, enabled to better understand climate fluctuations effects in comparison to overgrazing ones. The aim is to assess the impacts of grazing and climatic variability and change on biodiversity,vegetation and soil over a period of 45 years, based on data from seven reference years.

Keywords: biodiversity, desertification, droughts, el bayadh, overgrazing, soil, steppe

Procedia PDF Downloads 110
18305 Determination of Pesticides Residues in Tissue of Two Freshwater Fish Species by Modified QuEChERS Method

Authors: Iwona Cieślik, Władysław Migdał, Kinga Topolska, Ewa Cieślik

Abstract:

The consumption of fish is recommended as a means of preventing serious diseases, especially cardiovascular problems. Fish is known to be a valuable source of protein (rich in essential amino acids), unsaturated fatty acids, fat-soluble vitamins, macro- and microelements. However, it can also contain several contaminants (e.g. pesticides, heavy metals) that may pose considerable risks for humans. Among others, pesticide are of special concern. Their widespread use has resulted in the contamination of environmental compartments, including water. The occurrence of pesticides in the environment is a serious problem, due to their potential toxicity. Therefore, a systematic monitoring is needed. The aim of the study was to determine the organochlorine and organophosphate pesticide residues in fish muscle tissues of the pike (Esox lucius, L.) and the rainbow trout (Oncorhynchus mykkis, Walbaum) by a modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method, using Gas Chromatography Quadrupole Mass Spectrometry (GC/Q-MS), working in selected-ion monitoring (SIM) mode. The analysis of α-HCH, β-HCH, lindane, diazinon, disulfoton, δ-HCH, methyl parathion, heptachlor, malathion, aldrin, parathion, heptachlor epoxide, γ-chlordane, endosulfan, α-chlordane, o,p'-DDE, dieldrin, endrin, 4,4'-DDD, ethion, endrin aldehyde, endosulfan sulfate, 4,4'-DDT, and metoxychlor was performed in the samples collected in the Carp Valley (Malopolska region, Poland). The age of the pike (n=6) was 3 years and its weight was 2-3 kg, while the age of the rainbow trout (n=6) was 0.5 year and its weight was 0.5-1.0 kg. Detectable pesticide (HCH isomers, endosulfan isomers, DDT and its metabolites as well as metoxychlor) residues were present in fish samples. However, all these compounds were below the limit of quantification (LOQ). The other examined pesticide residues were below the limit of detection (LOD). Therefore, the levels of contamination were - in all cases - below the default Maximum Residue Levels (MRLs), established by Regulation (EC) No 396/2005 of the European Parliament and of the Council. The monitoring of pesticide residues content in fish is required to minimize potential adverse effects on the environment and human exposure to these contaminants.

Keywords: contaminants, fish, pesticides residues, QuEChERS method

Procedia PDF Downloads 220
18304 Trace Analysis of Genotoxic Impurity Pyridine in Sitagliptin Drug Material Using UHPLC-MS

Authors: Bashar Al-Sabti, Jehad Harbali

Abstract:

Background: Pyridine is a reactive base that might be used in preparing sitagliptin. International Agency for Research on Cancer classifies pyridine in group 2B; this classification means that pyridine is possibly carcinogenic to humans. Therefore, pyridine should be monitored at the allowed limit in sitagliptin pharmaceutical ingredients. Objective: The aim of this study was to develop a novel ultra high performance liquid chromatography mass spectrometry (UHPLC-MS) method to estimate the quantity of pyridine impurity in sitagliptin pharmaceutical ingredients. Methods: The separation was performed on C8 shim-pack (150 mm X 4.6 mm, 5 µm) in reversed phase mode using a mobile phase of water-methanol-acetonitrile containing 4 mM ammonium acetate in gradient mode. Pyridine was detected by mass spectrometer using selected ionization monitoring mode at m/z = 80. The flow rate of the method was 0.75 mL/min. Results: The method showed excellent sensitivity with a quantitation limit of 1.5 ppm of pyridine relative to sitagliptin. The linearity of the method was excellent at the range of 1.5-22.5 ppm with a correlation coefficient of 0.9996. Recoveries values were between 93.59-103.55%. Conclusions: The results showed good linearity, precision, accuracy, sensitivity, selectivity, and robustness. The studied method was applied to test three batches of sitagliptin raw materials. Highlights: This method is useful for monitoring pyridine in sitagliptin during its synthesis and testing sitagliptin raw materials before using them in the production of pharmaceutical products.

Keywords: genotoxic impurity, pyridine, sitagliptin, UHPLC -MS

Procedia PDF Downloads 96
18303 Towards Conservation and Recovery of Species at Risk in Ontario: Progress on Recovery Planning and Implementation and an Overview of Key Research Needs

Authors: Rachel deCatanzaro, Madeline Austen, Ken Tuininga, Kathy St. Laurent, Christina Rohe

Abstract:

In Canada, the federal Species at Risk Act (SARA) provides protection for wildlife species at risk and a national legislative framework for the conservation or recovery of species that are listed as endangered, threatened, or special concern under Schedule 1 of SARA. Key aspects of the federal species at risk program include the development of recovery documents (recovery strategies, action plans, and management plans) outlining threats, objectives, and broad strategies or measures for conservation or recovery of the species; the identification and protection of critical habitat for threatened and endangered species; and working with groups and organizations to implement on-the-ground recovery actions. Environment Canada’s progress on the development of recovery documents and on the identification and protection of critical habitat in Ontario will be presented, along with successes and challenges associated with on-the ground implementation of recovery actions. In Ontario, Environment Canada is currently involved in several recovery and monitoring programs for at-risk bird species such as the Loggerhead Shrike, Piping Plover, Golden-winged Warbler and Cerulean Warbler and has provided funding for a wide variety of recovery actions targeting priority species at risk and geographic areas each year through stewardship programs including the Habitat Stewardship Program, Aboriginal Fund for Species at Risk, and the Interdepartmental Recovery Fund. Key research needs relevant to the recovery of species at risk have been identified, and include: surveys and monitoring of population sizes and threats, population viability analyses, and addressing knowledge gaps identified for individual species (e.g., species biology and habitat needs). The engagement of all levels of government, the local and international conservation communities, and the scientific research community plays an important role in the conservation and recovery of species at risk in Ontario– through surveying and monitoring, filling knowledge gaps, conducting public outreach, and restoring, protecting, or managing habitat – and will be critical to the continued success of the federal species at risk program.

Keywords: conservation biology, habitat protection, species at risk, wildlife recovery

Procedia PDF Downloads 453
18302 MyAds: A Social Adaptive System for Online Advertisment from Hypotheses to Implementation

Authors: Dana A. Al Qudah, Alexandra I. Critea, Rizik M. H. Al Sayyed, Amer Obeidah

Abstract:

Online advertisement is one of the major incomes for many companies; it has a role in the overall business flow and affects the consumer behavior directly. Unfortunately most users tend to block their ads or ignore them. MyAds is a social adaptive hypermedia system for online advertising and its main goal is to explore how to make online ads more acceptable. In order to achieve such a goal, various technologies and techniques are used. This paper presents a theoretical framework as well as the system architecture for MyAds that was designed based on a set of hypotheses and an exploratory study. The system then was implemented and a pilot experiment was conducted to validate it. The main outcomes suggest that the system has provided personalized ads for users. The main implications suggest that the system can be used for further testing and validating.

Keywords: adaptive hypermedia, e-advertisement, social, hypotheses, exploratory study, framework

Procedia PDF Downloads 413