Search results for: real time stress detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25342

Search results for: real time stress detection

23632 Expression of Micro-RNA268 in Zinc Deficient Rice

Authors: Sobia Shafqat, Saeed Ahmad Qaisrani

Abstract:

MicroRNAs play an essential role in the regulation and development of all processes in most eukaryotes because of their prospective part as mediators controlling cell growth and differentiation towards the exact position of RNAs response in plants under biotic and abiotic factors or stressors. In a few cases, Zn is oblivious poisonous for plants due to its heavy metal status. Some other metals are extremely toxic, like Cd, Hg, and Pb, but these elements require in rice for the programming of genes under abiotic stress resembling Zn stress when micro RNAs268 was importantly introduced in rice. The micro RNAs overexpressed in transgenic plants with an accumulation of a large amount of melanin dialdehyde, hydrogen peroxide, and an excessive quantity of Zn in the seedlings stage. Let out results for rice pliability under Zn stress micro RNAs act as negative controllers. But the role of micro RNA268 act as a modulator in different ecological condition. It has been explained clearly with a long understanding of the role of micro RNA268 under stress conditions; pliability and practically showed outcome to increase plant sufferance under Zn stress because micro RNAs is an intervention technique for gene regulation in gene expression. The proposed study was experimented with by using genetic factors of Zn stress and toxicity effect on rice plants done at District Vehari, Pakistan. The trial was performed randomly with three replications in a complete block design (RCBD). These blocks were controlled with different concentrations of genetic factors. By overexpression of micro RNA268 rice, seedling growth was not stopped under Zn deficiency due to the accumulation of a large amount of melanin dialdehyde, hydrogen peroxide, and an excessive quantity of Zn in their seedlings. Results showed that micro RNA268 act as a negative controller under Zn stress. In the end, under stress conditions, micro RNA268 showed the necessary function in the tolerance of rice plants. The directorial work sketch gave out high agronomic applications and yield outcomes in rice with a specific amount of Zn application.

Keywords: micro RNA268, zinc, rice, agronomic approach

Procedia PDF Downloads 45
23631 Online Guidance and Counselling Needs and Preferences of University Undergraduates in a Nigerian University

Authors: Olusegun F. Adebowale

Abstract:

Research has confirmed that the emergence of information technology is significantly reflected in the field of psychology and its related disciplines due to its widespread use at reasonable price and its user-friendliness. It is consequently affecting ordinary life in many areas like shopping, advertising, corresponding and educating. Specifically the innovations of computer technology led to several new forms of communication, all with implications and applicability for counselling and psychotherapy practices. This is premise on which online counselling is based. Most institutions of higher learning in Nigeria have established their presence on the Internet and have deployed a variety of applications through ICT. Some are currently attempting to include counselling services in such applications with the belief that many counselling needs of students are likely to be met. This study therefore explored different challenges and preferences students present in online counselling interaction in a given Nigerian university with the view to guide new universities that may want to invest into these areas as to necessary preparations and referral requirements. The study is a mixed method research incorporating qualitative and quantitative methodologies to sample the preferences and concerns students express in online interaction. The sample comprised all the 876 students who visited the university online counselling platform either voluntarily, by invitation or by referral. The instrument for data collection was the online counselling platform of the university 'OAU Online counsellors'. The period of data collection spanned between January 2011 and October 2012. Data were analysed quantitatively (using percentages and Mann-Whitney U test) and qualitatively (using Interpretative Phenomenological Analysis (IPA)). The results showed that the students seem to prefer real-time chatting as their online medium of communicating with the online counsellor. The majority of students resorted to e-mail when their effort to use real-time chatting were becoming thwarted. Also, students preferred to enter into online counselling relationships voluntarily to other modes of entry. The results further showed that the prevalent counselling needs presented by students during online counselling sessions were mainly in the areas of social interaction and academic/educational concerns. Academic concerns were found to be prevalent, in form of course offerings, studentship matters and academic finance matters. The personal/social concerns were in form of students’ welfare, career related concerns and relationship matters. The study concludes students’ preferences include voluntary entry into online counselling, communication by real-time chatting and a specific focus on their academic concerns. It also recommends that all efforts should be made to encourage students’ voluntary entry into online counselling through reliable and stable internet infrastructure that will be able to support real-time chatting.

Keywords: online, counselling, needs, preferences

Procedia PDF Downloads 270
23630 Multimedia Data Fusion for Event Detection in Twitter by Using Dempster-Shafer Evidence Theory

Authors: Samar M. Alqhtani, Suhuai Luo, Brian Regan

Abstract:

Data fusion technology can be the best way to extract useful information from multiple sources of data. It has been widely applied in various applications. This paper presents a data fusion approach in multimedia data for event detection in twitter by using Dempster-Shafer evidence theory. The methodology applies a mining algorithm to detect the event. There are two types of data in the fusion. The first is features extracted from text by using the bag-ofwords method which is calculated using the term frequency-inverse document frequency (TF-IDF). The second is the visual features extracted by applying scale-invariant feature transform (SIFT). The Dempster - Shafer theory of evidence is applied in order to fuse the information from these two sources. Our experiments have indicated that comparing to the approaches using individual data source, the proposed data fusion approach can increase the prediction accuracy for event detection. The experimental result showed that the proposed method achieved a high accuracy of 0.97, comparing with 0.93 with texts only, and 0.86 with images only.

Keywords: data fusion, Dempster-Shafer theory, data mining, event detection

Procedia PDF Downloads 391
23629 Optimizing Data Integration and Management Strategies for Upstream Oil and Gas Operations

Authors: Deepak Singh, Rail Kuliev

Abstract:

The abstract highlights the critical importance of optimizing data integration and management strategies in the upstream oil and gas industry. With its complex and dynamic nature generating vast volumes of data, efficient data integration and management are essential for informed decision-making, cost reduction, and maximizing operational performance. Challenges such as data silos, heterogeneity, real-time data management, and data quality issues are addressed, prompting the proposal of several strategies. These strategies include implementing a centralized data repository, adopting industry-wide data standards, employing master data management (MDM), utilizing real-time data integration technologies, and ensuring data quality assurance. Training and developing the workforce, “reskilling and upskilling” the employees and establishing robust Data Management training programs play an essential role and integral part in this strategy. The article also emphasizes the significance of data governance and best practices, as well as the role of technological advancements such as big data analytics, cloud computing, Internet of Things (IoT), and artificial intelligence (AI) and machine learning (ML). To illustrate the practicality of these strategies, real-world case studies are presented, showcasing successful implementations that improve operational efficiency and decision-making. In present study, by embracing the proposed optimization strategies, leveraging technological advancements, and adhering to best practices, upstream oil and gas companies can harness the full potential of data-driven decision-making, ultimately achieving increased profitability and a competitive edge in the ever-evolving industry.

Keywords: master data management, IoT, AI&ML, cloud Computing, data optimization

Procedia PDF Downloads 53
23628 Adaptive Multipath Mitigation Acquisition Approach for Global Positioning System Software Receivers

Authors: Animut Meseret Simachew

Abstract:

Parallel Code Phase Search Acquisition (PCSA) Algorithm has been considered as a promising method in GPS software receivers for detection and estimation of the accurate correlation peak between the received Global Positioning System (GPS) signal and locally generated replicas. GPS signal acquisition in highly dense multipath environments is the main research challenge. In this work, we proposed a robust variable step-size (RVSS) PCSA algorithm based on fast frequency transform (FFT) filtering technique to mitigate short time delay multipath signals. Simulation results reveal the effectiveness of the proposed algorithm over the conventional PCSA algorithm. The proposed RVSS-PCSA algorithm equalizes the received carrier wiped-off signal with locally generated C/A code.

Keywords: adaptive PCSA, detection and estimation, GPS signal acquisition, GPS software receiver

Procedia PDF Downloads 106
23627 Development of Biosensor Chip for Detection of Specific Antibodies to HSV-1

Authors: Zatovska T. V., Nesterova N. V., Baranova G. V., Zagorodnya S. D.

Abstract:

In recent years, biosensor technologies based on the phenomenon of surface plasmon resonance (SPR) are becoming increasingly used in biology and medicine. Their application facilitates exploration in real time progress of binding of biomolecules and identification of agents that specifically interact with biologically active substances immobilized on the biosensor surface (biochips). Special attention is paid to the use of Biosensor analysis in determining the antibody-antigen interaction in the diagnostics of diseases caused by viruses and bacteria. According to WHO, the diseases that are caused by the herpes simplex virus (HSV), take second place (15.8%) after influenza as a cause of death from viral infections. Current diagnostics of HSV infection include PCR and ELISA assays. The latter allows determination the degree of immune response to viral infection and respective stages of its progress. In this regard, the searches for new and available diagnostic methods are very important. This work was aimed to develop Biosensor chip for detection of specific antibodies to HSV-1 in the human blood serum. The proteins of HSV1 (strain US) were used as antigens. The viral particles were accumulated in cell culture MDBK and purified by differential centrifugation in cesium chloride density gradient. Analysis of the HSV1 proteins was performed by polyacrylamide gel electrophoresis and ELISA. The protein concentration was measured using De Novix DS-11 spectrophotometer. The device for detection of antigen-antibody interactions was an optoelectronic two-channel spectrometer ‘Plasmon-6’, using the SPR phenomenon in the Krechman optical configuration. It was developed at the Lashkarev Institute of Semiconductor Physics of NASU. The used carrier was a glass plate covered with 45 nm gold film. Screening of human blood serums was performed using the test system ‘HSV-1 IgG ELISA’ (GenWay, USA). Development of Biosensor chip included optimization of conditions of viral antigen sorption and analysis steps. For immobilization of viral proteins 0.2% solution of Dextran 17, 200 (Sigma, USA) was used. Sorption of antigen took place at 4-8°C within 18-24 hours. After washing of chip, three times with citrate buffer (pH 5,0) 1% solution of BSA was applied to block the sites not occupied by viral antigen. It was found direct dependence between the amount of immobilized HSV1 antigen and SPR response. Using obtained biochips, panels of 25 positive and 10 negative for the content of antibodies to HSV-1 human sera were analyzed. The average value of SPR response was 185 a.s. for negative sera and from 312 to. 1264 a.s. for positive sera. It was shown that SPR data were agreed with ELISA results in 96% of samples proving the great potential of SPR in such researches. It was investigated the possibility of biochip regeneration and it was shown that application of 10 mM NaOH solution leads to rupture of intermolecular bonds. This allows reuse the chip several times. Thus, in this study biosensor chip for detection of specific antibodies to HSV1 was successfully developed expanding a range of diagnostic methods for this pathogen.

Keywords: biochip, herpes virus, SPR

Procedia PDF Downloads 406
23626 Artificial Neural Network Approach for Vessel Detection Using Visible Infrared Imaging Radiometer Suite Day/Night Band

Authors: Takashi Yamaguchi, Ichio Asanuma, Jong G. Park, Kenneth J. Mackin, John Mittleman

Abstract:

In this paper, vessel detection using the artificial neural network is proposed in order to automatically construct the vessel detection model from the satellite imagery of day/night band (DNB) in visible infrared in the products of Imaging Radiometer Suite (VIIRS) on Suomi National Polar-orbiting Partnership (Suomi-NPP).The goal of our research is the establishment of vessel detection method using the satellite imagery of DNB in order to monitor the change of vessel activity over the wide region. The temporal vessel monitoring is very important to detect the events and understand the circumstances within the maritime environment. For the vessel locating and detection techniques, Automatic Identification System (AIS) and remote sensing using Synthetic aperture radar (SAR) imagery have been researched. However, each data has some lack of information due to uncertain operation or limitation of continuous observation. Therefore, the fusion of effective data and methods is important to monitor the maritime environment for the future. DNB is one of the effective data to detect the small vessels such as fishery ships that is difficult to observe in AIS. DNB is the satellite sensor data of VIIRS on Suomi-NPP. In contrast to SAR images, DNB images are moderate resolution and gave influence to the cloud but can observe the same regions in each day. DNB sensor can observe the lights produced from various artifact such as vehicles and buildings in the night and can detect the small vessels from the fishing light on the open water. However, the modeling of vessel detection using DNB is very difficult since complex atmosphere and lunar condition should be considered due to the strong influence of lunar reflection from cloud on DNB. Therefore, artificial neural network was applied to learn the vessel detection model. For the feature of vessel detection, Brightness Temperature at the 3.7 μm (BT3.7) was additionally used because BT3.7 can be used for the parameter of atmospheric conditions.

Keywords: artificial neural network, day/night band, remote sensing, Suomi National Polar-orbiting Partnership, vessel detection, Visible Infrared Imaging Radiometer Suite

Procedia PDF Downloads 220
23625 Mobile Cloud Application in Design Build Bridge Construction

Authors: Meng Sun, Bin Wei

Abstract:

In the past decades, design-build has become a more popular project delivery system especially for the large scaled infrastructure project in North America. It provides a one-stop shopping system for the client therefore improves the efficiency of construction, and reduces the risks and overall cost for the clients. Compared to the project with traditional delivery method, design-build project requires contractor and designer to work together efficiently to deliver the best-value solutions through the construction process. How to facilitate a solid integration and efficient interaction between contractor and designer often affects the schedule, budget and quality of the construction therefore becomes a key factor to the success of a design-build project. This paper presents a concept of using modern mobile cloud technology to provide an integrated solution during the design-build construction. It uses mobile cloud architecture to provide a platform for real-time field progress, change request approval, job progress log, and project time entry with devices integration for field information and communications. The paper uses a real filed change notice as an example to demonstrate how mobile cloud technology applies in a design-build project and how it can improve the project efficiency.

Keywords: cloud, design-build, field change notice, mobile application

Procedia PDF Downloads 228
23624 Driver Behavior Analysis and Inter-Vehicular Collision Simulation Approach

Authors: Lu Zhao, Nadir Farhi, Zoi Christoforou, Nadia Haddadou

Abstract:

The safety test of deploying intelligent connected vehicles (ICVs) on the road network is a critical challenge. Road traffic network simulation can be used to test the functionality of ICVs, which is not only time-saving and less energy-consuming but also can create scenarios with car collisions. However, the relationship between different human driver behaviors and the car-collision occurrences has been not understood clearly; meanwhile, the procedure of car-collisions generation in the traffic numerical simulators is not fully integrated. In this paper, we propose an approach to identify specific driver profiles from real driven data; then, we replicate them in numerical traffic simulations with the purpose of generating inter-vehicular collisions. We proposed three profiles: (i) 'aggressive': short time-headway, (ii) 'inattentive': long reaction time, and (iii) 'normal' with intermediate values of reaction time and time-headway. These three driver profiles are extracted from the NGSIM dataset and simulated using the intelligent driver model (IDM), with an extension of reaction time. At last, the generation of inter-vehicular collisions is performed by varying the percentages of different profiles.

Keywords: vehicular collisions, human driving behavior, traffic modeling, car-following models, microscopic traffic simulation

Procedia PDF Downloads 159
23623 Biostimulant Activity of Chitooligomers: Effect of Different Degrees of Acetylation and Polymerization on Wheat Seedlings under Salt Stress

Authors: Xiaoqian Zhang, Ping Zou, Pengcheng Li

Abstract:

Salt stress is one of the most serious abiotic stresses, and it can lead to the reduction of agricultural productivity. High salt concentration makes it more difficult for roots to absorb water and disturbs the homeostasis of cellular ions resulting in osmotic stress, ion toxicity and generation of reactive oxygen species (ROS). Compared with the normal physiological conditions, salt stress could inhibit the photosynthesis, break metabolic balance and damage cellular structures, and ultimately results in the reduction of crop yield. Therefore it is vital to develop practical methods for improving the salt tolerance of plants. Chitooligomers (COS) is partially depolymerized products of chitosan, which is consisted of D-glucosamine and N-acetyl-D-glucosamine. In agriculture, COS has the ability to promote plant growth and induce plant innate immunity. The bioactivity of COS closely related to its degree of polymerization (DP) and acetylation (DA). However, most of the previous reports fail to mention the function of COS with different DP and DAs in improving the capacity of plants against salt stress. Accordingly, in this study, chitooligomers (COS) with different degrees of DAs were used to test wheat seedlings response to salt stress. In addition, the determined degrees of polymerization (DPs) COS(DP 4-12) and a heterogeneous COS mixture were applied to explore the relationship between the DP of COSs and its effect on the growth of wheat seedlings in response to salt stress. It showed that COSs, the exogenous elicitor, could promote the growth of wheat seedling, reduce the malondialdehyde (MDA) concentration, and increase the activities of antioxidant enzymes. The results of mRNA expression level test for salt stress-responsive genes indicated that COS keep plants away from being hurt by the salt stress via the regulation of the concentration and the increased antioxidant enzymes activities. Moreover, it was found that the activities of COS was closely related to its Das and COS (DA: 50%) displayed the best salt resistance activity to wheat seedlings. The results also showed that COS with different DP could promote the growth of wheat seedlings under salt stress. COS with a DP (6-8) showed better activities than the other tested samples, implied its activity had a close relationship with its DP. After treatment with chitohexaose, chitoheptaose, and chitooctaose, the photosynthetic parameters were improved obviously. The soluble sugar and proline contents were improved by 26.7%-53.3% and 43.6.0%-70.2%, respectively, while the concentration of malondialdehyde (MDA) was reduced by 36.8% - 49.6%. In addition, the antioxidant enzymes activities were clearly activated. At the molecular level, the results revealed that they could obviously induce the expression of Na+/H+ antiporter genes. In general, these results were fundamental to the study of action mechanism of COS on promoting plant growth under salt stress and the preparation of plant growth regulator.

Keywords: chitooligomers (COS), degree of polymerization (DP), degree of acetylation (DA), salt stress

Procedia PDF Downloads 156
23622 Oil Palm Shell Ash: Cement Mortar Mixture and Modification of Mechanical Properties

Authors: Abdoullah Namdar, Fadzil Mat Yahaya

Abstract:

The waste agriculture materials cause environment pollution, recycle of these materials help sustainable development. This study focused on the impact of used oil palm shell ash on the compressive and flexural strengths of cement mortar. Two different cement mortar mixes have been designed to investigate the impact of oil palm shell ash on strengths of cement mortar. Quantity of 4% oil palm shell ash has been replaced in cement mortar. The main objective of this paper is, to modify mechanical properties of cement mortar by replacement of oil palm ash in it at early age of seven days. The results have been revealed optimum quantity of oil palm ash for replacement in cement mortar. The deflection, load to failure, time to failure of compressive strength and flexural strength of all specimens have significantly been improved. The stress-strain behavior has been indicated ability of modified cement mortar in control stress path and strain. The micro property of cement paste has not been investigated.

Keywords: minerals, additive, flexural strength, compressive strength, modulus of elasticity

Procedia PDF Downloads 345
23621 Analysis of a IncResU-Net Model for R-Peak Detection in ECG Signals

Authors: Beatriz Lafuente Alcázar, Yash Wani, Amit J. Nimunkar

Abstract:

Cardiovascular Diseases (CVDs) are the leading cause of death globally, and around 80% of sudden cardiac deaths are due to arrhythmias or irregular heartbeats. The majority of these pathologies are revealed by either short-term or long-term alterations in the electrocardiogram (ECG) morphology. The ECG is the main diagnostic tool in cardiology. It is a non-invasive, pain free procedure that measures the heart’s electrical activity and that allows the detecting of abnormal rhythms and underlying conditions. A cardiologist can diagnose a wide range of pathologies based on ECG’s form alterations, but the human interpretation is subjective and it is contingent to error. Moreover, ECG records can be quite prolonged in time, which can further complicate visual diagnosis, and deeply retard disease detection. In this context, deep learning methods have risen as a promising strategy to extract relevant features and eliminate individual subjectivity in ECG analysis. They facilitate the computation of large sets of data and can provide early and precise diagnoses. Therefore, the cardiology field is one of the areas that can most benefit from the implementation of deep learning algorithms. In the present study, a deep learning algorithm is trained following a novel approach, using a combination of different databases as the training set. The goal of the algorithm is to achieve the detection of R-peaks in ECG signals. Its performance is further evaluated in ECG signals with different origins and features to test the model’s ability to generalize its outcomes. Performance of the model for detection of R-peaks for clean and noisy ECGs is presented. The model is able to detect R-peaks in the presence of various types of noise, and when presented with data, it has not been trained. It is expected that this approach will increase the effectiveness and capacity of cardiologists to detect divergences in the normal cardiac activity of their patients.

Keywords: arrhythmia, deep learning, electrocardiogram, machine learning, R-peaks

Procedia PDF Downloads 157
23620 Influence of Plant Cover and Redistributing Rainfall on Green Roof Retention and Plant Drought Stress

Authors: Lubaina Soni, Claire Farrell, Christopher Szota, Tim D. Fletcher

Abstract:

Green roofs are a promising engineered ecosystem for reducing stormwater runoff and restoring vegetation cover in cities. Plants can contribute to rainfall retention by rapidly depleting water in the substrate; however, this increases the risk of plant drought stress. Green roof configurations, therefore, need to provide plants the opportunity to efficiently deplete the substrate but also avoid severe drought stress. This study used green roof modules placed in a rainout shelter during a six-month rainfall regime simulated in Melbourne, Australia. Rainfall was applied equally with an overhead irrigation system on each module. Aside from rainfall, modules were under natural climatic conditions, including temperature, wind, and radiation. A single species, Ficinia nodosa, was planted with five different treatments and three replicates of each treatment. In this experiment, we tested the impact of three plant cover treatments (0%, 50% and 100%) on rainfall retention and plant drought stress. We also installed two runoff zone treatments covering 50% of the substrate surface for additional modules with 0% and 50% plant cover to determine whether directing rainfall resources towards plant roots would reduce drought stress without impacting rainfall retention. The retention performance for the simulated rainfall events was measured, quantifying all components for hydrological performance and survival on green roofs. We found that evapotranspiration and rainfall retention were similar for modules with 50% and 100% plant cover. However, modules with 100% plant cover showed significantly higher plant drought stress. Therefore, planting at a lower cover/density reduced plant drought stress without jeopardizing rainfall retention performance. Installing runoff zones marginally reduced evapotranspiration and rainfall retention, but by approximately the same amount for modules with 0% and 50% plant cover. This indicates that reduced evaporation due to the installation of the runoff zones likely contributed to reduced evapotranspiration and rainfall retention. Further, runoff occurred from modules with runoff zones faster than those without, indicating that we created a faster pathway for water to enter and leave the substrate, which also likely contributed to lower overall evapotranspiration and retention. However, despite some loss in retention performance, modules with 50% plant cover installed with runoff zones showed significantly lower drought stress in plants compared to those without runoff zones. Overall, we suggest that reducing plant cover represents a simple means of optimizing green roof performance but creating runoff zones may reduce plant drought stress at the cost of reduced rainfall retention.

Keywords: green roof, plant cover, plant drought stress, rainfall retention

Procedia PDF Downloads 101
23619 Defect Detection for Nanofibrous Images with Deep Learning-Based Approaches

Authors: Gaokai Liu

Abstract:

Automatic defect detection for nanomaterial images is widely required in industrial scenarios. Deep learning approaches are considered as the most effective solutions for the great majority of image-based tasks. In this paper, an edge guidance network for defect segmentation is proposed. First, the encoder path with multiple convolution and downsampling operations is applied to the acquisition of shared features. Then two decoder paths both are connected to the last convolution layer of the encoder and supervised by the edge and segmentation labels, respectively, to guide the whole training process. Meanwhile, the edge and encoder outputs from the same stage are concatenated to the segmentation corresponding part to further tune the segmentation result. Finally, the effectiveness of the proposed method is verified via the experiments on open nanofibrous datasets.

Keywords: deep learning, defect detection, image segmentation, nanomaterials

Procedia PDF Downloads 127
23618 Harnessing Artificial Intelligence and Machine Learning for Advanced Fraud Detection and Prevention

Authors: Avinash Malladhi

Abstract:

Forensic accounting is a specialized field that involves the application of accounting principles, investigative skills, and legal knowledge to detect and prevent fraud. With the rise of big data and technological advancements, artificial intelligence (AI) and machine learning (ML) algorithms have emerged as powerful tools for forensic accountants to enhance their fraud detection capabilities. In this paper, we review and analyze various AI/ML algorithms that are commonly used in forensic accounting, including supervised and unsupervised learning, deep learning, natural language processing Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Support Vector Machines (SVMs), Decision Trees, and Random Forests. We discuss their underlying principles, strengths, and limitations and provide empirical evidence from existing research studies demonstrating their effectiveness in detecting financial fraud. We also highlight potential ethical considerations and challenges associated with using AI/ML in forensic accounting. Furthermore, we highlight the benefits of these technologies in improving fraud detection and prevention in forensic accounting.

Keywords: AI, machine learning, forensic accounting & fraud detection, anti money laundering, Benford's law, fraud triangle theory

Procedia PDF Downloads 69
23617 Detection of Autism Spectrum Disorders in Children Aged 4-6 Years by Municipal Maternal and Child Health Physicians: An Educational Intervention Study

Authors: M. Van 'T Hof, R. V. Pasma, J. T. Bailly, H. W. Hoek, W. A. Ester

Abstract:

Background: The transition into primary school can be challenging for children with an autism spectrum disorder (ASD). Due to the new demands that are made to children in this period, their limitations in social functioning and school achievements may manifest and appear faster. Detection of possible ASD signals mainly takes place by parents, teachers and during obligatory municipal maternal and child health centre visits. Physicians of municipal maternal and child health centres have limited education and instruments to detect ASD. Further education on detecting ASD is needed to optimally equip these doctors for this task. Most research aims to increase the early detection of ASD in children aged 0-3 years and shows positive results. However, there is a lack of research on educational interventions to detect ASD in children aged 4-6 years by municipal maternal and child health physicians. Aim: The aim of this study is to explore the effect of the online educational intervention: Detection of ASD in children aged 4-6 years for municipal maternal and child health physicians. This educational intervention is developed within The Reach-Aut Academic Centre for Autism; Transitions in education, and will be available throughout The Netherlands. Methods: Ninety-two participants will follow the educational intervention: Detection of ASD in children aged 4-6 years for municipal maternal and child health centre physicians. The educational intervention consists of three, one and a half hour sessions, which are offered through an online interactive classroom. The focus and content of the course has been developed in collaboration with three groups of stakeholders; autism scientists, clinical practitioners (municipal maternal and child health doctors and ASD experts) and parents of children with ASD. The primary outcome measure is knowledge about ASD: signals, early detection, communication with parents and referrals. The secondary outcome measures are the number of ASD related referrals, the attitude towards the mentally ill (CAMI), perceived competency about ASD knowledge and detection skills, and satisfaction about the educational intervention. Results and Conclusion: The study started in January 2016 and data collection will end mid 2017.

Keywords: ASD, child, detection, educational intervention, physicians

Procedia PDF Downloads 277
23616 Resilience-Based Emergency Bridge Inspection Routing and Repair Scheduling under Uncertainty

Authors: Zhenyu Zhang, Hsi-Hsien Wei

Abstract:

Highway network systems play a vital role in disaster response for disaster-damaged areas. Damaged bridges in such network systems can impede disaster response by disrupting transportation of rescue teams or humanitarian supplies. Therefore, emergency inspection and repair of bridges to quickly collect damage information of bridges and recover the functionality of highway networks is of paramount importance to disaster response. A widely used measure of a network’s capability to recover from disasters is resilience. To enhance highway network resilience, plenty of studies have developed various repair scheduling methods for the prioritization of bridge-repair tasks. These methods assume that repair activities are performed after the damage to a highway network is fully understood via inspection, although inspecting all bridges in a regional highway network may take days, leading to the significant delay in repairing bridges. In reality, emergency repair activities can be commenced as soon as the damage data of some bridges that are crucial to emergency response are obtained. Given that emergency bridge inspection and repair (EBIR) activities are executed simultaneously in the response phase, the real-time interactions between these activities can occur – the blockage of highways due to repair activities can affect inspection routes which in turn have an impact on emergency repair scheduling by providing real-time information on bridge damages. However, the impact of such interactions on the optimal emergency inspection routes (EIR) and emergency repair schedules (ERS) has not been discussed in prior studies. To overcome the aforementioned deficiencies, this study develops a routing and scheduling model for EBIR while accounting for real-time inspection-repair interactions to maximize highway network resilience. A stochastic, time-dependent integer program is proposed for the complex and real-time interacting EBIR problem given multiple inspection and repair teams at locations as set post-disaster. A hybrid genetic algorithm that integrates a heuristic approach into a traditional genetic algorithm to accelerate the evolution process is developed. Computational tests are performed using data from the 2008 Wenchuan earthquake, based on a regional highway network in Sichuan, China, consisting of 168 highway bridges on 36 highways connecting 25 cities/towns. The results show that the simultaneous implementation of bridge inspection and repair activities can significantly improve the highway network resilience. Moreover, the deployment of inspection and repair teams should match each other, and the network resilience will not be improved once the unilateral increase in inspection teams or repair teams exceeds a certain level. This study contributes to both knowledge and practice. First, the developed mathematical model makes it possible for capturing the impact of real-time inspection-repair interactions on inspection routing and repair scheduling and efficiently deriving optimal EIR and ERS on a large and complex highway network. Moreover, this study contributes to the organizational dimension of highway network resilience by providing optimal strategies for highway bridge management. With the decision support tool, disaster managers are able to identify the most critical bridges for disaster management and make decisions on proper inspection and repair strategies to improve highway network resilience.

Keywords: disaster management, emergency bridge inspection and repair, highway network, resilience, uncertainty

Procedia PDF Downloads 95
23615 A Simple Olfactometer for Odour and Lateralization Thresholds of Chemical Vapours

Authors: Lena Ernstgård, Aishwarya M. Dwivedi, Johan Lundström, Gunnar Johanson

Abstract:

A simple inexpensive olfactometer was constructed to enable valid measures of detection threshold of low concentrations of vapours of chemicals. The delivery system consists of seven syringe pumps, each connected to a Tedlar bag containing a predefined concentration of the test chemical in the air. The seven pumps are connected to a 8-way mixing valve which in turn connects to a birhinal nose piece. Chemical vapor of known concentration is generated by injection of an appropriate amount of the test chemical into a Tedlar bag with a known volume of clean air. Complete vaporization is assured by gentle heating of the bag from the outside with a heat flow. The six test concentrations are obtained by adding different volumes from the starting bag to six new Tedlar bags with known volumes of clean air. One bag contains clean air only. Thus, six different test concentrations and clean air can easily be tested in series by shifting the valve to new positions. Initial in-line measurement with a photoionization detector showed that the delivery system quickly responded to a shift in valve position. Thus 90% of the desired concentration was reached within 15 seconds. The concentrations in the bags are verified daily by gas chromatography. The stability of the system in terms of chemical concentration is monitored in real time by means of a photo-ionization detector. To determine lateralization thresholds, an additional pump supplying clean air is added to the delivery system in a way so that the nostrils can be separately and interchangeably be exposed to clean air and test chemical. Odor and lateralization thresholds were determined for three aldehydes; acrolein, crotonaldehyde, and hexanal in 20 healthy naïve individuals. Aldehydes generally have a strong odour, and the selected aldehydes are also considered to be irritating to mucous membranes. The median odor thresholds of the three aldehydes were 0.017, 0.0008, and 0.097 ppm, respectively. No lateralization threshold could be identified for acrolein, whereas the medians for crotonaldehyde and hexanal were 0.003 and 0.39 ppm, respectively. In conclusion, we constructed a simple, inexpensive olfactometer that allows for stable and easily measurable concentrations of vapors of the test chemical. Our test with aldehydes demonstrates that the system produces valid detection among volunteers in terms of odour and lateralization thresholds.

Keywords: irritation, odour delivery, olfactometer, smell

Procedia PDF Downloads 204
23614 Investigation of Different Conditions to Detect Cycles in Linearly Implicit Quantized State Systems

Authors: Elmongi Elbellili, Ben Lauwens, Daan Huybrechs

Abstract:

The increasing complexity of modern engineering systems presents a challenge to the digital simulation of these systems which usually can be represented by differential equations. The Linearly Implicit Quantized State System (LIQSS) offers an alternative approach to traditional numerical integration techniques for solving Ordinary Differential Equations (ODEs). This method proved effective for handling discontinuous and large stiff systems. However, the inherent discrete nature of LIQSS may introduce oscillations that result in unnecessary computational steps. The current oscillation detection mechanism relies on a condition that checks the significance of the derivatives, but it could be further improved. This paper describes a different cycle detection mechanism and presents the outcomes using LIQSS order one in simulating the Advection Diffusion problem. The efficiency of this new cycle detection mechanism is verified by comparing the performance of the current solver against the new version as well as a reference solution using a Runge-Kutta method of order14.

Keywords: numerical integration, quantized state systems, ordinary differential equations, stiffness, cycle detection, simulation

Procedia PDF Downloads 41
23613 Pin Count Aware Volumetric Error Detection in Arbitrary Microfluidic Bio-Chip

Authors: Kunal Das, Priya Sengupta, Abhishek K. Singh

Abstract:

Pin assignment, scheduling, routing and error detection for arbitrary biochemical protocols in Digital Microfluidic Biochip have been reported in this paper. The research work is concentrating on pin assignment for 2 or 3 droplets routing in the arbitrary biochemical protocol, scheduling and routing in m × n biochip. The volumetric error arises due to droplet split in the biochip. The volumetric error detection is also addressed using biochip AND logic gate which is known as microfluidic AND or mAND gate. The algorithm for pin assignment for m × n biochip required m+n-1 numbers of pins. The basic principle of this algorithm is that no same pin will be allowed to be placed in the same column, same row and diagonal and adjacent cells. The same pin should be placed a distance apart such that interference becomes less. A case study also reported in this paper.

Keywords: digital microfludic biochip, cross-contamination, pin assignment, microfluidic AND gate

Procedia PDF Downloads 257
23612 Applying Wavelet Transform to Ferroresonance Detection and Protection

Authors: Chun-Wei Huang, Jyh-Cherng Gu, Ming-Ta Yang

Abstract:

Non-synchronous breakage or line failure in power systems with light or no loads can lead to core saturation in transformers or potential transformers. This can cause component and capacitance matching resulting in the formation of resonant circuits, which trigger ferroresonance. This study employed a wavelet transform for the detection of ferroresonance. Simulation results demonstrate the efficacy of the proposed method.

Keywords: ferroresonance, wavelet transform, intelligent electronic device, transformer

Procedia PDF Downloads 479
23611 Effects of a School-based Mindfulness Intervention on Stress Levels and Emotion Regulation of Adolescent Students Enrolled in an Independent School

Authors: Tracie Catlett

Abstract:

Students enrolled in high-achieving schools are under tremendous pressure to perform at high levels inside and outside the classroom. Achievement pressure is a prevalent source of stress for students enrolled in high-achieving schools, and female students, in particular, experience a higher frequency and higher levels of stress compared to their male peers. The practice of mindfulness in a school setting is one tool that has been linked to improved self-regulation of emotions, increased positive emotions, and stress reduction. A mixed methods randomized pretest-posttest no-treatment control trial evaluated the effects of a six-session mindfulness intervention taught during a regularly scheduled life skills period in an independent day school, one type of high-achieving school. Twenty-nine students in Grades 10 and 11 were randomized by class, where Grade 11 students were in the intervention group (n = 14) and Grade 10 students were in the control group (n = 15). Findings from the study produced mixed results. There was no evidence that the mindfulness program reduced participants’ stress levels and negative emotions. In fact, contrary to what was expected, students enrolled in the intervention group experienced higher levels of stress and increased negative emotions at posttreatment when compared to pretreatment. Neither the within-group nor the between-groups changes in stress level were statistically significant, p > .05, and the between-groups effect size was small, d = .2. The study found evidence that the mindfulness program may have had a positive impact on students’ ability to regulate their emotions. The within-group comparison and the between-groups comparison at posttreatment found that students in the mindfulness course experienced statistically significant improvement in the in their ability to regulate their emotions at posttreatment, p = .009 < .05 and p =. 034 < .05, respectively. The between-groups effect size was medium, d =.7, suggesting that the positive differences in emotion regulation difficulties were substantial and have practical implications. The analysis of gender differences, as they relate to stress and emotions, revealed that female students perceive higher levels of stress and report experiencing stress more often than males. There were no gender differences when analyzing sources of stress experienced by the student participants. Both females and males experience regular achievement pressures related to their school performance and worry about their future, college acceptance, grades, and parental expectations. Females reported an increased awareness of their stress and actively engaged in practicing mindfulness to manage their stress. Students in the treatment group expressed that the practice of mindfulness resulted in feelings of relaxation and calmness.

Keywords: achievement pressure, adolescents, emotion regulation, emotions, high-achieving schools, independent schools, mindfulness, negative affect, positive affect, stress

Procedia PDF Downloads 41
23610 The Pathology of Bovine Rotavirus Infection in Calves That Confirmed by Enzyme Linked Immunosorbant Assay, Reverse Transcription Polymerase Chain Reaction and Real-Time RT-PCR

Authors: Shama Ranjan Barua, Tofazzal M. Rakib, Mohammad Alamgir Hossain, Tania Ferdushy, Sharmin Chowdhury

Abstract:

Rotavirus is one of the main etiologies of neonatal diarrhea in bovine calves that causes significant economic loss in Bangladesh. The present study was carried out to investigate the pathology of neonatal enteritis in calves due to bovine rotavirus infection in south-eastern part of Bangladesh. Rotavirus was identified by using ELISA, RT-PCR (Reverse Transcription Polymerase Chain Reaction), real-time RT-PCR. We examined 12 dead calves with history of diarrhea during necropsy. Among 12 dead calves, in gross examination, 6 were found with pathological changes in intestine, 5 calves had congestion of small intestine and rest one had no distinct pathological changes. Intestinal contents and/or faecal samples of all dead calves were collected and examined to confirm the presence of bovine rotavirus A using Enzyme linked immunosorbant assay (ELISA), RT-PCR and real-time RT-PCR. Out 12 samples, 5 (42%) samples revealed presence of bovine rotavirus A in three diagnostic tests. The histopathological changes were found almost exclusively limited in the small intestine. The lesions of rotaviral enteritis ranged from slight to moderate shortening (atrophy) of villi in the jejunum and ileum with necrotic crypts. The villi were blunt and covered by immature epithelial cells. Infected cells, stained with Haematoxylin and Eosin staining method, showed characteristic syncytia and eosinophilc intracytoplasmic inclusion body. The presence of intracytoplasmic inclusion bodies in enterocytes is the indication of viral etiology. The presence of rotavirus in the affected tissues and/or lesions was confirmed by three different immunological and molecular tests. The findings of histopathological changes will be helpful in future diagnosis of rotaviral infection in dead calves.

Keywords: calves, diarrhea, pathology, rotavirus

Procedia PDF Downloads 234
23609 Design of Multi-Loop Controller for Minimization of Energy Consumption in the Distillation Column

Authors: Vinayambika S. Bhat, S. Shanmuga Priya, I. Thirunavukkarasu, Shreeranga Bhat

Abstract:

An attempt has been made to design a decoupling controller for systems with more inputs more outputs with dead time in it. The de-coupler is designed for the chemical process industry 3×3 plant transfer function with dead time. The Quantitative Feedback Theory (QFT) based controller has also been designed here for the 2×2 distillation column transfer function. The developed control techniques were simulated using the MATLAB/Simulink. Also, the stability of the process was analyzed, together with the presence of various perturbations in it. Time domain specifications like setting time along with overshoot and oscillations were analyzed to prove the efficiency of the de-coupler method. The load disturbance rejection was tested along with its performance. The QFT control technique was synthesized based on the stability and performance specifications in the presence of uncertainty in time constant of the plant transfer function through sequential loop shaping technique. Further, the energy efficiency of the distillation column was improved by proper tuning of the controller. A distillation column consumes 3% of the total energy consumption of the world. A suitable control technique is very important from an economic point of view. The real time implementation of the process is under process in our laboratory.

Keywords: distillation, energy, MIMO process, time delay, robust stability

Procedia PDF Downloads 396
23608 Feature Engineering Based Detection of Buffer Overflow Vulnerability in Source Code Using Deep Neural Networks

Authors: Mst Shapna Akter, Hossain Shahriar

Abstract:

One of the most important challenges in the field of software code audit is the presence of vulnerabilities in software source code. Every year, more and more software flaws are found, either internally in proprietary code or revealed publicly. These flaws are highly likely exploited and lead to system compromise, data leakage, or denial of service. C and C++ open-source code are now available in order to create a largescale, machine-learning system for function-level vulnerability identification. We assembled a sizable dataset of millions of opensource functions that point to potential exploits. We developed an efficient and scalable vulnerability detection method based on deep neural network models that learn features extracted from the source codes. The source code is first converted into a minimal intermediate representation to remove the pointless components and shorten the dependency. Moreover, we keep the semantic and syntactic information using state-of-the-art word embedding algorithms such as glove and fastText. The embedded vectors are subsequently fed into deep learning networks such as LSTM, BilSTM, LSTM-Autoencoder, word2vec, BERT, and GPT-2 to classify the possible vulnerabilities. Furthermore, we proposed a neural network model which can overcome issues associated with traditional neural networks. Evaluation metrics such as f1 score, precision, recall, accuracy, and total execution time have been used to measure the performance. We made a comparative analysis between results derived from features containing a minimal text representation and semantic and syntactic information. We found that all of the deep learning models provide comparatively higher accuracy when we use semantic and syntactic information as the features but require higher execution time as the word embedding the algorithm puts on a bit of complexity to the overall system.

Keywords: cyber security, vulnerability detection, neural networks, feature extraction

Procedia PDF Downloads 69
23607 The Methodology of Out-Migration in Georgia

Authors: Shorena Tsiklauri

Abstract:

Out-migration is an important issue for Georgia as well as since independence has loosed due to emigration one fifth of its population. During Soviet time out-migration from USSR was almost impossible and one of the most important instruments in regulating population movement within the Soviet Union was the system of compulsory residential registrations, so-called “propiska”. Since independent here was not any regulation for migration from Georgia. The majorities of Georgian migrants go abroad by tourist visa and then overstay, becoming the irregular labor migrants. The official statistics on migration published for this period was based on the administrative system of population registration, were insignificant in terms of numbers and did not represent the real scope of these migration movements. This paper discusses the data quality and methodology of migration statistics in Georgia and we are going to answer the questions: what is the real reason of increasing immigration flows according to the official numbers since 2000s?

Keywords: data quality, Georgia, methodology, migration

Procedia PDF Downloads 395
23606 Thermal Elastic Stress Analysis of Steel Fiber Reinforced Aluminum Composites

Authors: Mustafa Reşit Haboğlu, Ali Kurşun , Şafak Aksoy, Halil Aykul, Numan Behlül Bektaş

Abstract:

A thermal elastic stress analysis of steel fiber reinforced aluminum laminated composite plate is investigated. Four sides of the composite plate are clamped and subjected to a uniform temperature load. The analysis is performed both analytically and numerically. Laminated composite is manufactured via hot pressing method. The investigation of the effects of the orientation angle is provided. Different orientation angles are used such as [0°/90°]s, [30°/-30°]s, [45°/-45°]s and [60/-60]s. The analytical solution is obtained via classical laminated composite theory and the numerical solution is obtained by applying finite element method via ANSYS.

Keywords: laminated composites, thermo elastic stress, finite element method.

Procedia PDF Downloads 482
23605 A Regression Model for Predicting Sugar Crystal Size in a Fed-Batch Vacuum Evaporative Crystallizer

Authors: Sunday B. Alabi, Edikan P. Felix, Aniediong M. Umo

Abstract:

Crystal size distribution is of great importance in the sugar factories. It determines the market value of granulated sugar and also influences the cost of production of sugar crystals. Typically, sugar is produced using fed-batch vacuum evaporative crystallizer. The crystallization quality is examined by crystal size distribution at the end of the process which is quantified by two parameters: the average crystal size of the distribution in the mean aperture (MA) and the width of the distribution of the coefficient of variation (CV). Lack of real-time measurement of the sugar crystal size hinders its feedback control and eventual optimisation of the crystallization process. An attractive alternative is to use a soft sensor (model-based method) for online estimation of the sugar crystal size. Unfortunately, the available models for sugar crystallization process are not suitable as they do not contain variables that can be measured easily online. The main contribution of this paper is the development of a regression model for estimating the sugar crystal size as a function of input variables which are easy to measure online. This has the potential to provide real-time estimates of crystal size for its effective feedback control. Using 7 input variables namely: initial crystal size (Lo), temperature (T), vacuum pressure (P), feed flowrate (Ff), steam flowrate (Fs), initial super-saturation (S0) and crystallization time (t), preliminary studies were carried out using Minitab 14 statistical software. Based on the existing sugar crystallizer models, and the typical ranges of these 7 input variables, 128 datasets were obtained from a 2-level factorial experimental design. These datasets were used to obtain a simple but online-implementable 6-input crystal size model. It seems the initial crystal size (Lₒ) does not play a significant role. The goodness of the resulting regression model was evaluated. The coefficient of determination, R² was obtained as 0.994, and the maximum absolute relative error (MARE) was obtained as 4.6%. The high R² (~1.0) and the reasonably low MARE values are an indication that the model is able to predict sugar crystal size accurately as a function of the 6 easy-to-measure online variables. Thus, the model can be used as a soft sensor to provide real-time estimates of sugar crystal size during sugar crystallization process in a fed-batch vacuum evaporative crystallizer.

Keywords: crystal size, regression model, soft sensor, sugar, vacuum evaporative crystallizer

Procedia PDF Downloads 193
23604 Thermal Fracture Analysis of Fibrous Composites with Variable Fiber Spacing Using Jk-Integral

Authors: Farid Saeidi, Serkan Dag

Abstract:

In this study, fracture analysis of a fibrous composite laminate with variable fiber spacing is carried out using Jk-integral method. The laminate is assumed to be under thermal loading. Jk-integral is formulated by using the constitutive relations of plane orthotropic thermoelasticity. Developed domain independent form of the Jk-integral is then integrated into the general purpose finite element analysis software ANSYS. Numerical results are generated so as to assess the influence of variable fiber spacing on mode I and II stress intensity factors, energy release rate, and T-stress. For verification, some of the results are compared to those obtained using displacement correlation technique (DCT).

Keywords: Jk-integral, Variable Fiber Spacing, Thermoelasticity, T-stress, Finite Element Method, Fibrous Composite.

Procedia PDF Downloads 375
23603 Wireless FPGA-Based Motion Controller Design by Implementing 3-Axis Linear Trajectory

Authors: Kiana Zeighami, Morteza Ozlati Moghadam

Abstract:

Designing a high accuracy and high precision motion controller is one of the important issues in today’s industry. There are effective solutions available in the industry but the real-time performance, smoothness and accuracy of the movement can be further improved. This paper discusses a complete solution to carry out the movement of three stepper motors in three dimensions. The objective is to provide a method to design a fully integrated System-on-Chip (SOC)-based motion controller to reduce the cost and complexity of production by incorporating Field Programmable Gate Array (FPGA) into the design. In the proposed method the FPGA receives its commands from a host computer via wireless internet communication and calculates the motion trajectory for three axes. A profile generator module is designed to realize the interpolation algorithm by translating the position data to the real-time pulses. This paper discusses an approach to implement the linear interpolation algorithm, since it is one of the fundamentals of robots’ movements and it is highly applicable in motion control industries. Along with full profile trajectory, the triangular drive is implemented to eliminate the existence of error at small distances. To integrate the parallelism and real-time performance of FPGA with the power of Central Processing Unit (CPU) in executing complex and sequential algorithms, the NIOS II soft-core processor was added into the design. This paper presents different operating modes such as absolute, relative positioning, reset and velocity modes to fulfill the user requirements. The proposed approach was evaluated by designing a custom-made FPGA board along with a mechanical structure. As a result, a precise and smooth movement of stepper motors was observed which proved the effectiveness of this approach.

Keywords: 3-axis linear interpolation, FPGA, motion controller, micro-stepping

Procedia PDF Downloads 194