Search results for: neural networks multi-layer perceptron
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3869

Search results for: neural networks multi-layer perceptron

2159 Analysis of Cardiovascular Diseases Using Artificial Neural Network

Authors: Jyotismita Talukdar

Abstract:

In this paper, a study has been made on the possibility and accuracy of early prediction of several Heart Disease using Artificial Neural Network. (ANN). The study has been made in both noise free environment and noisy environment. The data collected for this analysis are from five Hospitals. Around 1500 heart patient’s data has been collected and studied. The data is analysed and the results have been compared with the Doctor’s diagnosis. It is found that, in noise free environment, the accuracy varies from 74% to 92%and in noisy environment (2dB), the results of accuracy varies from 62% to 82%. In the present study, four basic attributes considered are Blood Pressure (BP), Fasting Blood Sugar (FBS), Thalach (THAL) and Cholesterol (CHOL.). It has been found that highest accuracy(93%), has been achieved in case of PPI( Post-Permanent-Pacemaker Implementation ), around 79% in case of CAD(Coronary Artery disease), 87% in DCM (Dilated Cardiomyopathy), 89% in case of RHD&MS(Rheumatic heart disease with Mitral Stenosis), 75 % in case of RBBB +LAFB (Right Bundle Branch Block + Left Anterior Fascicular Block), 72% for CHB(Complete Heart Block) etc. The lowest accuracy has been obtained in case of ICMP (Ischemic Cardiomyopathy), about 38% and AF( Atrial Fibrillation), about 60 to 62%.

Keywords: coronary heart disease, chronic stable angina, sick sinus syndrome, cardiovascular disease, cholesterol, Thalach

Procedia PDF Downloads 174
2158 Multi-Modality Brain Stimulation: A Treatment Protocol for Tinnitus

Authors: Prajakta Patil, Yash Huzurbazar, Abhijeet Shinde

Abstract:

Aim: To develop a treatment protocol for the management of tinnitus through multi-modality brain stimulation. Methodology: Present study included 33 adults with unilateral (31 subjects) and bilateral (2 subjects) chronic tinnitus with and/or without hearing loss independent of their etiology. The Treatment protocol included 5 consecutive sessions with follow-up of 6 months. Each session was divided into 3 parts: • Pre-treatment: a) Informed consent b) Pitch and loudness matching. • Treatment: Bimanual paper pen task with tinnitus masking for 30 minutes. • Post-treatment: a) Pitch and loudness matching b) Directive counseling and obtaining feedback. Paper-pen task is to be performed bimanually that included carrying out two different writing activities in different context. The level of difficulty of the activities was increased in successive sessions. Narrowband noise of a frequency same as that of tinnitus was presented at 10 dBSL of tinnitus for 30 minutes simultaneously in the ear with tinnitus. Result: The perception of tinnitus was no longer present in 4 subjects while in remaining subjects it reduced to an intensity that its perception no longer troubled them without causing residual facilitation. In all subjects, the intensity of tinnitus decreased by an extent of 45 dB at an average. However, in few subjects, the intensity of tinnitus also decreased by more than 45 dB. The approach resulted in statistically significant reductions in Tinnitus Functional Index and Tinnitus Handicap Inventory scores. The results correlate with pre and post treatment score of Tinnitus Handicap Inventory that dropped from 90% to 0%. Discussion: Brain mapping(qEEG) Studies report that there is multiple parallel overlapping of neural subnetworks in the non-auditory areas of the brain which exhibits abnormal, constant and spontaneous neural activity involved in the perception of tinnitus with each subnetwork and area reflecting a specific aspect of tinnitus percept. The paper pen task and directive counseling are designed and delivered respectively in a way that is assumed to induce normal, rhythmically constant and premeditated neural activity and mask the abnormal, constant and spontaneous neural activity in the above-mentioned subnetworks and the specific non-auditory area. Counseling was focused on breaking the vicious cycle causing and maintaining the presence of tinnitus. Diverting auditory attention alone is insufficient to reduce the perception of tinnitus. Conscious awareness of tinnitus can be suppressed when individuals engage in cognitively demanding tasks of non-auditory nature as the paper pen task used in the present study. To carry out this task selective, divided, sustained, simultaneous and split attention act cumulatively. Bimanual paper pen task represents a top-down activity which underlies brain’s ability to selectively attend to the bimanual written activity as a relevant stimulus and to ignore tinnitus that is the irrelevant stimuli in the present study. Conclusion: The study suggests that this novel treatment approach is cost effective, time saving and efficient to vanish the tinnitus or to reduce the intensity of tinnitus to a negligible level and thereby eliminating the negative reactions towards tinnitus.

Keywords: multi-modality brain stimulation, neural subnetworks, non-auditory areas, paper-pen task, top-down activity

Procedia PDF Downloads 147
2157 Optical Multicast over OBS Networks: An Approach Based on Code-Words and Tunable Decoders

Authors: Maha Sliti, Walid Abdallah, Noureddine Boudriga

Abstract:

In the frame of this work, we present an optical multicasting approach based on optical code-words. Our approach associates, in the edge node, an optical code-word to a group multicast address. In the core node, a set of tunable decoders are used to send a traffic data to multiple destinations based on the received code-word. The use of code-words, which correspond to the combination of an input port and a set of output ports, allows the implementation of an optical switching matrix. At the reception of a burst, it will be delayed in an optical memory. And, the received optical code-word is split to a set of tunable optical decoders. When it matches a configured code-word, the delayed burst is switched to a set of output ports.

Keywords: optical multicast, optical burst switching networks, optical code-words, tunable decoder, virtual optical memory

Procedia PDF Downloads 607
2156 Statistical Analysis with Prediction Models of User Satisfaction in Software Project Factors

Authors: Katawut Kaewbanjong

Abstract:

We analyzed a volume of data and found significant user satisfaction in software project factors. A statistical significance analysis (logistic regression) and collinearity analysis determined the significance factors from a group of 71 pre-defined factors from 191 software projects in ISBSG Release 12. The eight prediction models used for testing the prediction potential of these factors were Neural network, k-NN, Naïve Bayes, Random forest, Decision tree, Gradient boosted tree, linear regression and logistic regression prediction model. Fifteen pre-defined factors were truly significant in predicting user satisfaction, and they provided 82.71% prediction accuracy when used with a neural network prediction model. These factors were client-server, personnel changes, total defects delivered, project inactive time, industry sector, application type, development type, how methodology was acquired, development techniques, decision making process, intended market, size estimate approach, size estimate method, cost recording method, and effort estimate method. These findings may benefit software development managers considerably.

Keywords: prediction model, statistical analysis, software project, user satisfaction factor

Procedia PDF Downloads 124
2155 Chaotic Electronic System with Lambda Diode

Authors: George Mahalu

Abstract:

The Chua diode has been configured over time in various ways, using electronic structures like as operational amplifiers (OAs) or devices with gas or semiconductors. When discussing the use of semiconductor devices, tunnel diodes (Esaki diodes) are most often considered, and more recently, transistorized configurations such as lambda diodes. The paper-work proposed here uses in the modeling a lambda diode type configuration consisting of two Junction Field Effect Transistors (JFET). The original scheme is created in the MULTISIM electronic simulation environment and is analyzed in order to identify the conditions for the appearance of evolutionary unpredictability specific to nonlinear dynamic systems with chaos-induced behavior. The chaotic deterministic oscillator is one autonomous type, a fact that places it in the class of Chua’s type oscillators, the only significant and most important difference being the presence of a nonlinear device like the one mentioned structure above. The chaotic behavior is identified both by means of strange attractor-type trajectories and visible during the simulation and by highlighting the hypersensitivity of the system to small variations of one of the input parameters. The results obtained through simulation and the conclusions drawn are useful in the further research of ways to implement such constructive electronic solutions in theoretical and practical applications related to modern small signal amplification structures, to systems for encoding and decoding messages through various modern ways of communication, as well as new structures that can be imagined both in modern neural networks and in those for the physical implementation of some requirements imposed by current research with the aim of obtaining practically usable solutions in quantum computing and quantum computers.

Keywords: chaos, lambda diode, strange attractor, nonlinear system

Procedia PDF Downloads 86
2154 Machine Learning Approach for Anomaly Detection in the Simulated Iec-60870-5-104 Traffic

Authors: Stepan Grebeniuk, Ersi Hodo, Henri Ruotsalainen, Paul Tavolato

Abstract:

Substation security plays an important role in the power delivery system. During the past years, there has been an increase in number of attacks on automation networks of the substations. In spite of that, there hasn’t been enough focus dedicated to the protection of such networks. Aiming to design a specialized anomaly detection system based on machine learning, in this paper we will discuss the IEC 60870-5-104 protocol that is used for communication between substation and control station and focus on the simulation of the substation traffic. Firstly, we will simulate the communication between substation slave and server. Secondly, we will compare the system's normal behavior and its behavior under the attack, in order to extract the right features which will be needed for building an anomaly detection system. Lastly, based on the features we will suggest the anomaly detection system for the asynchronous protocol IEC 60870-5-104.

Keywords: Anomaly detection, IEC-60870-5-104, Machine learning, Man-in-the-Middle attacks, Substation security

Procedia PDF Downloads 368
2153 Defective Autophagy Disturbs Neural Migration and Network Activity in hiPSC-Derived Cockayne Syndrome B Disease Models

Authors: Julia Kapr, Andrea Rossi, Haribaskar Ramachandran, Marius Pollet, Ilka Egger, Selina Dangeleit, Katharina Koch, Jean Krutmann, Ellen Fritsche

Abstract:

It is widely acknowledged that animal models do not always represent human disease. Especially human brain development is difficult to model in animals due to a variety of structural and functional species-specificities. This causes significant discrepancies between predicted and apparent drug efficacies in clinical trials and their subsequent failure. Emerging alternatives based on 3D in vitro approaches, such as human brain spheres or organoids, may in the future reduce and ultimately replace animal models. Here, we present a human induced pluripotent stem cell (hiPSC)-based 3D neural in a vitro disease model for the Cockayne Syndrome B (CSB). CSB is a rare hereditary disease and is accompanied by severe neurologic defects, such as microcephaly, ataxia and intellectual disability, with currently no treatment options. Therefore, the aim of this study is to investigate the molecular and cellular defects found in neural hiPSC-derived CSB models. Understanding the underlying pathology of CSB enables the development of treatment options. The two CSB models used in this study comprise a patient-derived hiPSC line and its isogenic control as well as a CSB-deficient cell line based on a healthy hiPSC line (IMR90-4) background thereby excluding genetic background-related effects. Neurally induced and differentiated brain sphere cultures were characterized via RNA Sequencing, western blot (WB), immunocytochemistry (ICC) and multielectrode arrays (MEAs). CSB-deficiency leads to an altered gene expression of markers for autophagy, focal adhesion and neural network formation. Cell migration was significantly reduced and electrical activity was significantly increased in the disease cell lines. These data hint that the cellular pathologies is possibly underlying CSB. By induction of autophagy, the migration phenotype could be partially rescued, suggesting a crucial role of disturbed autophagy in defective neural migration of the disease lines. Altered autophagy may also lead to inefficient mitophagy. Accordingly, disease cell lines were shown to have a lower mitochondrial base activity and a higher susceptibility to mitochondrial stress induced by rotenone. Since mitochondria play an important role in neurotransmitter cycling, we suggest that defective mitochondria may lead to altered electrical activity in the disease cell lines. Failure to clear the defective mitochondria by mitophagy and thus missing initiation cues for new mitochondrial production could potentiate this problem. With our data, we aim at establishing a disease adverse outcome pathway (AOP), thereby adding to the in-depth understanding of this multi-faced disorder and subsequently contributing to alternative drug development.

Keywords: autophagy, disease modeling, in vitro, pluripotent stem cells

Procedia PDF Downloads 120
2152 Analysis of the Omnichannel Delivery Network with Application to Last Mile Delivery

Authors: Colette Malyack, Pius Egbelu

Abstract:

Business-to-Customer (B2C) delivery options have improved to meet increased demand in recent years. The change in end users has forced logistics networks to focus on customer service and sentiment that would have previously been the priority of the company or organization of origin. This has led to increased pressure on logistics companies to extend traditional B2B networks into a B2C solution while accommodating additional costs, roadblocks, and customer sentiment; the result has been the creation of the omnichannel delivery network encompassing a number of traditional and modern methods of package delivery. In this paper the many solutions within the omnichannel delivery network are defined and discussed. It can be seen through this analysis that the omnichannel delivery network can be applied to reduce the complexity of package delivery and provide customers with more options. Applied correctly the result is a reduction in cost to the logistics company over time, even with an initial increase in cost to obtain the technology.

Keywords: network planning, last mile delivery, omnichannel delivery network, omnichannel logistics

Procedia PDF Downloads 150
2151 A Quinary Coding and Matrix Structure Based Channel Hopping Algorithm for Blind Rendezvous in Cognitive Radio Networks

Authors: Qinglin Liu, Zhiyong Lin, Zongheng Wei, Jianfeng Wen, Congming Yi, Hai Liu

Abstract:

The multi-channel blind rendezvous problem in distributed cognitive radio networks (DCRNs) refers to how users in the network can hop to the same channel at the same time slot without any prior knowledge (i.e., each user is unaware of other users' information). The channel hopping (CH) technique is a typical solution to this blind rendezvous problem. In this paper, we propose a quinary coding and matrix structure-based CH algorithm called QCMS-CH. The QCMS-CH algorithm can guarantee the rendezvous of users using only one cognitive radio in the scenario of the asynchronous clock (i.e., arbitrary time drift between the users), heterogeneous channels (i.e., the available channel sets of users are distinct), and symmetric role (i.e., all users play a same role). The QCMS-CH algorithm first represents a randomly selected channel (denoted by R) as a fixed-length quaternary number. Then it encodes the quaternary number into a quinary bootstrapping sequence according to a carefully designed quaternary-quinary coding table with the prefix "R00". Finally, it builds a CH matrix column by column according to the bootstrapping sequence and six different types of elaborately generated subsequences. The user can access the CH matrix row by row and accordingly perform its channel, hoping to attempt rendezvous with other users. We prove the correctness of QCMS-CH and derive an upper bound on its Maximum Time-to-Rendezvous (MTTR). Simulation results show that the QCMS-CH algorithm outperforms the state-of-the-art in terms of the MTTR and the Expected Time-to-Rendezvous (ETTR).

Keywords: channel hopping, blind rendezvous, cognitive radio networks, quaternary-quinary coding

Procedia PDF Downloads 91
2150 CoP-Networks: Virtual Spaces for New Faculty’s Professional Development in the 21st Higher Education

Authors: Eman AbuKhousa, Marwan Z. Bataineh

Abstract:

The 21st century higher education and globalization challenge new faculty members to build effective professional networks and partnership with industry in order to accelerate their growth and success. This creates the need for community of practice (CoP)-oriented development approaches that focus on cognitive apprenticeship while considering individual predisposition and future career needs. This work adopts data mining, clustering analysis, and social networking technologies to present the CoP-Network as a virtual space that connects together similar career-aspiration individuals who are socially influenced to join and engage in a process for domain-related knowledge and practice acquisitions. The CoP-Network model can be integrated into higher education to extend traditional graduate and professional development programs.

Keywords: clustering analysis, community of practice, data mining, higher education, new faculty challenges, social network, social influence, professional development

Procedia PDF Downloads 183
2149 Product Modularity, Collaboration and the Impact on Innovation Performance in Intra-Organizational R&D Networks

Authors: Daniel Martinez, Tim de Leeuw, Stefan Haefliger

Abstract:

The challenges of managing a large and geographically dispersed R&D organization have been further increasing during the past years, concentrating on the leverage of a geo-graphically dispersed body of knowledge in an efficient and effective manner. In order to reduce complexity and improve performance, firms introduce product modularity as one key element for global R&D network teams to develop their products and projects in collaboration. However, empirical studies on the effects of product modularity on innovation performance are really scant. Furthermore, some researchers have suggested that product modularity promotes innovation performance, while others argue that it inhibits innovation performance. This research fills this gap by investigating the impact of product modularity on various dimensions of innovation performance, i.e. effectiveness and efficiency. By constructing the theoretical framework, this study suggests that that there is an inverted U-shaped relationship between product modularity and innovation performance. Moreover, this research work suggests that the optimum of innovation performance efficiency will be at a higher level than innovation performance effectiveness at a given product modularity level.

Keywords: modularity, innovation performance, networks, R&D, collaboration

Procedia PDF Downloads 520
2148 Performance Improvement of Long-Reach Optical Access Systems Using Hybrid Optical Amplifiers

Authors: Shreyas Srinivas Rangan, Jurgis Porins

Abstract:

The internet traffic has increased exponentially due to the high demand for data rates by the users, and the constantly increasing metro networks and access networks are focused on improving the maximum transmit distance of the long-reach optical networks. One of the common methods to improve the maximum transmit distance of the long-reach optical networks at the component level is to use broadband optical amplifiers. The Erbium Doped Fiber Amplifier (EDFA) provides high amplification with low noise figure but due to the characteristics of EDFA, its operation is limited to C-band and L-band. In contrast, the Raman amplifier exhibits a wide amplification spectrum, and negative noise figure values can be achieved. To obtain such results, high powered pumping sources are required. Operating Raman amplifiers with such high-powered optical sources may cause fire hazards and it may damage the optical system. In this paper, we implement a hybrid optical amplifier configuration. EDFA and Raman amplifiers are used in this hybrid setup to combine the advantages of both EDFA and Raman amplifiers to improve the reach of the system. Using this setup, we analyze the maximum transmit distance of the network by obtaining a correlation diagram between the length of the single-mode fiber (SMF) and the Bit Error Rate (BER). This hybrid amplifier configuration is implemented in a Wavelength Division Multiplexing (WDM) system with a BER of 10⁻⁹ by using NRZ modulation format, and the gain uniformity noise ratio (signal-to-noise ratio (SNR)), the efficiency of the pumping source, and the optical signal gain efficiency of the amplifier are studied experimentally in a mathematical modelling environment. Numerical simulations were implemented in RSoft OptSim simulation software based on the nonlinear Schrödinger equation using the Split-Step method, the Fourier transform, and the Monte Carlo method for estimating BER.

Keywords: Raman amplifier, erbium doped fibre amplifier, bit error rate, hybrid optical amplifiers

Procedia PDF Downloads 70
2147 Current Methods for Drug Property Prediction in the Real World

Authors: Jacob Green, Cecilia Cabrera, Maximilian Jakobs, Andrea Dimitracopoulos, Mark van der Wilk, Ryan Greenhalgh

Abstract:

Predicting drug properties is key in drug discovery to enable de-risking of assets before expensive clinical trials and to find highly active compounds faster. Interest from the machine learning community has led to the release of a variety of benchmark datasets and proposed methods. However, it remains unclear for practitioners which method or approach is most suitable, as different papers benchmark on different datasets and methods, leading to varying conclusions that are not easily compared. Our large-scale empirical study links together numerous earlier works on different datasets and methods, thus offering a comprehensive overview of the existing property classes, datasets, and their interactions with different methods. We emphasise the importance of uncertainty quantification and the time and, therefore, cost of applying these methods in the drug development decision-making cycle. To the best of the author's knowledge, it has been observed that the optimal approach varies depending on the dataset and that engineered features with classical machine learning methods often outperform deep learning. Specifically, QSAR datasets are typically best analysed with classical methods such as Gaussian Processes, while ADMET datasets are sometimes better described by Trees or deep learning methods such as Graph Neural Networks or language models. Our work highlights that practitioners do not yet have a straightforward, black-box procedure to rely on and sets a precedent for creating practitioner-relevant benchmarks. Deep learning approaches must be proven on these benchmarks to become the practical method of choice in drug property prediction.

Keywords: activity (QSAR), ADMET, classical methods, drug property prediction, empirical study, machine learning

Procedia PDF Downloads 81
2146 A Comparative Study on ANN, ANFIS and SVM Methods for Computing Resonant Frequency of A-Shaped Compact Microstrip Antennas

Authors: Ahmet Kayabasi, Ali Akdagli

Abstract:

In this study, three robust predicting methods, namely artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) were used for computing the resonant frequency of A-shaped compact microstrip antennas (ACMAs) operating at UHF band. Firstly, the resonant frequencies of 144 ACMAs with various dimensions and electrical parameters were simulated with the help of IE3D™ based on method of moment (MoM). The ANN, ANFIS and SVM models for computing the resonant frequency were then built by considering the simulation data. 124 simulated ACMAs were utilized for training and the remaining 20 ACMAs were used for testing the ANN, ANFIS and SVM models. The performance of the ANN, ANFIS and SVM models are compared in the training and test process. The average percentage errors (APE) regarding the computed resonant frequencies for training of the ANN, ANFIS and SVM were obtained as 0.457%, 0.399% and 0.600%, respectively. The constructed models were then tested and APE values as 0.601% for ANN, 0.744% for ANFIS and 0.623% for SVM were achieved. The results obtained here show that ANN, ANFIS and SVM methods can be successfully applied to compute the resonant frequency of ACMAs, since they are useful and versatile methods that yield accurate results.

Keywords: a-shaped compact microstrip antenna, artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), support vector machine (SVM)

Procedia PDF Downloads 441
2145 A Multidimensional Exploration of Narcissistic Personality Disorder Through Psycholinguistic Analysis and Neuroscientific Correlates

Authors: Dalia Elleuch

Abstract:

Narcissistic Personality Disorder (NPD) manifests as a personality disorder marked by inflated self-importance, heightened sensitivity to criticism, a lack of empathy, a preoccupation with appearance over substance, and features such as arrogance, grandiosity, a constant need for admiration, a tendency to exploit others, and an inclination towards demanding special treatment due to a sense of excessive entitlement (APA, 2013). This interdisciplinary study delves into NPD through the systematic synthesis of psycholinguistic analysis and neuroscientific correlates. The cognitive and emotional dimensions of NPD reveal linguistic patterns, including grandiosity, entitlement, and manipulative communication. Neuroscientific investigations reveal structural brain differences and alterations in functional connectivity, further explaining the neural underpinnings of social cognition deficits observed in individuals with NPD. Genetic predispositions and neurotransmitter imbalances add a layer of complexity to the understanding of NPD. The necessity for linguistic intervention in diagnosing and treating Narcissistic Personality Disorder is underscored by an interdisciplinary study that intricately synthesizes psycholinguistic analysis and neuroscientific correlates, offering a comprehensive understanding of NPD’s cognitive, emotional, and neural dimensions and paving the way for future practical, theoretical, and pedagogical approaches to address the complexities of this personality disorder.

Keywords: Narcissistic Personality Disorder (NPD), psycholinguistic analysis, neuroscientific correlates, interpersonal dysfunction, cognitive empathy

Procedia PDF Downloads 65
2144 Wear Performance of Stellite 21 Cladded Overlay on Aisi 304L

Authors: Sandeep Singh Sandhua, Karanvir Singh Ghuman, Arun Kumar

Abstract:

Stellite 21 is cobalt based super alloy used in improving the wear performance of stainless steel engineering components subjected to harsh environmental conditions. This piece of research focuses on the wear analysis of satellite 21 cladded on AISI 304 L substrate using SMAW process. Bead on plate experiments were carried out by varying current and electrode manipulation techniques to optimize the dilution and microhardness. 80 Amp current and weaving technique was found to be optimum set of parameters for overlaying which were further used for multipass multilayer cladding of AISI 304 L substrate. The wear performance was examined on pin on dics wear testing machine under room temperature conditions. The results from this study show that Stellite 21 overlays show a significant improvement in the frictional wear resistance after TIG remelting. It is also established that low dilution procedures are important in controlling the metallurgical composition of these overlays which has a consequent effect in enhancing hardness and wear resistance of these overlays.

Keywords: surfacing, stellite 21, dilution, SMAW, frictional wear, micro-hardness

Procedia PDF Downloads 250
2143 Efects of Data Corelation in a Sparse-View Compresive Sensing Based Image Reconstruction

Authors: Sajid Abas, Jon Pyo Hong, Jung-Ryun Le, Seungryong Cho

Abstract:

Computed tomography and laminography are heavily investigated in a compressive sensing based image reconstruction framework to reduce the dose to the patients as well as to the radiosensitive devices such as multilayer microelectronic circuit boards. Nowadays researchers are actively working on optimizing the compressive sensing based iterative image reconstruction algorithm to obtain better quality images. However, the effects of the sampled data’s properties on reconstructed the image’s quality, particularly in an insufficient sampled data conditions have not been explored in computed laminography. In this paper, we investigated the effects of two data properties i.e. sampling density and data incoherence on the reconstructed image obtained by conventional computed laminography and a recently proposed method called spherical sinusoidal scanning scheme. We have found that in a compressive sensing based image reconstruction framework, the image quality mainly depends upon the data incoherence when the data is uniformly sampled.

Keywords: computed tomography, computed laminography, compressive sending, low-dose

Procedia PDF Downloads 464
2142 Development of a Congestion Controller of Computer Network Using Artificial Intelligence Algorithm

Authors: Mary Anne Roa

Abstract:

Congestion in network occurs due to exceed in aggregate demand as compared to the accessible capacity of the resources. Network congestion will increase as network speed increases and new effective congestion control methods are needed, especially for today’s very high speed networks. To address this undeniably global issue, the study focuses on the development of a fuzzy-based congestion control model concerned with allocating the resources of a computer network such that the system can operate at an adequate performance level when the demand exceeds or is near the capacity of the resources. Fuzzy logic based models have proven capable of accurately representing a wide variety of processes. The model built is based on bandwidth, the aggregate incoming traffic and the waiting time. The theoretical analysis and simulation results show that the proposed algorithm provides not only good utilization but also low packet loss.

Keywords: congestion control, queue management, computer networks, fuzzy logic

Procedia PDF Downloads 397
2141 Effect of Multilayered MnBi Films on Magnetic and Microstructural Properties

Authors: Hyun-Sook Lee, Hongjae Moon, Hwaebong Jung, Sumin Kim, Wooyoung Lee

Abstract:

Low-temperature phase (LTP) of MnBi has attracted much attention because it has a larger coercivity than that of Nd-Fe-B at high temperature, which gives high potential as a permanent magnet material that can be used at such high temperature. We present variation in magnetic properties of MnBi films by controlling the numbers of Bi/Mn bilayer. The thin films of LTP-MnBi were fabricated onto glass substrates by UHV sputtering, followed by in-situ annealing process at an optimized condition of 350 °C and 1.5 hours. The composition ratio of Bi/Mn was adjusted by varying the thickness of Bi and Mn layers. The highest value of (BH)max ~ 8.6 MGOe at room temperature was obtained in one Bi/Mn bilayer with 34 nm Bi and 16 nm Mn. To investigate the effect of Bi/Mn multilayers on the magnetic properties, we increased the numbers of Bi/Mn bilayer up to five at which the total film thicknesses of Bi and Mn were fixed with 34 nm and 16 nm. The increase of coercivity was observed up to three layers from 4.8 kOe to 15.3 kOe and then suppression was appeared. A reversed behavior was exhibited in the magnetization. We found that these were closely related to a microstructural change of LTP-MnBi and a reduction of growth rate of LTP-MnBi by analyzing XRD and TEM results. We will discuss how the multilayered MnBi affects the magnetic properties in details.

Keywords: coercivity, MnBi, multilayer film, permanent magnet

Procedia PDF Downloads 334
2140 Real Time Classification of Political Tendency of Twitter Spanish Users based on Sentiment Analysis

Authors: Marc Solé, Francesc Giné, Magda Valls, Nina Bijedic

Abstract:

What people say on social media has turned into a rich source of information to understand social behavior. Specifically, the growing use of Twitter social media for political communication has arisen high opportunities to know the opinion of large numbers of politically active individuals in real time and predict the global political tendencies of a specific country. It has led to an increasing body of research on this topic. The majority of these studies have been focused on polarized political contexts characterized by only two alternatives. Unlike them, this paper tackles the challenge of forecasting Spanish political trends, characterized by multiple political parties, by means of analyzing the Twitters Users political tendency. According to this, a new strategy, named Tweets Analysis Strategy (TAS), is proposed. This is based on analyzing the users tweets by means of discovering its sentiment (positive, negative or neutral) and classifying them according to the political party they support. From this individual political tendency, the global political prediction for each political party is calculated. In order to do this, two different strategies for analyzing the sentiment analysis are proposed: one is based on Positive and Negative words Matching (PNM) and the second one is based on a Neural Networks Strategy (NNS). The complete TAS strategy has been performed in a Big-Data environment. The experimental results presented in this paper reveal that NNS strategy performs much better than PNM strategy to analyze the tweet sentiment. In addition, this research analyzes the viability of the TAS strategy to obtain the global trend in a political context make up by multiple parties with an error lower than 23%.

Keywords: political tendency, prediction, sentiment analysis, Twitter

Procedia PDF Downloads 238
2139 Non-Targeted Adversarial Object Detection Attack: Fast Gradient Sign Method

Authors: Bandar Alahmadi, Manohar Mareboyana, Lethia Jackson

Abstract:

Today, there are many applications that are using computer vision models, such as face recognition, image classification, and object detection. The accuracy of these models is very important for the performance of these applications. One challenge that facing the computer vision models is the adversarial examples attack. In computer vision, the adversarial example is an image that is intentionally designed to cause the machine learning model to misclassify it. One of very well-known method that is used to attack the Convolution Neural Network (CNN) is Fast Gradient Sign Method (FGSM). The goal of this method is to find the perturbation that can fool the CNN using the gradient of the cost function of CNN. In this paper, we introduce a novel model that can attack Regional-Convolution Neural Network (R-CNN) that use FGSM. We first extract the regions that are detected by R-CNN, and then we resize these regions into the size of regular images. Then, we find the best perturbation of the regions that can fool CNN using FGSM. Next, we add the resulted perturbation to the attacked region to get a new region image that looks similar to the original image to human eyes. Finally, we placed the regions back to the original image and test the R-CNN with the attacked images. Our model could drop the accuracy of the R-CNN when we tested with Pascal VOC 2012 dataset.

Keywords: adversarial examples, attack, computer vision, image processing

Procedia PDF Downloads 193
2138 Building Social Capital for Social Inclusion: The Use of Social Networks in Government

Authors: Suha Alawadhi, Malak Alrasheed

Abstract:

In the recent past, public participation in governments has been declined to a great extent, as citizens have been isolated from community life and their ability to articulate demands for good government has been noticeably decreased. However, the Internet has introduced new forms of interaction that could enhance different types of relationships, including government-public relationship. In fact, technology-enabled government has become a catalyst for enabling social inclusion. This exploratory study seeks to investigate public perceptions in Kuwait regarding the use of social media networks in government where social capital is built to achieve social inclusion. Social capital has been defined as social networks and connections amongst individuals, that are based on shared trust, ideas and norms, enable participants of a network to act effectively to pursue a shared objective. The quantitative method was used to generate empirical evidence. A questionnaire was designed to address the research objective and reflect the identified constructs: social capital dimensions (bridging, bonding and maintaining social capital), social inclusion, and social equality. In this pilot study, data was collected from a random sample of 61 subjects. The results indicate that all participants have a positive attitude towards the dimensions of social capital (bridging, bonding and maintaining), social inclusion and social equality constructs. Tests of identified constructs against demographic characteristics indicate that there are significant differences between male and female as they perceived bonding and maintaining social capital, social inclusion and social equality whereas no difference was identified in their perceptions of bridging social capital. Also, those who are aged 26-30 perceived bonding and maintaining social capital, social inclusion and social equality negatively compared to those aged 20-25, 31-35, and 40-above whose perceptions were positive. With regard to education, the results also show that those holding high school, university degree and diploma perceived maintaining social capital positively higher than with those who hold graduate degrees. Moreover, a regression model is proposed to study the effect of bridging, bonding, and maintaining social capital on social inclusion via social equality as a mediator. This exploratory study is necessary for testing the validity and reliability of the questionnaire which will be used in the main study that aims to investigate the perceptions of individuals towards building social capital to achieve social inclusion.

Keywords: government, social capital, social inclusion, social networks

Procedia PDF Downloads 326
2137 Reliable Line-of-Sight and Non-Line-of-Sight Propagation Channel Identification in Ultra-Wideband Wireless Networks

Authors: Mohamed Adnan Landolsi, Ali F. Almutairi

Abstract:

The paper addresses the problem of line-of-sight (LOS) vs. non-line-of-sight (NLOS) propagation link identification in ultra-wideband (UWB) wireless networks, which is necessary for improving the accuracy of radiolocation and positioning applications. A LOS/NLOS likelihood hypothesis testing approach is applied based on exploiting distinctive statistical features of the channel impulse response (CIR) using parameters related to the “skewness” of the CIR and its root mean square (RMS) delay spread. A log-normal fit is presented for the probability densities of the CIR parameters. Simulation results show that different environments (residential, office, outdoor, etc.) have measurable differences in their CIR parameters’ statistics, which is then exploited in determining the nature of the propagation channels. Correct LOS/NLOS channel identification rates exceeding 90% are shown to be achievable for most types of environments. Additional improvement is also obtained by combining both CIR skewness and RMS delay statistics.

Keywords: UWB, propagation, LOS, NLOS, identification

Procedia PDF Downloads 249
2136 Neural Network Modelling for Turkey Railway Load Carrying Demand

Authors: Humeyra Bolakar Tosun

Abstract:

The transport sector has an undisputed place in human life. People need transport access to continuous increase day by day with growing population. The number of rail network, urban transport planning, infrastructure improvements, transportation management and other related areas is a key factor affecting our country made it quite necessary to improve the work of transportation. In this context, it plays an important role in domestic rail freight demand planning. Alternatives that the increase in the transportation field and has made it mandatory requirements such as the demand for improving transport quality. In this study generally is known and used in studies by the definition, rail freight transport, railway line length, population, energy consumption. In this study, Iron Road Load Net Demand was modeled by multiple regression and ANN methods. In this study, model dependent variable (Output) is Iron Road Load Net demand and 6 entries variable was determined. These outcome values extracted from the model using ANN and regression model results. In the regression model, some parameters are considered as determinative parameters, and the coefficients of the determinants give meaningful results. As a result, ANN model has been shown to be more successful than traditional regression model.

Keywords: railway load carrying, neural network, modelling transport, transportation

Procedia PDF Downloads 143
2135 Stimuli-Responsive Zwitterionic Dressings for Chronic Wounds Management

Authors: Konstans Ruseva, Kristina Ivanova, Katerina Todorova, Margarita Gabrashanska, Tzanko Tzanov, Elena Vassileva

Abstract:

Zwitterionic polymers (ZP) are well-known with their ultralow biofouling. They are successfully competing with poly(ethylene glycols) (PEG), which are considered as the “golden standard” in this respect. These unique properties are attributed to their strong hydration capacity, defined by the dipole-dipole interactions, arising between the ZP pendant groups as well as to the dipoles interaction with water molecules. Beside, ZP are highly resistant to bacterial adhesion thus ensuring an excellent anti-biofilm formation ability. Moreover, ZP are able to respond upon external stimuli such as temperature, pH, salt concentration changes which in combination with their anti-biofouling effect render this type of polymers as materials with a high potential in biomedical applications. The present work is focused on the development of zwitterionic hydrogels for efficient treatment of highly exudating and hard-to-heal chronic wounds. To this purpose, two types of ZP networks with different crosslinking degree were synthesized - polysulfobetaine (PSB) and polycarboxybetaine (PCB) ones. They were characterized in terms of their physico-mechanical properties, e.g. microhardness, swelling ability, smart behaviour. Furthermore, the potential of ZP networks to resist biofilm formation towards Staphylococcus aureus and Escherichia coli was studied. Their ability to reduce the high levels of myeloperoxidase and metalloproteinase, two enzymes that are part of the chronic wounds enviroenment, was revealed. Moreover, the in vitro cytotoxic assessment of PSB and PCB networks along with their in vivo performance in rats was also studied to reveal their high biocompatibility.

Keywords: absorption properties, biocompatibility, enzymatic inhibition activity, wound healing, zwitterionic polymers

Procedia PDF Downloads 197
2134 A Study on Game Theory Approaches for Wireless Sensor Networks

Authors: M. Shoukath Ali, Rajendra Prasad Singh

Abstract:

Game Theory approaches and their application in improving the performance of Wireless Sensor Networks (WSNs) are discussed in this paper. The mathematical modeling and analysis of WSNs may have low success rate due to the complexity of topology, modeling, link quality, etc. However, Game Theory is a field, which can efficiently use to analyze the WSNs. Game Theory is related to applied mathematics that describes and analyzes interactive decision situations. Game theory has the ability to model independent, individual decision makers whose actions affect the surrounding decision makers. The outcome of complex interactions among rational entities can be predicted by a set of analytical tools. However, the rationality demands a stringent observance to a strategy based on measured of perceived results. Researchers are adopting game theory approaches to model and analyze leading wireless communication networking issues, which includes QoS, power control, resource sharing, etc.

Keywords: wireless sensor network, game theory, cooperative game theory, non-cooperative game theory

Procedia PDF Downloads 433
2133 Teaching Neuroscience from Neuroscience: an Approach Based on the Allosteric Learning Model, Pathfinder Associative Networks and Teacher Professional Knowledge

Authors: Freddy Rodriguez Saza, Erika Sanabria, Jair Tibana

Abstract:

Currently, the important role of neurosciences in the professional training of the physical educator is known, highlighting in the teaching-learning process aspects such as the nervous structures involved in the adjustment of posture and movement, the neurophysiology of locomotion, the process of nerve impulse transmission, and the relationship between physical activity, learning, and cognition. The teaching-learning process of neurosciences is complex, due to the breadth of the contents, the diversity of teaching contexts required, and the demanding ability to relate concepts from different disciplines, necessary for the correct understanding of the function of the nervous system. This text presents the results of the application of a didactic environment based on the Allosteric Learning Model in morphophysiology students of the Faculty of Military Physical Education, Military School of Cadets of the Colombian Army (Bogotá, Colombia). The research focused then, on analyzing the change in the cognitive structure of the students on neurosciences. Methodology. [1] The predominant learning styles were identified. [2] Students' cognitive structure, core concepts, and threshold concepts were analyzed through the construction of Pathfinder Associative Networks. [3] Didactic Units in Neuroscience were designed to favor metacognition, the development of Executive Functions (working memory, cognitive flexibility, and inhibitory control) that led students to recognize their errors and conceptual distortions and to overcome them. [4] The Teacher's Professional Knowledge and the role of the assessment strategies applied were taken into account, taking into account the perspective of the Dynamizer, Obstacle, and Questioning axes. In conclusion, the study found that physical education students achieved significant learning in neuroscience, favored by the development of executive functions and by didactic environments oriented with the predominant learning styles and focused on increasing cognitive networks and overcoming difficulties, neuromyths and neurophobia.

Keywords: allosteric learning model, military physical education, neurosciences, pathfinder associative networks, teacher professional knowledge

Procedia PDF Downloads 236
2132 Advances in the Design of Wireless Sensor Networks for Environmental Monitoring

Authors: Shathya Duobiene, Gediminas Račiukaitis

Abstract:

Wireless Sensor Networks (WSNs) are an emerging technology that opens up a new field of research. The significant advance in WSN leads to an increasing prevalence of various monitoring applications and real-time assistance in labs and factories. Selective surface activation induced by laser (SSAIL) is a promising technology that adapts to the WSN design freedom of shape, dimensions, and material. This article proposes and implements a WSN-based temperature and humidity monitoring system, and its deployed architectures made for the monitoring task are discussed. Experimental results of newly developed sensor nodes implemented in university campus laboratories are shown. Then, the simulation and the implementation results obtained through monitoring scenarios are displayed. At last, a convenient solution to keep the WSN alive and functional as long as possible is proposed. Unlike other existing models, on success, the node is self-powered and can utilise minimal power consumption for sensing and data transmission to the base station.

Keywords: IoT, network formation, sensor nodes, SSAIL technology

Procedia PDF Downloads 88
2131 An Intrusion Detection Systems Based on K-Means, K-Medoids and Support Vector Clustering Using Ensemble

Authors: A. Mohammadpour, Ebrahim Najafi Kajabad, Ghazale Ipakchi

Abstract:

Presently, computer networks’ security rise in importance and many studies have also been conducted in this field. By the penetration of the internet networks in different fields, many things need to be done to provide a secure industrial and non-industrial network. Fire walls, appropriate Intrusion Detection Systems (IDS), encryption protocols for information sending and receiving, and use of authentication certificated are among things, which should be considered for system security. The aim of the present study is to use the outcome of several algorithms, which cause decline in IDS errors, in the way that improves system security and prevents additional overload to the system. Finally, regarding the obtained result we can also detect the amount and percentage of more sub attacks. By running the proposed system, which is based on the use of multi-algorithmic outcome and comparing that by the proposed single algorithmic methods, we observed a 78.64% result in attack detection that is improved by 3.14% than the proposed algorithms.

Keywords: intrusion detection systems, clustering, k-means, k-medoids, SV clustering, ensemble

Procedia PDF Downloads 221
2130 Design an Algorithm for Software Development in CBSE Envrionment Using Feed Forward Neural Network

Authors: Amit Verma, Pardeep Kaur

Abstract:

In software development organizations, Component based Software engineering (CBSE) is emerging paradigm for software development and gained wide acceptance as it often results in increase quality of software product within development time and budget. In component reusability, main challenges are the right component identification from large repositories at right time. The major objective of this work is to provide efficient algorithm for storage and effective retrieval of components using neural network and parameters based on user choice through clustering. This research paper aims to propose an algorithm that provides error free and automatic process (for retrieval of the components) while reuse of the component. In this algorithm, keywords (or components) are extracted from software document, after by applying k mean clustering algorithm. Then weights assigned to those keywords based on their frequency and after assigning weights, ANN predicts whether correct weight is assigned to keywords (or components) or not, otherwise it back propagates in to initial step (re-assign the weights). In last, store those all keywords into repositories for effective retrieval. Proposed algorithm is very effective in the error correction and detection with user base choice while choice of component for reusability for efficient retrieval is there.

Keywords: component based development, clustering, back propagation algorithm, keyword based retrieval

Procedia PDF Downloads 378