Search results for: model robustness and stability
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19910

Search results for: model robustness and stability

18200 Overview of a Quantum Model for Decision Support in a Sensor Network

Authors: Shahram Payandeh

Abstract:

This paper presents an overview of a model which can be used as a part of a decision support system when fusing information from multiple sensing environment. Data fusion has been widely studied in the past few decades and numerous frameworks have been proposed to facilitate decision making process under uncertainties. Multi-sensor data fusion technology plays an increasingly significant role during people tracking and activity recognition. This paper presents an overview of a quantum model as a part of a decision-making process in the context of multi-sensor data fusion. The paper presents basic definitions and relationships associating the decision-making process and quantum model formulation in the presence of uncertainties.

Keywords: quantum model, sensor space, sensor network, decision support

Procedia PDF Downloads 232
18199 Model Order Reduction for Frequency Response and Effect of Order of Method for Matching Condition

Authors: Aref Ghafouri, Mohammad javad Mollakazemi, Farhad Asadi

Abstract:

In this paper, model order reduction method is used for approximation in linear and nonlinearity aspects in some experimental data. This method can be used for obtaining offline reduced model for approximation of experimental data and can produce and follow the data and order of system and also it can match to experimental data in some frequency ratios. In this study, the method is compared in different experimental data and influence of choosing of order of the model reduction for obtaining the best and sufficient matching condition for following the data is investigated in format of imaginary and reality part of the frequency response curve and finally the effect and important parameter of number of order reduction in nonlinear experimental data is explained further.

Keywords: frequency response, order of model reduction, frequency matching condition, nonlinear experimental data

Procedia PDF Downloads 407
18198 Nonlinear Modeling of the PEMFC Based on NNARX Approach

Authors: Shan-Jen Cheng, Te-Jen Chang, Kuang-Hsiung Tan, Shou-Ling Kuo

Abstract:

Polymer Electrolyte Membrane Fuel Cell (PEMFC) is such a time-vary nonlinear dynamic system. The traditional linear modeling approach is hard to estimate structure correctly of PEMFC system. From this reason, this paper presents a nonlinear modeling of the PEMFC using Neural Network Auto-regressive model with eXogenous inputs (NNARX) approach. The multilayer perception (MLP) network is applied to evaluate the structure of the NNARX model of PEMFC. The validity and accuracy of NNARX model are tested by one step ahead relating output voltage to input current from measured experimental of PEMFC. The results show that the obtained nonlinear NNARX model can efficiently approximate the dynamic mode of the PEMFC and model output and system measured output consistently.

Keywords: PEMFC, neural network, nonlinear modeling, NNARX

Procedia PDF Downloads 384
18197 Increasing Redness and Microbial Stability of Low Nitrite Chicken Sausage by Encapsulated Tomato Pomace Extract

Authors: Bung-Orn Hemung, Nachayut Chanshotigul, Koo Bok Chin

Abstract:

Tomato pomace (TP) is the waste from tomato processing plants and its utilization as food ingredient may provide sustainable industry by reducing waste. TP was extracted by ethanol using microwave-assisted method at 180W for 90s. The ethanol was evaporated out, and an extract was encapsulated with maltodextrin (1:10) by spray drying to obtain an encapsulated TP extract (ETPE). The redness (a value) of ETPE powder was 6.5±0.05, and it was used as natural ingredient in the low-nitrite chicken sausage. Chicken emulsion sausage was prepared at 25 mg/kg of nitrite for being control. Effect of ETPE (1.0%) was evaluated along with the reference (150 mg/kg of nitrite without ETPE). The redness (a value) of sausage with ETPE was found at 6.8±0.03, which was higher than those of reference and control, which were at 4.8±.022 and 5.1±0.15, respectively. However, hardness, expressible moisture content and cooking yield values were reduced slightly. During storage at 10 °C in the air packed condition for 1 week, changes in color, pH, redness, and thiobarbituric acid reactive substances value were not significantly different. However, total microbial count of sausage samples with ETPE was lower than control for a 1 log cycle, suggesting microbial stability. Therefore, the addition of ETPE could be an alternative strategy to utilize TP as a natural colorant and antimicrobial agent to extend the shelf life of low-nitrite chicken sausage.

Keywords: antimicrobial ingredient, chicken sausage, ethanolic extract, low-nitrite sausage, tomato pomace

Procedia PDF Downloads 212
18196 The Profit Trend of Cosmetics Products Using Bootstrap Edgeworth Approximation

Authors: Edlira Donefski, Lorenc Ekonomi, Tina Donefski

Abstract:

Edgeworth approximation is one of the most important statistical methods that has a considered contribution in the reduction of the sum of standard deviation of the independent variables’ coefficients in a Quantile Regression Model. This model estimates the conditional median or other quantiles. In this paper, we have applied approximating statistical methods in an economical problem. We have created and generated a quantile regression model to see how the profit gained is connected with the realized sales of the cosmetic products in a real data, taken from a local business. The Linear Regression of the generated profit and the realized sales was not free of autocorrelation and heteroscedasticity, so this is the reason that we have used this model instead of Linear Regression. Our aim is to analyze in more details the relation between the variables taken into study: the profit and the finalized sales and how to minimize the standard errors of the independent variable involved in this study, the level of realized sales. The statistical methods that we have applied in our work are Edgeworth Approximation for Independent and Identical distributed (IID) cases, Bootstrap version of the Model and the Edgeworth approximation for Bootstrap Quantile Regression Model. The graphics and the results that we have presented here identify the best approximating model of our study.

Keywords: bootstrap, edgeworth approximation, IID, quantile

Procedia PDF Downloads 163
18195 The Effect of Tai Chi Exercises on Postural Stability and Control in Older Patients with Knee Osteoarthritis

Authors: Elham Ghandali, Saeed Talebian Moghadam, Mohammad Reza Hadian, Gholamreza Olyaei, Shohreh Jalaie, Elaheh Sajjadi

Abstract:

Purpose: A few studies have examined the effect of Tai Chi on balance in elderly patients with knee osteoarthritis (OA). The aim of this study was to determine the balance measures in elderly patients with knee OA after Tai Chi exercises. For this purpose, 14 females and 6 males with knee OA were chosen. The area and mean velocity of the center of pressure movements (CoP) were measured by force plate in standing positions (on foam and rigid surfaces). The measurements of area and mean velocity of CoP were performed before and after 60 min of Tai Chi sessions (twice a week for 8 weeks). Results: The results showed that the area of CoP in a standing position on a rigid surface was significantly decreased (P < 0.01) after Tai Chi exercises. Furthermore, the mean velocity of CoP was significantly decreased after Tai Chi exercises on both rigid and foam surfaces (P < 0.001). Our study also indicated that changes in surfaces (rigid and foam) would cause significant differences regarding the area of CoP in standing positions. How- ever, similar findings were not found regarding the mean velocity of CoP. Considering the effects of Tai Chi on the mean velocity of CoP, it might be concluded that motor control and Postural stability improvements have occurred. Conclusions: Therefore, based on these results, Tai Chi exercises could be recommended for elderly patients with knee OA as part of their rehabilitation and physical therapy protocols.

Keywords: Tai Chi, balance, knee osteoarthritis, elderly patients, different surfaces

Procedia PDF Downloads 100
18194 A Location-Allocation-Routing Model for a Home Health Care Supply Chain Problem

Authors: Amir Mohammad Fathollahi Fard, Mostafa Hajiaghaei-Keshteli, Mohammad Mahdi Paydar

Abstract:

With increasing life expectancy in developed countries, the role of home care services is highlighted by both academia and industrial contributors in Home Health Care Supply Chain (HHCSC) companies. The main decisions in such supply chain systems are the location of pharmacies, the allocation of patients to these pharmacies and also the routing and scheduling decisions of nurses to visit their patients. In this study, for the first time, an integrated model is proposed to consist of all preliminary and necessary decisions in these companies, namely, location-allocation-routing model. This model is a type of NP-hard one. Therefore, an Imperialist Competitive Algorithm (ICA) is utilized to solve the model, especially in large sizes. Results confirm the efficiency of the developed model for HHCSC companies as well as the performance of employed ICA.

Keywords: home health care supply chain, location-allocation-routing problem, imperialist competitive algorithm, optimization

Procedia PDF Downloads 399
18193 Wheeled Robot Stable Braking Process under Asymmetric Traction Coefficients

Authors: Boguslaw Schreyer

Abstract:

During the wheeled robot’s braking process, the extra dynamic vertical forces act on all wheels: left, right, front or rear. Those forces are directed downward on the front wheels while directed upward on the rear wheels. In order to maximize the deceleration, therefore, minimize the braking time and braking distance, we need to calculate a correct torque distribution: the front braking torque should be increased, and rear torque should be decreased. At the same time, we need to provide better transversal stability. In a simple case of all adhesion coefficients being the same under all wheels, the torque distribution may secure the optimal (maximal) control of the robot braking process, securing the minimum braking distance and a minimum braking time. At the same time, the transversal stability is relatively good. At any time, we control the transversal acceleration. In the case of the transversal movement, we stop the braking process and re-apply braking torque after a defined period of time. If we correctly calculate the value of the torques, we may secure the traction coefficient under the front and rear wheels close to its maximum. Also, in order to provide an optimum braking control, we need to calculate the timing of the braking torque application and the timing of its release. The braking torques should be released shortly after the wheels passed a maximum traction coefficient (while a wheels’ slip increases) and applied again after the wheels pass a maximum of traction coefficient (while the slip decreases). The correct braking torque distribution secures the front and rear wheels, passing this maximum at the same time. It guarantees an optimum deceleration control, therefore, minimum braking time. In order to calculate a correct torque distribution, a control unit should receive the input signals of a rear torque value (which changes independently), the robot’s deceleration, and values of the vertical front and rear forces. In order to calculate the timing of torque application and torque release, more signals are needed: speed of the robot: angular speed, and angular deceleration of the wheels. In case of different adhesion coefficients under the left and right wheels, but the same under each pair of wheels- the same under right wheels and the same under left wheels, the Select-Low (SL) and select high (SH) methods are applied. The SL method is suggested if transversal stability is more important than braking efficiency. Often in the case of the robot, more important is braking efficiency; therefore, the SH method is applied with some control of the transversal stability. In the case that all adhesion coefficients are different under all wheels, the front-rear torque distribution is maintained as in all previous cases. However, the timing of the braking torque application and release is controlled by the rear wheels’ lowest adhesion coefficient. The Lagrange equations have been used to describe robot dynamics. Matlab has been used in order to simulate the process of wheeled robot braking, and in conclusion, the braking methods have been selected.

Keywords: wheeled robots, braking, traction coefficient, asymmetric

Procedia PDF Downloads 170
18192 Efficient Frequent Itemset Mining Methods over Real-Time Spatial Big Data

Authors: Hamdi Sana, Emna Bouazizi, Sami Faiz

Abstract:

In recent years, there is a huge increase in the use of spatio-temporal applications where data and queries are continuously moving. As a result, the need to process real-time spatio-temporal data seems clear and real-time stream data management becomes a hot topic. Sliding window model and frequent itemset mining over dynamic data are the most important problems in the context of data mining. Thus, sliding window model for frequent itemset mining is a widely used model for data stream mining due to its emphasis on recent data and its bounded memory requirement. These methods use the traditional transaction-based sliding window model where the window size is based on a fixed number of transactions. Actually, this model supposes that all transactions have a constant rate which is not suited for real-time applications. And the use of this model in such applications endangers their performance. Based on these observations, this paper relaxes the notion of window size and proposes the use of a timestamp-based sliding window model. In our proposed frequent itemset mining algorithm, support conditions are used to differentiate frequents and infrequent patterns. Thereafter, a tree is developed to incrementally maintain the essential information. We evaluate our contribution. The preliminary results are quite promising.

Keywords: real-time spatial big data, frequent itemset, transaction-based sliding window model, timestamp-based sliding window model, weighted frequent patterns, tree, stream query

Procedia PDF Downloads 167
18191 One-off Separation of Multiple Types of Oil-in-Water Emulsions with Surface-Engineered Graphene-Based Multilevel Structure Materials

Authors: Han Longxiang

Abstract:

In the process of treating industrial oil wastewater with complex components, the traditional treatment methods (flotation, coagulation, microwave heating, etc.) often produce high operating costs, secondary pollution, and other problems. In order to solve these problems, the materials with high flux and stability applied to surfactant-stabilized emulsions separation have gained huge attention in the treatment of oily wastewater. Nevertheless, four stable oil-in-water emulsions can be formed due to different surfactants (surfactant-free, anionic surfactant, cationic surfactant, and non-ionic surfactant), and the previous advanced materials can only separate one or several of them, cannot effectively separate in one step. Herein, a facile synthesis method of graphene-based multilevel filter materials (GMFM) can efficiently separate the oil-in-water emulsions stabilized with different surfactants only through its gravity. The prepared materials with high stability of 20 cycles show a high flux of ~ 5000 L m-2 h-1 with a high separation efficiency of > 99.9 %. GMFM can effectively separate the emulsion stabilized by mixed surfactants and oily wastewater from factories. The results indicate that the GMFM has a wide range of applications in oil-in-water emulsions separation in industry and environmental science.

Keywords: emulsion, filtration, graphene, one-step

Procedia PDF Downloads 86
18190 Masked Candlestick Model: A Pre-Trained Model for Trading Prediction

Authors: Ling Qi, Matloob Khushi, Josiah Poon

Abstract:

This paper introduces a pre-trained Masked Candlestick Model (MCM) for trading time-series data. The pre-trained model is based on three core designs. First, we convert trading price data at each data point as a set of normalized elements and produce embeddings of each element. Second, we generate a masked sequence of such embedded elements as inputs for self-supervised learning. Third, we use the encoder mechanism from the transformer to train the inputs. The masked model learns the contextual relations among the sequence of embedded elements, which can aid downstream classification tasks. To evaluate the performance of the pre-trained model, we fine-tune MCM for three different downstream classification tasks to predict future price trends. The fine-tuned models achieved better accuracy rates for all three tasks than the baseline models. To better analyze the effectiveness of MCM, we test the same architecture for three currency pairs, namely EUR/GBP, AUD/USD, and EUR/JPY. The experimentation results demonstrate MCM’s effectiveness on all three currency pairs and indicate the MCM’s capability for signal extraction from trading data.

Keywords: masked language model, transformer, time series prediction, trading prediction, embedding, transfer learning, self-supervised learning

Procedia PDF Downloads 131
18189 Conditions for Model Matching of Switched Asynchronous Sequential Machines with Output Feedback

Authors: Jung–Min Yang

Abstract:

Solvability of the model matching problem for input/output switched asynchronous sequential machines is discussed in this paper. The control objective is to determine the existence condition and design algorithm for a corrective controller that can match the stable-state behavior of the closed-loop system to that of a reference model. Switching operations and correction procedures are incorporated using output feedback so that the controlled switched machine can show the desired input/output behavior. A matrix expression is presented to address reachability of switched asynchronous sequential machines with output equivalence with respect to a model. The presented reachability condition for the controller design is validated in a simple example.

Keywords: asynchronous sequential machines, corrective control, model matching, input/output control

Procedia PDF Downloads 346
18188 Defining a Holistic Approach for Model-Based System Engineering: Paradigm and Modeling Requirements

Authors: Hycham Aboutaleb, Bruno Monsuez

Abstract:

Current systems complexity has reached a degree that requires addressing conception and design issues while taking into account all the necessary aspects. Therefore, one of the main challenges is the way complex systems are specified and designed. The exponential growing effort, cost and time investment of complex systems in modeling phase emphasize the need for a paradigm, a framework and a environment to handle the system model complexity. For that, it is necessary to understand the expectations of the human user of the model and his limits. This paper presents a generic framework for designing complex systems, highlights the requirements a system model needs to fulfill to meet human user expectations, and defines the refined functional as well as non functional requirements modeling tools needs to meet to be useful in model-based system engineering.

Keywords: system modeling, modeling language, modeling requirements, framework

Procedia PDF Downloads 536
18187 A Stochastic Analytic Hierarchy Process Based Weighting Model for Sustainability Measurement in an Organization

Authors: Faramarz Khosravi, Gokhan Izbirak

Abstract:

A weighted statistical stochastic based Analytical Hierarchy Process (AHP) model for modeling the potential barriers and enablers of sustainability for measuring and assessing the sustainability level is proposed. For context-dependent potential barriers and enablers, the proposed model takes the basis of the properties of the variables describing the sustainability functions and was developed into a realistic analytical model for the sustainable behavior of an organization. This thus serves as a means for measuring the sustainability of the organization. The main focus of this paper was the application of the AHP tool in a statistically-based model for measuring sustainability. Hence a strong weighted stochastic AHP based procedure was achieved. A case study scenario of a widely reported major Canadian electric utility was adopted to demonstrate the applicability of the developed model and comparatively examined its results with those of an equal-weighted model method. Variations in the sustainability of a company, as fluctuations, were figured out during the time. In the results obtained, sustainability index for successive years changed form 73.12%, 79.02%, 74.31%, 76.65%, 80.49%, 79.81%, 79.83% to more exact values 73.32%, 77.72%, 76.76%, 79.41%, 81.93%, 79.72%, and 80,45% according to priorities of factors that have found by expert views, respectively. By obtaining relatively necessary informative measurement indicators, the model can practically and effectively evaluate the sustainability extent of any organization and also to determine fluctuations in the organization over time.

Keywords: AHP, sustainability fluctuation, environmental indicators, performance measurement

Procedia PDF Downloads 126
18186 Anatase TiO₂ Nanostructures with Enhanced Surface Activity for High-Performance Lithium-Ion Batteries

Authors: Basharat Hussain, Wasim Abbas, Sayed Sajid Hussain

Abstract:

Amorphous colloidal TiO₂ spheres were annealed at high temperatures to yield anatase-phase TiO₂ nanoparticles. With a specific discharge capacity of around 296 mAh g⁻¹ (0.1C), the annealed TiO₂ outperformed its amorphous counterpart, which produced about 182 mAh g⁻¹ at the same rate. The annealed material's larger surface area and more active sites are responsible for this improvement. The amorphous TiO₂ nanoparticles, on the other hand, produced a solid electrolyte interface (SEI) layer that contained organic phosphates, lithium carbonate, and lithium alkyl carbonates. This led to a decrease in performance and increased intrinsic resistance. By successfully removing surface hydroxyl groups and chemisorbed water, high-temperature annealing reduced capacity loss and improved structural and electrochemical stability. After prolonged cycling, the annealed TiO₂ demonstrated enhanced rate capability and cycling performance, retaining 93.5% of its capacity as opposed to 42.1% for the amorphous material. By shedding light on the function of surface chemistry and material processing in maximizing battery performance, our results show the potential of annealed anatase TiO₂ as a high-performance electrode material for Li-ion batteries.

Keywords: TiO₂ li-ion battery, electrode, capacity, stability

Procedia PDF Downloads 19
18185 Project Objective Structure Model: An Integrated, Systematic and Balanced Approach in Order to Achieve Project Objectives

Authors: Mohammad Reza Oftadeh

Abstract:

The purpose of the article is to describe project objective structure (POS) concept that was developed on research activities and experiences about project management, Balanced Scorecard (BSC) and European Foundation Quality Management Excellence Model (EFQM Excellence Model). Furthermore, this paper tries to define a balanced, systematic, and integrated measurement approach to meet project objectives and project strategic goals based on a process-oriented model. In this paper, POS is suggested in order to measure project performance in the project life cycle. After using the POS model, the project manager can ensure in order to achieve the project objectives on the project charter. This concept can help project managers to implement integrated and balanced monitoring and control project work.

Keywords: project objectives, project performance management, PMBOK, key performance indicators, integration management

Procedia PDF Downloads 386
18184 PH.WQT as a Web Quality Model for Websites of Government Domain

Authors: Rupinder Pal Kaur, Vishal Goyal

Abstract:

In this research, a systematic and quantitative engineering-based approach is followed by applying well-known international standards and guidelines to develop a web quality model (PH.WQT- Punjabi and Hindi Website Quality Tester) to measure external quality for websites of government domain that are developed in Punjabi and Hindi. Correspondingly, the model can be used for websites developed in other languages also. The research is valuable to researchers and practitioners interested in designing, implementing and managing websites of government domain Also, by implementing PH.WQT analysis and comparisons among web sites of government domain can be performed in a consistent way.

Keywords: external quality, PH.WQT, indian languages, punjabi and hindi, quality model, websites of government

Procedia PDF Downloads 310
18183 Design of Raw Water Reservoir on Sandy Soil

Authors: Venkata Ramana Pamu

Abstract:

This paper is a case study of a 5310 ML capacity Raw Water Reservoir (RWR), situated in Indian state Rajasthan, which is a part of Rajasthan Rural Water Supply & Fluorosis Mitigation Project. This RWR embankment was constructed by locally available material on natural ground profile. Height of the embankment was varying from 2m to 10m.This is due to existing ground level was varying. Reservoir depth 9m including 1.5m free board and 1V:3H slopes were provided both upstream and downstream side. Proper soil investigation, tests were done and it was confirmed that the existing soil is sandy silt. The existing excavated earth was used as filling material for embankment construction, due to this controlling seepage from upstream to downstream be a challenging task. Slope stability and Seismic analysis of the embankment done by Conventional method for both full reservoir condition and rapid drawdown. Horizontal filter at toe level was provided along with upstream side PCC (Plain Cement Concrete) block and HDPE (High Density poly ethylene) lining as a remedy to control seepage. HDPE lining was also provided at storage area of the reservoir bed level. Mulching was done for downstream side slope protection.

Keywords: raw water reservoir, seepage, seismic analysis, slope stability

Procedia PDF Downloads 501
18182 Development of Transparent Nano-Structured Super-Hydrophobic Coating on Glass and Evaluation of Anti-Dust Properties

Authors: Abhilasha Mishra, Neha Bhatt

Abstract:

Super-hydrophobicity is an effect in which a surface roughness and chemical composition are combined to produce unusual water and dust repellent surface. The super-hydrophobic surface is widely used in many applications such as windshields of the automobile, aircraft, lens, solar cells, roofing, boat hull, paints, etc. Four coating solutions were prepared by varying compositions of 1,1,1,3,3,3 hexametyldisilazane (HDMS) and tetraethylorthosilicate (TEOS) sol. These solutions were coated on glass slides by a spin coating method and etched at a high temperature ranging 250 -350 oC. All the coatings were studied for its different properties like water repellent, anti-dust, and transparency and contact angle measurements. Stability of coatings was also studied with respect to temperature, external environment, and pH. It was found that all coatings impart a significant super-hydrophobicity on a glass surface with contact angle ranging from 156o to 162o and have good stability in the external environment. The results of the different coatings were observed and compared with each other. On increasing layers of coatings the super-hydrophobicity and anti-dust properties increases but after 3 coatings the transparency of coating starts decreasing.

Keywords: super-hydrophobic, contact angle, coating, anti-dust

Procedia PDF Downloads 262
18181 A Large-Strain Thermoviscoplastic Damage Model

Authors: João Paulo Pascon

Abstract:

A constitutive model accounting for large strains, thermoviscoplasticity, and ductile damage evolution is proposed in the present work. To this end, a fully Lagrangian framework is employed, considering plane stress conditions and multiplicative split of the deformation gradient. The full model includes Gurson’s void growth, nucleation and coalescence, plastic work heating, strain and strain-rate hardening, thermal softening, and heat conductivity. The contribution of the work is the combination of all the above-mentioned features within the finite-strain setting. The model is implemented in a computer code using triangular finite elements and nonlinear analysis. Two mechanical examples involving ductile damage and finite strain levels are analyzed: an inhomogeneous tension specimen and the necking problem. Results demonstrate the capabilities of the developed formulation regarding ductile fracture and large deformations.

Keywords: ductile damage model, finite element method, large strains, thermoviscoplasticity

Procedia PDF Downloads 89
18180 Performance Assessment Of An Existing Multi-effect Desalination System Driven By Solar Energy

Authors: B. Shahzamanian, S. Varga, D. C. Alarcón-Padilla

Abstract:

Desalination is considered the primary alternative to increase water supply for domestic, agricultural and industrial use. Sustainable desalination is only possible in places where renewable energy resources are available. Solar energy is the most relevant type of renewable energy to driving desalination systems since most of the areas suffering from water scarcity are characterized by a high amount of available solar radiation during the year. Multi-Effect Desalination (MED) technology integrated with solar thermal concentrators is a suitable combination for heat-driven desalination. It can also be coupled with thermal vapour compressors or absorption heat pumps to boost overall system performance. The most interesting advantage of MED is the suitability to be used with a transient source of energy like solar. An experimental study was carried out to assess the performance of the most important life-size multi-effect desalination plant driven by solar energy located in the Plataforma Solar de Almería (PSA). The MED plant is used as a reference in many studies regarding multi-effect distillation. The system consists of a 14-effect MED plant coupled with a double-effect absorption heat pump. The required thermal energy to run the desalination system is supplied by means of hot water generated from 60 static flat-plate solar collectors with a total aperture area of 606 m2. In order to compensate for the solar energy variation, a thermal storage system with two interconnected tanks and an overall volume of 40 m3 is coupled to the MED unit. The multi-effect distillation unit is built in a forward feed configuration, and the last effect is connected to a double-effect LiBr-H2O absorption heat pump. The heat pump requires steam at 180 ºC (10 bar a) that is supplied by a small-aperture parabolic trough solar field with a total aperture area of 230 m2. When needed, a gas boiler is used as an auxiliary heat source for operating the heat pump and the MED plant when solar energy is not available. A set of experiments was carried out for evaluating the impact of the heating water temperature (Th), top brine temperature (TBT) and temperature difference between effects (ΔT) on the performance ratio of the MED plant. The considered range for variation of Th, TBT and ΔT was 60-70°C, 54-63°C and 1.1-1.6°C, respectively. The performance ratio (PR), defined as kg of distillate produced for every 2326 kJ of thermal energy supplied to the MED system, was almost independent of the applied variables with a variation of less than 5% for all the cases. The maximum recorded PR was 12.4. The results indicated that the system demonstrated robustness for the whole range of operating conditions considered. Author gratitude is expressed to the PSA for providing access to its installations, the support of its scientific and technical staff, and the financial support of the SFERA-III project (Grant Agreement No 823802). Special thanks to the access provider staff members who ensured the access support.

Keywords: multi-effect distillation, performance ratio, robustness, solar energy

Procedia PDF Downloads 192
18179 Convolutional Neural Network Based on Random Kernels for Analyzing Visual Imagery

Authors: Ja-Keoung Koo, Kensuke Nakamura, Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Byung-Woo Hong

Abstract:

The machine learning techniques based on a convolutional neural network (CNN) have been actively developed and successfully applied to a variety of image analysis tasks including reconstruction, noise reduction, resolution enhancement, segmentation, motion estimation, object recognition. The classical visual information processing that ranges from low level tasks to high level ones has been widely developed in the deep learning framework. It is generally considered as a challenging problem to derive visual interpretation from high dimensional imagery data. A CNN is a class of feed-forward artificial neural network that usually consists of deep layers the connections of which are established by a series of non-linear operations. The CNN architecture is known to be shift invariant due to its shared weights and translation invariance characteristics. However, it is often computationally intractable to optimize the network in particular with a large number of convolution layers due to a large number of unknowns to be optimized with respect to the training set that is generally required to be large enough to effectively generalize the model under consideration. It is also necessary to limit the size of convolution kernels due to the computational expense despite of the recent development of effective parallel processing machinery, which leads to the use of the constantly small size of the convolution kernels throughout the deep CNN architecture. However, it is often desired to consider different scales in the analysis of visual features at different layers in the network. Thus, we propose a CNN model where different sizes of the convolution kernels are applied at each layer based on the random projection. We apply random filters with varying sizes and associate the filter responses with scalar weights that correspond to the standard deviation of the random filters. We are allowed to use large number of random filters with the cost of one scalar unknown for each filter. The computational cost in the back-propagation procedure does not increase with the larger size of the filters even though the additional computational cost is required in the computation of convolution in the feed-forward procedure. The use of random kernels with varying sizes allows to effectively analyze image features at multiple scales leading to a better generalization. The robustness and effectiveness of the proposed CNN based on random kernels are demonstrated by numerical experiments where the quantitative comparison of the well-known CNN architectures and our models that simply replace the convolution kernels with the random filters is performed. The experimental results indicate that our model achieves better performance with less number of unknown weights. The proposed algorithm has a high potential in the application of a variety of visual tasks based on the CNN framework. Acknowledgement—This work was supported by the MISP (Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by IITP, and NRF-2014R1A2A1A11051941, NRF2017R1A2B4006023.

Keywords: deep learning, convolutional neural network, random kernel, random projection, dimensionality reduction, object recognition

Procedia PDF Downloads 292
18178 Comprehensive Analysis of Power Allocation Algorithms for OFDM Based Communication Systems

Authors: Rakesh Dubey, Vaishali Bahl, Dalveer Kaur

Abstract:

The spiralling urge for high rate data transmission over wireless mediums needs intelligent use of electromagnetic resources considering restrictions like power ingestion, spectrum competence, robustness against multipath propagation and implementation intricacy. Orthogonal frequency division multiplexing (OFDM) is a capable technique for next generation wireless communication systems. For such high rate data transfers there is requirement of proper allocation of resources like power and capacity amongst the sub channels. This paper illustrates various available methods of allocating power and the capacity requirement with the constraint of Shannon limit.

Keywords: Additive White Gaussian Noise, Multi-Carrier Modulation, Orthogonal Frequency Division Multiplexing (OFDM), Signal to Noise Ratio (SNR), Water Filling

Procedia PDF Downloads 557
18177 The Logistics Collaboration in Supply Chain of Orchid Industry in Thailand

Authors: Chattrarat Hotrawaisaya

Abstract:

This research aims to formulate the logistics collaborative model which is the management tool for orchid flower exporter. The researchers study logistics activities in orchid supply chain that stakeholders can collaborate and develop, including demand forecasting, inventory management, warehouse and storage, order-processing, and transportation management. The research also explores logistics collaboration implementation into orchid’s stakeholders. The researcher collected data before implementation and after model implementation. Consequently, the costs and efficiency were calculated and compared between pre and post period of implementation. The research found that the results of applying the logistics collaborative model to orchid exporter reduces inventory cost and transport cost. The model also improves forecasting accuracy, and synchronizes supply chain of exporter. This research paper contributes the uniqueness logistics collaborative model which value to orchid industry in Thailand. The orchid exporters may use this model as their management tool which aims in competitive advantage.

Keywords: logistics, orchid, supply chain, collaboration

Procedia PDF Downloads 441
18176 Hydro-Gravimetric Ann Model for Prediction of Groundwater Level

Authors: Jayanta Kumar Ghosh, Swastik Sunil Goriwale, Himangshu Sarkar

Abstract:

Groundwater is one of the most valuable natural resources that society consumes for its domestic, industrial, and agricultural water supply. Its bulk and indiscriminate consumption affects the groundwater resource. Often, it has been found that the groundwater recharge rate is much lower than its demand. Thus, to maintain water and food security, it is necessary to monitor and management of groundwater storage. However, it is challenging to estimate groundwater storage (GWS) by making use of existing hydrological models. To overcome the difficulties, machine learning (ML) models are being introduced for the evaluation of groundwater level (GWL). Thus, the objective of this research work is to develop an ML-based model for the prediction of GWL. This objective has been realized through the development of an artificial neural network (ANN) model based on hydro-gravimetry. The model has been developed using training samples from field observations spread over 8 months. The developed model has been tested for the prediction of GWL in an observation well. The root means square error (RMSE) for the test samples has been found to be 0.390 meters. Thus, it can be concluded that the hydro-gravimetric-based ANN model can be used for the prediction of GWL. However, to improve the accuracy, more hydro-gravimetric parameter/s may be considered and tested in future.

Keywords: machine learning, hydro-gravimetry, ground water level, predictive model

Procedia PDF Downloads 133
18175 An Adaptive CFAR Algorithm Based on Automatic Censoring in Heterogeneous Environments

Authors: Naime Boudemagh

Abstract:

In this work, we aim to improve the detection performances of radar systems. To this end, we propose and analyze a novel censoring technique of undesirable samples, of priori unknown positions, that may be present in the environment under investigation. Therefore, we consider heterogeneous backgrounds characterized by the presence of some irregularities such that clutter edge transitions and/or interfering targets. The proposed detector, termed automatic censoring constant false alarm (AC-CFAR), operates exclusively in a Gaussian background. It is built to allow the segmentation of the environment to regions and switch automatically to the appropriate detector; namely, the cell averaging CFAR (CA-CFAR), the censored mean level CFAR (CMLD-CFAR) or the order statistic CFAR (OS-CFAR). Monte Carlo simulations show that the AC-CFAR detector performs like the CA-CFAR in a homogeneous background. Moreover, the proposed processor exhibits considerable robustness in a heterogeneous background.

Keywords: CFAR, automatic censoring, heterogeneous environments, radar systems

Procedia PDF Downloads 603
18174 OILU Tag: A Projective Invariant Fiducial System

Authors: Youssef Chahir, Messaoud Mostefai, Salah Khodja

Abstract:

This paper presents the development of a 2D visual marker, derived from a recent patented work in the field of numbering systems. The proposed fiducial uses a group of projective invariant straight-line patterns, easily detectable and remotely recognizable. Based on an efficient data coding scheme, the developed marker enables producing a large panel of unique real time identifiers with highly distinguishable patterns. The proposed marker Incorporates simultaneously decimal and binary information, making it readable by both humans and machines. This important feature opens up new opportunities for the development of efficient visual human-machine communication and monitoring protocols. Extensive experiment tests validate the robustness of the marker against acquisition and geometric distortions.

Keywords: visual markers, projective invariants, distance map, level sets

Procedia PDF Downloads 167
18173 Determination of the Axial-Vector from an Extended Linear Sigma Model

Authors: Tarek Sayed Taha Ali

Abstract:

The dependence of the axial-vector coupling constant gA on the quark masses has been investigated in the frame work of the extended linear sigma model. The field equations have been solved in the mean-field approximation. Our study shows a better fitting to the experimental data compared with the existing models.

Keywords: extended linear sigma model, nucleon properties, axial coupling constant, physic

Procedia PDF Downloads 448
18172 Influence of Ligature Tightening on Bone Fracture Risk in Interspinous Process Surgery

Authors: Dae Kyung Choi, Won Man Park, Kyungsoo Kim, Yoon Hyuk Kim

Abstract:

The interspinous process devices have been recently used due to its advantages such as minimal invasiveness and less subsidence of the implant to the osteoporotic bone. In this paper, we have analyzed the influences of ligature tightening of several interspinous process devices using finite element analysis. Four types of interspinous process implants were inserted to the L3-4 spinal motion segment based on their surgical protocols. Inferior plane of L4 vertebra was fixed and 7.5 Nm of extension moment were applied on superior plane of L3 vertebra with 400N of compressive load along follower load direction and pretension of the ligature. The stability of the spinal unit was high enough than that of intact model. The higher value of pretension in the ligature led the decrease of dynamic stabilization effect in cases of the WallisTM, DiamTM, Viking, and Spear®. The results of present study could be used to evaluate surgical option and validate the biomechanical characteristics of the spinal implants.

Keywords: interspinous process device, bone fracture risk, lumbar spine, finite element analysis

Procedia PDF Downloads 406
18171 Using Cooperation Approaches at Different Levels of Artificial Bee Colony Method

Authors: Vahid Zeighami, Mohsen Ghsemi, Reza Akbari

Abstract:

In this work, a Multi-Level Artificial Bee Colony (called MLABC) is presented. In MLABC two species are used. The first species employs n colonies in which each of the them optimizes the complete solution vector. The cooperation between these colonies is carried out by exchanging information through a leader colony, which contains a set of elite bees. The second species uses a cooperative approach in which the complete solution vector is divided to k sub-vectors, and each of these sub-vectors is optimized by a a colony. The cooperation between these colonies is carried out by compiling sub-vectors into the complete solution vector. Finally, the cooperation between two species is obtained by exchanging information between them. The proposed algorithm is tested on a set of well known test functions. The results show that MLABC algorithms provide efficiency and robustness to solve numerical functions.

Keywords: artificial bee colony, cooperative, multilevel cooperation, vector

Procedia PDF Downloads 450