Search results for: ion absorption/desorption reactions
1105 Pull String to Stop: Public Utility Vehicle Modernization Program
Authors: Frederick Kobe O. Obar, Preity B. Quinzon, Trisha B. Tumbokon, Mario Joshua D. Marron, Kenichi Katsuo Kichiro A. Rimorin
Abstract:
The Public Utility Vehicle Modernization Program (PUVMP) is a program meant to reform the current state of the Philippines’ public transportation sector. This study determined the impact of the Public Utility Vehicle Modernization Program on San Fernando City, La Union's jeepney drivers, interviewing six individuals, three with traditional vehicles and three with modernized units. This study used a descriptive qualitative research design and employed purposive sampling to select the six participants suited for the study, who were then subjected to a semi-structured face-to-face interview. The gathered data was then analyzed through thematic analysis. The findings highlighted evidence that the jeepney drivers experienced abrupt and prevailing changes in their routine and in their everyday work. This study concludes that while the sentiment of the program was appreciated, it has changed the environment for jeepney drivers drastically, provoking many reactions. These changes have, of course, shifted the daily lives of the jeepney drivers significantly, but through adaptability, they found ways. Recommendations include flexible compliance policies, educational initiatives, and support for drivers, providing valuable insights for informed decision-making in the ongoing transportation modernization discussion. This study concluded that while the drivers are not opposed to reform, they are not entirely in approval of the current effects of the program as it is being implemented in their local area.Keywords: transport reform, transport modernization, public transport, jeepney drivers, PUVMP, urban planning, public utility vehicles
Procedia PDF Downloads 691104 Purity Monitor Studies in Medium Liquid Argon TPC
Authors: I. Badhrees
Abstract:
This paper is an attempt to describe some of the results that had been found through a journey of study in the field of particle physics. This study consists of two parts, one about the measurement of the cross section of the decay of the Z particle in two electrons, and the other deals with the measurement of the cross section of the multi-photon absorption process using a beam of laser in the Liquid Argon Time Projection Chamber. The first part of the paper concerns the results based on the analysis of a data sample containing 8120 ee candidates to reconstruct the mass of the Z particle for each event where each event has an ee pair with PT(e) > 20GeV, and η(e) < 2.5. Monte Carlo templates of the reconstructed Z particle were produced as a function of the Z mass scale. The distribution of the reconstructed Z mass in the data was compared to the Monte Carlo templates, where the total cross section is calculated to be equal to 1432 pb. The second part concerns the Liquid Argon Time Projection Chamber, LAr TPC, the results of the interaction of the UV Laser, Nd-YAG with λ= 266mm, with LAr and through the study of the multi-photon ionization process as a part of the R&D at Bern University. The main result of this study was the cross section of the process of the multi-photon ionization process of the LAr, σe = 1.24±0.10stat±0.30sys.10 -56cm4.Keywords: ATLAS, CERN, KACST, LArTPC, particle physics
Procedia PDF Downloads 3471103 Bioconcentration Analysis of Iodine Species in Seaweed (Eucheuma cottonii) from Maluku Marine as Alternative Food Source
Authors: Yeanchon H. Dulanlebit, Nikmans Hattu, Gloria Bora
Abstract:
Seaweed is a type of macro algae which are good source of iodine and have been widely used as food and nutrition supplement. One of iodine species that found in ocean plant is iodate. Analysis of iodate in seaweed (Eucheuma cottonii) from coastal area of Maluku has been done. The determination is done by using spectrophotometric method. Iodate in sample is reduced in excess of potassium iodide in the presence of acid solution, and then is reacted with starch to form blue complex. The study found out that the highest wavelength on determination of iodate species using spectrophotometer analysis method is 570 nm. Optimum value to yield maximum absorption is used in this research. Contents of iodate in seawater from coastal area of Ambon Island, Western Seram and Southeast Maluku are 0.2655, 0.2719 and 0.1760 mg/L, respectively. While in seaweeds from Ambon Island, Western Seram, Southeast Maluku-Taar, Ohoidertawun and Wab are 6.3122, 6.3293, 6.2333, 3.7406 and 4.4207 mg/kg in dry weight. Bioconcentration (enrichment) factor of iodate in seaweed (Eucheuma cottonii) from the three samples (cluster) is different; in Coastal area of Ambon Island, Western Seram and Southeast Maluku respectively are 23.78, 23.28 and 27.26.Keywords: bioconcentration, eucheuma cottonii, iodate, iodine, seaweed
Procedia PDF Downloads 2191102 Study on the Inhibition Effect of Rail Dampers on Rail Wave Abrasion
Authors: Zhenyu Lei, Chengshun Li
Abstract:
To prevent the occurrence of rail corrugation and mitigate the influence of existing corrugation, this paper first conducts actual measurements of rail corrugation before and after the installation of the frequency-modulated rail dampers, determines the characteristic frequencies of corrugation and makes comparisons of the time-domain and frequency-domain of the vertical and lateral vibration accelerations of the rails. It indicates that the rail dampers significantly reduce the rail vibration acceleration levels at the characteristic frequencies, and the vibrations are significantly reduced after the installation of the dampers. Additionally, a simulation study is carried out on the wheel-rail system with and without the frequency-modulated rail dampers. The theory that resonance of the wheel-rail system leads to corrugation shows that rail vibration is inseparably associated with the generation of corrugation, and the potential causes of corrugation in each frequency band are explored through the natural frequencies of the system. Finally, the rail vibration attenuation rate index is calculated, describing the absorption effect of the frequency-modulated rail dampers on rail vibration. It indicates that the dampers absorb part of the lateral vibration energy of the rails and have the effect of altering the rail vibration characteristics in the frequency domain. It is considered that they have a positive influence on the suppression of rail corrugation.Keywords: rail corrugation, frequency-modulated rail damper, finite element analysis, wheel-rail system resonance, rail vibration attenuation rate
Procedia PDF Downloads 91101 Assessment of Some Heavy Metals (Manganese, Copper, Nickel and Zinc) in Muscle and Liver of the African Catfish (Clarias gariepinus) in Ilushi River, Nigeria
Authors: Joshua I. Izegaegbe, Femi F. Oloye, Catherine E. Nasiru
Abstract:
This study determined the level of manganese, zinc, copper, and nickel in the liver and muscle of the African Catfish, Clarias gariepinus from Ilushi River, Edo State, Nigeria with a view to determining the extent of contamination. Heavy metal determination of digested fish samples was done using the atomic absorption spectrophotometric method. The results show that the muscles and livers were contaminated to varying levels with the presence of some non-metallic elements. The heavy metal load revealed that zinc had the highest mean concentration of 0.217±0.008µg/g in liver and 0.130±0.006µg/g in muscle, while copper recorded the least concentration in liver 0.063±0.004µg/g and 0.027±0.003µg/gin muscle. The distribution of the heavy metals in the muscles and livers of Clarias gariepinus showed significant variations and the results also revealed that the concentration of heavy metals (Zn, Cu,Ni and Mn) found in the liver was higher than those found in the muscle. This indicates that the liver is a better accumulator of heavy metal in Clarias gariepinus than the muscles. On comparison with WHO/FAO/FEPA/USFDA standards, the study shows that the concentrations of heavy metals in liver and muscle were within permissible limits safe for human consumption.Keywords: clarias gariepinus, heavy metals, liver, muscle
Procedia PDF Downloads 2191100 Navigating the Cacophony of Human Rights Claims and Chains of Fraud in Nigeria: The Anti-Corruption War Perspective
Authors: Mike Omilusi
Abstract:
Since the Buhari administration came to power, it has gained the people’s confidence with its anti-corruption efforts. Making culprits account for their past unlawful deeds, in a very determined and aggressive manner ever witnessed in the nation’s political history, generates different reactions among Nigerians. However, some questions remain pertinent to this study: Are Nigerians really advocating persecution or prosecution in respect of the graft suspects? Do they want conviction without being convinced? Is their outburst propelled by emotions and revengeful anticipation of having suspected looters of the nation’s commonwealth behind bars? Can the war be successfully fought without resorting to impunity? Relying extensively on secondary sources with the aid of descriptive and narrative tools, this study seeks to interrogate the claim of fundamental human rights in the face of wanton looting of the nation’s resources. If, as opined by President Buhari, corruption is a crime against humanity, then it is argued that those who commit such crime should be subjected to penalties prescribed by law. Such crime -as corruption in this study- deprives the citizens of welfare, social amenities and good things of life. In this instance, it also poses threats to national security, having misappropriated funds meant for the war against the Boko Haram terrorism as revealed by the anti-corruption agency in the country. A theoretically-driven investigation, this essay raises some expectations within the context of good governance-propelled anti-corruption crusade, making modest recommendations as to how corruption should be prevented and combated within the confine of rule of law.Keywords: corruption, rule of law, human rights, prosecution, commonwealth
Procedia PDF Downloads 2041099 Geochemical Evaluation Assessment of Groundwater in Selected Part of Benue State Southern, Nigeria
Authors: Moses Oghnennyoreme Eyankware, Christian Ogubuchi Ede
Abstract:
Groundwater is the principal source for various uses in this study area. The quality and availability of groundwater depend on rock formation within the study area. To effectively study the quality of groundwater, 24 groundwater samples were collected. The study was aimed at investigating the hydrogeochemistry of groundwater, and additionally its suitability for drinking and irrigation purposes. The following parameters were analyzed using the American Public Health Association standard method: pH, turbidity, Ec, TDS, Mg2+, SO42-, NO3¯, Cl-, HCO3¯, K+, Na2+ and Ca2+. Results obtained from Water Quality Index revealed that the groundwater sample fell within good water quality that implies that groundwater is considered fit for drinking purposes. Deduced results obtained from irrigation indices revealed that Permeability Index (PI), Soluble Sodium Percentage (SSP), Sodium Percentage (Na %), Sodium Absorption Ratio (SAR), Kelly Ratio (KR), Magnesium Hazard (MH) ranges from 0.00 to 0.01, 4.04 to 412.9, 0.63 to 257.7, 0.15 to 2.34, 0.09 to 2.57 and 6.84 to 84.55 respectively. Findings from Total hardness revealed that groundwater fell within soft, moderately hard and hard categories. Estimated results obtained from CSMR, RI and LSI showed that groundwater showed corrosion tendency, salinization influenced groundwater at certain sampling points and chloride and sulfate unlikely to interfere with natural formation film.Keywords: water, quality, suitability, anthropogenic, Nigeria
Procedia PDF Downloads 1701098 Method of Estimating Absolute Entropy of Municipal Solid Waste
Authors: Francis Chinweuba Eboh, Peter Ahlström, Tobias Richards
Abstract:
Entropy, as an outcome of the second law of thermodynamics, measures the level of irreversibility associated with any process. The identification and reduction of irreversibility in the energy conversion process helps to improve the efficiency of the system. The entropy of pure substances known as absolute entropy is determined at an absolute reference point and is useful in the thermodynamic analysis of chemical reactions; however, municipal solid waste (MSW) is a structurally complicated material with unknown absolute entropy. In this work, an empirical model to calculate the absolute entropy of MSW based on the content of carbon, hydrogen, oxygen, nitrogen, sulphur, and chlorine on a dry ash free basis (daf) is presented. The proposed model was derived from 117 relevant organic substances which represent the main constituents in MSW with known standard entropies using statistical analysis. The substances were divided into different waste fractions; namely, food, wood/paper, textiles/rubber and plastics waste and the standard entropies of each waste fraction and for the complete mixture were calculated. The correlation of the standard entropy of the complete waste mixture derived was found to be somsw= 0.0101C + 0.0630H + 0.0106O + 0.0108N + 0.0155S + 0.0084Cl (kJ.K-1.kg) and the present correlation can be used for estimating the absolute entropy of MSW by using the elemental compositions of the fuel within the range of 10.3% ≤ C ≤ 95.1%, 0.0% ≤ H ≤ 14.3%, 0.0% ≤ O ≤ 71.1%, 0.0 ≤ N ≤ 66.7%, 0.0% ≤ S ≤ 42.1%, 0.0% ≤ Cl ≤ 89.7%. The model is also applicable for the efficient modelling of a combustion system in a waste-to-energy plant.Keywords: absolute entropy, irreversibility, municipal solid waste, waste-to-energy
Procedia PDF Downloads 3101097 Geochemical and Geostructural Characteristics of the Groundwater System and the Role of Faults in Groundwater Movement at the Hammamet Basin, Tebessa Area (Northeast of Algeria)
Authors: Iklass Hamaili, Fehdi Chemseddine
Abstract:
Morphostructural, hydrogeological and hydrochemical approaches were applied in this study to characterize the groundwater system of Hammamet Plain, Eastern part of Algeria and its potential for exploitation. The analysis of the fractures in several Mountains forming the natural boundaries of Hammamet plain, with faults of markedly different sizes and joints measured at 21 stations, demonstrate the presence of two principal directions of fractures (NNW-SSE and NNE-SSW). From a hydrogeological standpoint, these two mountains constitute a unit limited by faults-oriented ENE-WSW, NNW-SSE and NNE-SSW. Specifically, fractures of the latter two directions influence the compartmentalization and the hydrogeological functioning of this unit. According to the degree of fracturing and/or karstification, two basic types of aquiferous behavior have been distinguished: fissured aquifer (Essen Mountain and Troubia Mountain), and porous aquifer (Hammamet basin). After sampling and measurement operations, the quantity of chemical components was determined. Thus, the study of the hydrochemical characteristics of this groundwater shows on Piper’s diagram that the majority of them are mainly HCO₃- and Ca₂+ water types. The ionic speciation and mineral dissolution/precipitation were calculated by PHREEQC package software. The chemical composition of the water is influenced by the dissolution and/or precipitation processes during the water-rock interaction and by the cationic exchange reactions between groundwater and alluvial sediments. The high content of CO₂ in the water samples suggests that they circulate in a geochemical opened system.Keywords: aquifer, hydrogeology, hydrochemistry, Hammamet, Tebessa, Algeria
Procedia PDF Downloads 191096 Study of Isoprene Emissions in Biogenic ad Anthropogenic Environment in Urban Atmosphere of Delhi: The Capital City of India
Authors: Prabhat Kashyap, Krishan Kumar
Abstract:
Delhi, the capital of India, is one of the most populated and polluted city among the world. In terms of air quality, Delhi’s air is degrading day by day & becomes worst of any major city in the world. The role of biogenic volatile organic compounds (BVOCs) is not much studied in cities like Delhi as a culprit for degraded air quality. They not only play a critical role in rural areas but also determine the atmospheric chemistry of urban areas as well. Particularly, Isoprene (2-methyl 1,3-butadiene, C5H8) is the single largest emitted compound among other BVOCs globally, that influence the tropospheric ozone chemistry in urban environment as the ozone forming potential of isoprene is very high. It is mainly emitted by vegetation & a small but significant portion is also released by vehicular exhaust of petrol operated vehicles. This study investigates the spatial and temporal variations of quantitative measurements of isoprene emissions along with different traffic tracers in 2 different seasons (post-monsoon & winter) at four different locations of Delhi. For the quantification of anthropogenic and biogenic isoprene, two sites from traffic intersections (Punjabi Bagh & CRRI) and two sites from vegetative locations (JNU & Yamuna Biodiversity Park) were selected in the vicinity of isoprene emitting tree species like Ficus religiosa, Dalbergia sissoo, Eucalyptus species etc. The concentrations of traffic tracers like benzene, toluene were also determined & their robust ratios with isoprene were used to differentiate anthropogenic isoprene with biogenic portion at each site. The ozone forming potential (OFP) of all selected species along with isoprene was also estimated. For collection of intra-day samples (3 times a day) in each season, a pre-conditioned fenceline monitoring (FLM) carbopack X thermal desorption tubes were used and further analysis was done with Gas chromatography attached with mass spectrometry (GC-MS). The results of the study proposed that the ambient air isoprene is always higher in post-monsoon season as compared to winter season at all the sites because of high temperature & intense sunlight. The maximum isoprene emission flux was always observed during afternoon hours in both seasons at all sites. The maximum isoprene concentration was found to be 13.95 ppbv at Biodiversity Park during afternoon time in post monsoon season while the lower concentration was observed as low as 0.07 ppbv at the same location during morning hours in winter season. OFP of isoprene at vegetation sites is very high during post-monsoon because of high concentrations. However, OFP for other traffic tracers were high during winter seasons & at traffic locations. Furthermore, high correlation between isoprene emissions with traffic volume at traffic sites revealed that a noteworthy share of its emission also originates from road traffic.Keywords: biogenic VOCs, isoprene emission, anthropogenic isoprene, urban vegetation
Procedia PDF Downloads 1171095 Knowledge and Perceptions of Final-year Students towards Pharmacovigilance and Adverse Drug Reaction Reporting at the Faculty of Medical Sciences, Al-Razi University - Sana`a - Yemen
Authors: Nabil A. Albaser
Abstract:
Background: There is a serious problem with adverse drug reactions (ADRs) everywhere, including Yemen. Since it helps with the detection, assessment, reporting and prevention of ADRs, pharmacovigilance (PV) is an essential part of the healthcare system. The unbiased reporting of ADRs remains the foundation of PV. Students majoring in healthcare should acquire the knowledge and skills necessary to conduct PV in a range of clinical settings. The primary objective of this study was to evaluate the understanding and attitudes of final-year Pharmacy, Nursing, and Midwifery students at Al-Razi University in Sana'a, Yemen, regarding PV and ADRs reporting. Methods: The study followed descriptive cross-sectional approach. A validated, self-administered questionnaire with three parts—demographic information, knowledge, and perceptions of Pharmacovigilance was online distributed to final-year Pharmacy, Nursing, and Midwifery students. The questionnaire was given to 175 students; 122 of them responded with a percentage (69.7%). Results: The majority of respondents were male (79.5%). More than the tow-third of the students, 68.9%, were beyond the age of 23. Although the majority of students, 80%, heard about the terms of ADRs and PV, but only 50% and 57.4% of the respondents, respectively, could define the both terms correctly. However, only 11.48 % of them, nevertheless, took a PV course. More than a half of them (56.6%) had a positive perceptions towards pharmacovigilance and ADR reporting and had a moderate degree of knowledge (68.9%). Conclusion: The study demonstrated that the participants lacked sufficient knowledge of pharmacovigilance and ADR reporting. They showed a moderate level of understanding of reporting ADRs as well as a favorable opinion of dealing with and reporting ADRs. Yemen's health care curriculum should include lessons on pharmacovigilance.Keywords: adverse drug reaction reporting, pharmacovigilance, yemen, knowlegde
Procedia PDF Downloads 1191094 Study of the Formation Mechanism of Dipalmitoylphosphatidylcholine Liposomes and Calcium Ion Complexes
Authors: T. Mdzinarashvili, M. Khvedelidze, E. Shekiladze, S. Chinchaladze, M. Mdzinarashvili
Abstract:
The study of the possible interaction between calcium ions and lipids is of great importance for the studies of complexes of calcium drug-carrying nanoparticles. We prepared calcium-containing complex liposomes from Dipalmitoylphosphatidylcholine (DPPC) lipids and studied their thermodynamic properties. In calorimetric studies, we determined that the phase transition temperature of these complexes is close to 420 C. It was shown that both hydrophobic and hydrophilic connections take part in the formation of calcium nanoparticles. We were interested in hydrophilic bonds represented by hydrogen bonds. We have shown that these hydrogen bonds are formed between the phospholipid heads, and the main contributor is the oxygen atoms in the phosphoric acid residues. In addition, based on the amount of heat absorbed during the breaking of hydrogen bonds formed between calcium-containing nanoparticle complexes, it can be concluded that the hydrogen atoms in the head of DPPC lipids form hydrogen bonds between P=O and P-O groups of phosphate. The energy of heat absorption measured by the calorimeter is of the order obtained by breaking the hydrogen bonds we have specified. Thus, we conclude that our approach to the model of liposome formation from lipids is correct. As for calcium atoms - due to the fact that it is present in the form of positive ions in the liposome, they will connect only with negatively charged phosphorus ions.Keywords: DPPC, liposomes, calcium, complex nanoparticles
Procedia PDF Downloads 1181093 Integration of a Protective Film to Enhance the Longevity and Performance of Miniaturized Ion Sensors
Authors: Antonio Ruiz Gonzalez, Kwang-Leong Choy
Abstract:
The measurement of electrolytes has a high value in the clinical routine. Ions are present in all body fluids with variable concentrations and are involved in multiple pathologies such as heart failures and chronic kidney disease. In the case of dissolved potassium, although a high concentration in the blood (hyperkalemia) is relatively uncommon in the general population, it is one of the most frequent acute electrolyte abnormalities. In recent years, the integration of thin films technologies in this field has allowed the development of highly sensitive biosensors with ultra-low limits of detection for the assessment of metals in liquid samples. However, despite the current efforts in the miniaturization of sensitive devices and their integration into portable systems, only a limited number of successful examples used commercially can be found. This fact can be attributed to a high cost involved in their production and the sustained degradation of the electrodes over time, which causes a signal drift in the measurements. Thus, there is an unmet necessity for the development of low-cost and robust sensors for the real-time monitoring of analyte concentrations in patients to allow the early detection and diagnosis of diseases. This paper reports a thin film ion-selective sensor for the evaluation of potassium ions in aqueous samples. As an alternative for this fabrication method, aerosol assisted chemical vapor deposition (AACVD), was applied due to cost-effectivity and fine control over the film deposition. Such a technique does not require vacuum and is suitable for the coating of large surface areas and structures with complex geometries. This approach allowed the fabrication of highly homogeneous surfaces with well-defined microstructures onto 50 nm thin gold layers. The degradative processes of the ubiquitously employed poly (vinyl chloride) membranes in contact with an electrolyte solution were studied, including the polymer leaching process, mechanical desorption of nanoparticles and chemical degradation over time. Rational design of a protective coating based on an organosilicon material in combination with cellulose to improve the long-term stability of the sensors was then carried out, showing an improvement in the performance after 5 weeks. The antifouling properties of such coating were assessed using a cutting-edge quartz microbalance sensor, allowing the quantification of the adsorbed proteins in the nanogram range. A correlation between the microstructural properties of the films with the surface energy and biomolecules adhesion was then found and used to optimize the protective film.Keywords: hyperkalemia, drift, AACVD, organosilicon
Procedia PDF Downloads 1241092 Properties of Fly Ash Brick Prepared in Local Environment of Bangladesh
Authors: Robiul Islam, Monjurul Hasan, Rezaul Karim, M. F. M. Zain
Abstract:
Coal fly ash, an industrial by product of coal combustion thermal power plants is considered as a hazardous material and its improper disposal has become an environmental issue. On the other hand, manufacturing conventional clay bricks involves on consumption of large amount of clay and leads substantial depletion of topsoil. This paper unveils the possibility of using fly ash as a partial replacement of clay for brick manufacturing considering the local technology practiced in Bangladesh. The effect of fly ash with different replacing ratio (0%, 20%, 30%, 40% and 50% by volume) of clay on properties of bricks were studied. Bricks were made in the field parallel to ordinary bricks marked with specific number for different percentage to identify them at time of testing. No physical distortion is observed in fly ash brick after burning in the kiln. Results from laboratory test show that compressive strength of brick is decreased with the increase of fly ash and maximum compressive strength is found to be 19.6 MPa at 20% of fly ash. In addition, water absorption of fly ash brick is increased with the increase of fly ash. The abrasion value and Specific gravity of coarse aggregate prepared from brick with fly ash also studied and the results of this study suggests that 20% fly ash can be considered as the optimum fly ash content for producing good quality bricks utilizing present practiced technology.Keywords: Bangladesh brick, fly ash, clay brick, physical properties, compressive strength
Procedia PDF Downloads 2541091 Studies on Mechanical Properties of Concrete and Mortar Containing Waste Glass Aggregate
Authors: Nadjoua Bourmatte, Hacène Houari
Abstract:
Glass has been indispensable to men’s life due to its properties, including pliability to take any shape with ease, bright surface, resistance to abrasion, reasonable safety and durability. Waste glass creates serious environmental problems, mainly due to the inconsistency of waste glass streams. With increasing environmental pressure to reduce solid waste and to recycle as much as possible, the concrete industry has adopted a number of methods to achieve this goal. The object of this research work is to study the effect of using recycled glass waste, as a partial replacement of fine aggregate, on the fresh and hardened properties of concrete. Recycled glass was used to replace fine aggregate in proportions of 0%, 25% and 50%. We could observe that the Glass waste aggregates are lighter than natural aggregates and they show a very low water absorption. The experimental results showed that the slump flow increased with the increase of recycled glass content. On the other hand, the compressive strength and tensile strength of recycled glass mixtures decreased with the increase in the recycled glass content. The results showed that recycled glass aggregate can successfully be used with limited level for producing concrete. The standard sand was substituted with aggregates based on glass waste for manufacturing mortars, Mortar based on glass shows a compressive strength and low bending with a 1/2 ratio with control mortar strength.Keywords: concrete, environment, glass waste, recycling
Procedia PDF Downloads 2331090 Gradations in Concentration of Heavy and Mineral Elements with Distance and Depth of Soil in the Vicinity of Auto Mechanic Workshops in Sabon Gari, Kaduna State, Nigeria
Authors: E. D. Paul, H. Otanwa, O. F. Paul, A. J. Salifu, J. E. Toryila, C. E. Gimba
Abstract:
The concentration levels of six heavy metals (Cd, Cr, Fe, Ni, Pb, and Zn) and two mineral elements (Ca and Mg) were determined in soil samples collected from the vicinity of two auto mechanic workshops in Sabon-Gari, Kaduna state, Nigeria, using Atomic Absorption Spectrometry (AAS), in order to compare the gradation of their concentrations with distance and depth of soil from the workshop sites. At site 1, concentrations of lead, chromium, iron, and zinc were generally found to be above the World Health Organization limits, while those of Nickel and Cadmium fell within the limits. Iron had the highest concentration with a range of 176.274 ppm to 489.127 ppm at depths of 5 cm to 15 cm and a distance range of 5 m to 15 m, while the concentration of cadmium was least with a range of 0.001 ppm to 0.008 ppm at similar depth and distance ranges. In addition, there was more of calcium (11.521 ppm to 121.709 ppm), in all the samples, than magnesium (11.293 ppm to 21.635 ppm). Similar results were obtained for site II. The concentrations of all the metals analyzed showed a downward gradient with an increase in depth and distance from both workshop sites except for iron and zinc at site 2. The immediate and remote implications of these findings on the biota are discussed.Keywords: AAS, heavy metals, mechanic workshops, soil, variation
Procedia PDF Downloads 4951089 Antibiotic Prescribing Pattern and Associated Risk Factors Promoting Antibiotic Resistance, a Cross Sectional Study in a Regional Hospital in Ghana
Authors: Nicholas Agyepong, Paul Gyan
Abstract:
Inappropriate prescribing of antibiotic is a common healthcare concern globally resulted in an increased risk of adverse reactions and the emergence of antimicrobial resistance. The wrong antibiotic prescribing habits may lead to ineffective and unsafe treatment, worsening of disease condition, and thus increase in health care costs. The study was to examine the antibiotic prescribing pattern and associated risk factors at Regional Hospital in the Bono region of Ghana. A retrospective cross-sectional study was conducted to describe the current prescribing practices at the Hospital from January 2014 to December, 2021. A systematic random sampling method was used to select the participants for the study. STATA version 16 software was used for data management and analysis. Descriptive statistics and logistic regression analysis were used to analyze the data. Statistical significance set at p<0.05. Antibiotic consumption was equivalent to 11 per 1000 inhabitants consuming 1 DDD per day. Most common prescribed antibiotic was amoxicillin/clavulanic acid (14.39%) followed by erythromycin (11.44%), and ciprofloxacin (11.36%). Antibiotics prescription have been steadily increased over the past eight years (2014: n=59,280 to 2021: n=190,320). Prescribers above the age of 35 were more likely to prescribe antibiotics than those between the ages of 20 and 25 (COR=21.00; 95% CI: 1.78 – 48.10; p=0.016). Prescribers with at least 6 years of experience were also significantly more likely to prescribe antibiotics than those with at most 5 years of experience (COR=14.17; 95% CI: 2.39 – 84.07; p=0.004). Thus, the establishment of an antibiotic stewardship program in the hospitals is imperative, and further studies need to be conducted in other facilities to establish the national antibiotic prescription guideline.Keywords: antibiotic, antimicrobial resistance, prescription, prescribers
Procedia PDF Downloads 491088 Virulence Phenotypes Among Multi-Drug Resistant Uropathogenic Bacteria
Authors: V. V. Lakshmi, Y. V. S. Annapurna
Abstract:
Urinary tract infection (UTI) is one of the most common infectious diseases seen in the community. Susceptible individuals experience multiple episodes, and progress to acute pyelonephritis or uro-sepsis or develop asymptomatic bacteriuria (ABU). Ability to cause extraintestinal infections depends on several virulence factors required for survival at extraintestinal sites. Presence of virulence phenotypes enhances the pathogenicity of these otherwise commensal organisms and thus augments its ability to cause extraintestinal infections, the most frequent in urinary tract infections(UTI). The present study focuses on detection of the virulence characters exhibited by the uropathogenic organism and most common factors exhibited in the local pathogens. A total of 700 isolates of E.coli and Klebsiella spp were included in the study. These were isolated from patients from local hospitals reported to be suffering with UTI over a period of three years. Isolation and identification was done based on Gram character and IMVIC reactions. Antibiotic sensitivity profile was carried out by disc diffusion method and multi drug resistant strains with MAR index of 0.7 were further selected.. Virulence features examined included their ability to produce exopolysaccharides, protease- gelatinase production, hemolysin production, haemagglutination and hydrophobicity test. Exopolysaccharide production was most predominant virulence feature among the isolates when checked by congo red method. The biofilms production examined by microtitre plates using ELISA reader confirmed that this is the major factor contributing to virulencity of the pathogens followed by hemolysin productionKeywords: Escherichia coli, Klebsiella sp, Uropathogens, Virulence features.
Procedia PDF Downloads 4211087 Bio-Based Polyethylene/Rice Starch Composite Prepared by Twin Screw Extruder
Authors: Waris Piyaphon, Sathaphorn O-Suwankul, Kittima Bootdee, Manit Nithitanakul
Abstract:
Starch from rice was used as a filler in low density polyethylene in preparation of low density polyethylene/rice starch composite. This study aims to prepare LDPE/rice starch composites. Glycerol (GC) was used as a plasticizer in order to increase dispersion and reduce agglomeration of rice starch in low density polyethylene (LDPE) matrix. Low density polyethylene grafted maleic anhydride (LDPE-g-MA) was used as a compatibilizer to increase the compatibility between LDPE and rice starch. The content of rice starch was varied between 10, 20, and 30 %wt. Results indicated that increase of rice starch content reduced tensile strength at break, elongation, and impact strength of composites. LDPE-g-MA showed positive effect on mechanical properties which increased in tensile strength and impact properties as well as compatibility between rice starch and LDPE matrix. Moreover, the addition of LDPE-g-MA significantly improved the impact strength by 50% compared to neat composite. The incorporation of GC enhanced the processability of composite. Introduction of GC affected the viscosity after blending by reducing the viscosity at all shear rate. The presence of plasticizer increased the impact strength but decreased the stiffness of composite. Water absorption of the composite was increased when plasticizer was added.Keywords: composite material, plastic starch composite, polyethylene composite, PE grafted maleic anhydride
Procedia PDF Downloads 2091086 Optical Bands Splitting in Tm₃Fe₅O₁₂ Thin Films
Authors: R. Vidyasagar, G. L. S. Vilela, B. M. Guiraldelli, A. B. Henriques, J. Moodera
Abstract:
Nano-scaled magnetic systems that can have both magnetic and optical transitions controlled and manipulated by external means have received enormous research attention for their potential applications in magneto-optics and spintronic devices. Among several ferrimagnetic insulators, the Tm₃Fe₅O₁₂ (TmIG) has become a prototype material displaying huge perpendicular magnetic anisotropy. Nevertheless, the optical properties of nano-scale TnIG films have not yet been investigated. We report the observation of giant splitting in the optical transitions of high-quality thin films of Tm₃Fe₅O₁₂ (TmIG) grown by rf sputtering on gadolinium gallium garnet substrates (GGG-111) substrate. The optical absorbance profiles measured with optical absorption spectroscopy show a dual optical transition in visible frequency regimes attributed to the transitions of electrons from the O-2p valence band to the Fe-3d conduction band and from the O-2p valence band to the Fe-2p⁵3d⁶ excitonic states at the Γ-symmetric point of the TmIG Brillouin zone. When the thickness of the film is reduced from 120 nm to 7.5 nm, the 1st optical transition energy shifted from 2.98 to 3.11 eV ( ~130 meV), and the 2nd transition energy shifted from 2.62 to 2.56 eV (~ 60 meV). The giant band splitting of both transitions can be attributed to the population of excited states associated with the atomic modification pertaining to the compressive or tensile strains.Keywords: optical transitions, thin films, ferrimagnetic insulator, strains
Procedia PDF Downloads 521085 Performance of Steel Frame with a Viscoelastic Damper Device under Earthquake Excitation
Authors: M. H. Mehrabi, S. S. Ghodsi, Zainah Ibrahim, Meldi Suhatril
Abstract:
Standard routes for upgrading existing buildings to improve their seismic response can be expensive in terms of both time and cost due to the modifications required to the foundations. As a result, interest has grown in the installation of viscoelastic dampers (VEDs) in mid and high-rise buildings. Details of a low-cost viscoelastic passive control device, the rotary rubber braced damper (RRBD), are presented in this paper. This design has the added benefits of being lightweight and simple to install. Experimental methods and finite element modeling were used to assess the performance of the proposed VED design and its effect on building response during earthquakes. The analyses took into account the behaviors of non-linear materials and large deformations. The results indicate that the proposed RRBD provides high levels of energy absorption, ensuring the stable cyclical response of buildings in all scenarios considered. In addition, time history analysis was employed in this study to evaluate the RRBD’s ability to control the displacements and accelerations experienced by steel frame structures. It was demonstrated that the device responds well even at low displacements, highlighting its suitability for use in seismic events of varying severity.Keywords: dynamic response, passive control, performance test, seismic protection
Procedia PDF Downloads 1701084 Preparation and Characterization of Bioplastic from Sorghum Husks
Authors: Hannatu Abubakar Sani, Abubakar Umar Birnin Yauri, Aliyu Muhammad, Mujahid Salau, Aminu Musa, Hadiza Adamu Kwazo
Abstract:
The increase in the global population and advances in technology have made plastic materials to have wide applications in every aspect of life. However, the non-biodegradability of these petrochemical-based materials and their increasing accumulation in the environment has been a threat to the planet and has been a source of environmental concerns and hence, the driving force in the search for ‘green’ alternatives for which agricultural waste remains the front liner. Sorghum husk, an agricultural waste with potentials as a raw material in the production of bioplastic, was used in this research to prepare bioplastic using sulphuric acid-catalyzed acetylation process. The prepared bioplastic was characterized by X-ray diffraction and Fourier transform infrared spectroscopy (FTIR), and the structure of the prepared bioplastic was confirmed. The Fourier transform infrared spectroscopy (FTIR) spectra of the product displayed the presence of OH, C-H, C=O, and C-O absorption peaks. The bioplastic obtained is biodegradable and is affected by acid, salt, and alkali to a lesser extent. Other tests like solubility and swelling studies were carried out to ensure the commercial properties of these bioplastic materials. Therefore, this revealed that new bioplastics with better environmental and sustainable properties could be produced from agricultural waste, which may have applications in many industries.Keywords: agricultural waste, bioplastic, characterization, Sorghum Husk
Procedia PDF Downloads 1601083 Stability Optimization of NABH₄ via PH and H₂O:NABH₄ Ratios for Large Scale Hydrogen Production
Authors: Parth Mehta, Vedasri Bai Khavala, Prabhu Rajagopal, Tiju Thomas
Abstract:
There is an increasing need for alternative clean fuels, and hydrogen (H₂) has long been considered a promising solution with a high calorific value (142MJ/kg). However, the storage of H₂ and expensive processes for its generation have hindered its usage. Sodium borohydride (NaBH₄) can potentially be used as an economically viable means of H₂ storage. Thus far, there have been attempts to optimize the life of NaBH₄ (half-life) in aqueous media by stabilizing it with sodium hydroxide (NaOH) for various pH values. Other reports have shown that H₂ yield and reaction kinetics remained constant for all ratios of H₂O to NaBH₄ > 30:1, without any acidic catalysts. Here we highlight the importance of pH and H₂O: NaBH₄ ratio (80:1, 40:1, 20:1 and 10:1 by weight), for NaBH₄ stabilization (half-life reaction time at room temperature) and corrosion minimization of H₂ reactor components. It is interesting to observe that at any particular pH>10 (e.g., pH = 10, 11 and 12), the H₂O: NaBH₄ ratio does not have the expected linear dependence with stability. On the contrary, high stability was observed at the ratio of 10:1 H₂O: NaBH₄ across all pH>10. When the H₂O: NaBH₄ ratio is increased from 10:1 to 20:1 and beyond (till 80:1), constant stability (% degradation) is observed with respect to time. For practical usage (consumption within 6 hours of making NaBH₄ solution), 15% degradation at pH 11 and NaBH₄: H₂O ratio of 10:1 is recommended. Increasing this ratio demands higher NaOH concentration at the same pH, thus requiring a higher concentration or volume of acid (e.g., HCl) for H₂ generation. The reactions are done with tap water to render the results useful from an industrial standpoint. The observed stability regimes are rationalized based on complexes associated with NaBH₄ when solvated in water, which depend sensitively on both pH and NaBH₄: H₂O ratio.Keywords: hydrogen, sodium borohydride, stability optimization, H₂O:NaBH₄ ratio
Procedia PDF Downloads 1211082 Distribution Patterns of Trace Metals in Soils of Gbongan-Odeyinka-Orileowu Area, Southwestern Nigeria
Authors: T. A. Adesiyan, J. A. Adekoya A. Akinlua, N. Torto
Abstract:
One hundred and eighty six in situ soil samples of the B–horizon were collected around Gbongan–Odeyinka-Orileowu area, southwestern Nigeria, delineated by longitude 4°15l and 4°30l and latitude 7°14l and 7°31 for a reconnaissance geochemical soil survey. The objective was to determine the distribution pattern of some trace metals in the area with a view to discovering any indication of metallic mineralization. The samples were air–dried and sieved to obtain the minus 230 µ fractions which were used for pH determinations and subjected to hot aqua regia acid digestion. The solutions obtained were analyzed for Ag, As, Au, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sn, and Zn using atomic absorption spectrometric methods. The resulting data were subjected to simple statistical treatment and used in preparing distribution maps of the elements. With these, the spatial distributions of the elements in the area were discussed. The pH of the soils range from 4.70 to 7.59 and this reflects the geochemical distribution patterns of trace metals in the area. The spatial distribution maps of the elements showed similarity in the distributions of Co, Cr, Fe, Ni, Mn and Pb. This suggests close associations between these elements none of which showed any significant anomaly in the study. The associations might be due to the scavenging actions of Fe–Mn oxides on the elements. Only Ag, Au and Sn on one hand and Zn on the other hand showed significant anomalies, which are thought to be due to mineralization and anthropogenic activities respectively.Keywords: distribution, metals, Gbongan, Nigeria, mineralization anthropogenic
Procedia PDF Downloads 3231081 Catalytic Ammonia Decomposition: Cobalt-Molybdenum Molar Ratio Effect on Hydrogen Production
Authors: Elvis Medina, Alejandro Karelovic, Romel Jiménez
Abstract:
Catalytic ammonia decomposition represents an attractive alternative due to its high H₂ content (17.8% w/w), a product stream free of COₓ, among others; however, challenges need to be addressed for its consolidation as an H₂ chemical storage technology, especially, those focused on the synthesis of efficient bimetallic catalytic systems, as an alternative to the price and scarcity of ruthenium, the most active catalyst reported. In this sense, from the perspective of rational catalyst design, adjusting the main catalytic activity descriptor, a screening of supported catalysts with different compositional settings of cobalt-molybdenum metals is presented to evaluate their effect on the catalytic decomposition rate of ammonia. Subsequently, a kinetic study on the supported monometallic Co and Mo catalysts, as well as on the bimetallic CoMo catalyst with the highest activity is shown. The synthesis of catalysts supported on γ-alumina was carried out using the Charge Enhanced Dry Impregnation (CEDI) method, all with a 5% w/w loading metal. Seeking to maintain uniform dispersion, the catalysts were oxidized and activated (In-situ activation) using a flow of anhydrous air and hydrogen, respectively, under the same conditions: 40 ml min⁻¹ and 5 °C min⁻¹ from room temperature to 600 °C. Catalytic tests were carried out in a fixed-bed reactor, confirming the absence of transport limitations, as well as an Approach to equilibrium (< 1 x 10⁻⁴). The reaction rate on all catalysts was measured between 400 and 500 ºC at 53.09 kPa NH3. The synergy theoretically (DFT) reported for bimetallic catalysts was confirmed experimentally. Specifically, it was observed that the catalyst composed mainly of 75 mol% cobalt proved to be the most active in the experiments, followed by the monometallic cobalt and molybdenum catalysts, in this order of activity as referred to in the literature. A kinetic study was performed at 10.13 – 101.32 kPa NH3 and at four equidistant temperatures between 437 and 475 °C the data were adjusted to an LHHW-type model, which considered the desorption of nitrogen atoms from the active phase surface as the rate determining step (RDS). The regression analysis were carried out under an integral regime, using a minimization algorithm based on SLSQP. The physical meaning of the parameters adjusted in the kinetic model, such as the RDS rate constant (k₅) and the lumped adsorption constant of the quasi-equilibrated steps (α) was confirmed through their Arrhenius and Van't Hoff-type behavior (R² > 0.98), respectively. From an energetic perspective, the activation energy for cobalt, cobalt-molybdenum, and molybdenum was 115.2, 106.8, and 177.5 kJ mol⁻¹, respectively. With this evidence and considering the volcano shape described by the ammonia decomposition rate in relation to the metal composition ratio, the synergistic behavior of the system is clearly observed. However, since characterizations by XRD and TEM were inconclusive, the formation of intermetallic compounds should be still verified using HRTEM-EDS. From this point onwards, our objective is to incorporate parameters into the kinetic expressions that consider both compositional and structural elements and explore how these can maximize or influence H₂ production.Keywords: CEDI, hydrogen carrier, LHHW, RDS
Procedia PDF Downloads 611080 Separation and Characterization of Micobacterium bovis Cell Surface Lysate Antigen
Authors: Albina V. Moskvicheva, Gevorg G. Kazarian, Anna R. Valeeva, Marina A. Efimova, Malik N. Mukminov, Eduard A. Shuralev, Rustam Kh. Ravilov, Kamil S. Khaertynov
Abstract:
Improving the early diagnosis of tuberculosis and solving a number of problems associated with the differential diagnosis of Mycobacterium bovis infection, nonspecific tuberculin reactions caused by sensitization of the body by non-tuberculosis mycobacteria, is urgent. The filtrates and extracts of M. bovis cell surface components are promising antigens with diagnostic potential. The purpose of this study was to isolate and characterize antigenic proteins and determine the dominant M. bovis antigens recognized by the humoral immune system. The mycobacterial cells were homogenized on FastPrep-24. Gel-filtration chromatography was used to fractionate the lysates of cell surface component extracts and proteins isolated from M. bovis culture supernatant. The separated fractions were analyzed using two-dimensional gel electrophoresis followed by determination of antigen serological activity using immunoblot with specific hyperimmune rabbit blood serum. As a result of electrophoretic separation of components by molecular weight, 23 antigen fractions were obtained. Analysis of densitograms showed that the fractions contained two zones of antigens with pronounced serological activity, corresponding to molecular weights of 28 and 21 kDa. The high serological activity of the 28 kDa antigen was established by immunoblot using hyperimmune blood sera. Separated and characterized by M. bovis specific antigen with a molecular weight of 28 kDa was added to the collection of specific marker antigens for M. bovis.Keywords: antigen, gel-filtration chromatography, immunoblot, Mycobacterium bovis
Procedia PDF Downloads 1361079 Environmental and Safety Studies for Advanced Fuel Cycle Fusion Energy Systems: The ESSENTIAL Approach
Authors: Massimo Zucchetti
Abstract:
In the US, the SPARC-ARC projects of compact tokamaks are being developed: both are aimed at the technological demonstration of fusion power reactors with cutting-edge technology but following different design approaches. However, they show more similarities than differences in the fuel cycle, safety, radiation protection, environmental, waste and decommissioning aspects: all reactors, either experimental or demonstration ones, have to fulfill certain "essential" requirements to pass from virtual to real machines, to be built in the real world. The paper will discuss these "essential" requirements. Some of the relevant activities in these fields, carried out by our research group (ESSENTIAL group), will be briefly reported, with the aim of showing some methodology aspects that have been developed and might be of wider interest. Also, a non-competitive comparison between our results for different projects will be included when useful. The question of advanced D-He3 fuel cycles to be used for those machines will be addressed briefly. In the past, the IGNITOR project of a compact high-magnetic field D-T ignition experiment was found to be able to sustain limited D-He3 plasmas, while the Candor project was a more decisive step toward D-He3 fusion reactors. The following topics will be treated: Waste management and radioactive safety studies for advanced fusion power plants; development of compact high-field advanced fusion reactors; behavior of nuclear materials under irradiation: neutron-induced radioactivity due to side DT reactions, radiation damage; accident analysis; reactor siting.Keywords: advanced fuel fusion reactors, deuterium-helium3, high-field tokamaks, fusion safety
Procedia PDF Downloads 821078 Blood Oxygen Saturation Measurement System Using Broad-Band Light Source with LabVIEW Program
Authors: Myoung Ah Kim, Dong Ho Sin, Chul Gyu Song
Abstract:
Blood oxygen saturation system is a well-established, noninvasive photoplethysmographic method to monitor vital signs. Conventional blood oxygen saturation measurements for the two LED light source is the ambiguity of the oxygen saturation measurement principle and the measurement results greatly influenced and heat and motion artifact. A high accuracy in order to solve these problems blood oxygen saturation measuring method has been proposed using a broadband light source that can be easily understood by the algorithm. The measurement of blood oxygen saturation based on broad-band light source has advantage of simple testing facility and easy understanding. Broadband light source based on blood oxygen saturation measuring program proposed in this paper is a combination of LabVIEW and MATLAB. Using the wavelength range of 450 nm-750 nm using a floating light absorption of oxyhemoglobin and deoxyhemoglobin to measure the blood oxygen saturation. Hand movement is to fix the probe to the motor stage in order to prevent oxygen saturation measurement that affect the sample and probe kept constant interval. Experimental results show that the proposed method noticeably increases the accuracy and saves time compared with the conventional methods.Keywords: oxygen saturation, broad-band light source, CCD, light reflectance theory
Procedia PDF Downloads 4611077 Quorum-Sensing Driven Inhibitors for Mitigating Microbial Influenced Corrosion
Authors: Asma Lamin, Anna H. Kaksonen, Ivan Cole, Paul White, Xiao-Bo Chen
Abstract:
Microbiologically influenced corrosion (MIC) is a process in which microorganisms initiate, facilitate, or accelerate the electrochemical corrosion reactions of metallic components. Several reports documented that MIC accounts for about 20 to 40 % of the total cost of corrosion. Biofilm formation due to the presence of microorganisms on the surface of metal components is known to play a vital role in MIC, which can lead to severe consequences in various environmental and industrial settings. Quorum sensing (QS) system plays a major role in regulating biofilm formation and control the expression of some microbial enzymes. QS is a communication mechanism between microorganisms that involves the regulation of gene expression as a response to the microbial cell density within an environment. This process is employed by both Gram-positive and Gram-negative bacteria to regulate different physiological functions. QS involves production, detection, and responses to signalling chemicals, known as auto-inducers. QS controls specific processes important for the microbial community, such as biofilm formation, virulence factor expression, production of secondary metabolites and stress adaptation mechanisms. The use of QS inhibitors (QSIs) has been proposed as a possible solution to biofilm related challenges in many different applications. Although QSIs have demonstrated some strength in tackling biofouling, QSI-based strategies to control microbially influenced corrosion have not been thoroughly investigated. As such, our research aims to target the QS mechanisms as a strategy for mitigating MIC on metal surfaces in engineered systems.Keywords: quorum sensing, quorum quenching, biofilm, biocorrosion
Procedia PDF Downloads 911076 The Effects of Drying Technology on Rehydration Time and Quality of Mung Bean Vermicelli
Authors: N. P. Tien, S. Songsermpong, T. H. Quan
Abstract:
Mung bean vermicelli is a popular food in Asian countries and is made from mung bean starch. The preparation process involves several steps, including drying, which affects the structure and quality of the vermicelli. This study aims to examine the effects of different drying technologies on the rehydration time and quality of mung bean vermicelli. Three drying technologies, namely hot air drying, microwave continuous drying, and microwave vacuum drying, were used for the drying process. The vermicelli strands were dried at 45°C for 12h in a hot air dryer, at 70 Hz of conveyor belt speed inverter in a microwave continuous dryer, and at 30 W.g⁻¹ of microwave power density in a microwave vacuum dryer. The results showed that mung bean vermicelli dried using hot air drying had the longest rehydration time of 12.69 minutes. On the other hand, vermicelli dried through microwave continuous drying and microwave vacuum drying had shorter rehydration times of 2.79 minutes and 2.14 minutes, respectively. Microwave vacuum drying also resulted in larger porosity, higher water absorption, and cooking loss. The tensile strength and elasticity of vermicelli dried using hot air drying were higher compared to microwave drying technologies. The sensory evaluation did not reveal significant differences in most attributes among the vermicelli treatments. Overall, microwave drying technology proved to be effective in reducing rehydration time and producing good-quality mung bean vermicelli.Keywords: mung bean vermicelli, drying, hot air, microwave continuous, microwave vacuum
Procedia PDF Downloads 79