Search results for: intelligent monitoring system
18268 Sensor Monitoring of the Concentrations of Different Gases Present in Synthesis of Ammonia Based on Multi-Scale Entropy and Multivariate Statistics
Authors: S. Aouabdi, M. Taibi
Abstract:
The supervision of chemical processes is the subject of increased development because of the increasing demands on reliability and safety. An important aspect of the safe operation of chemical process is the earlier detection of (process faults or other special events) and the location and removal of the factors causing such events, than is possible by conventional limit and trend checks. With the aid of process models, estimation and decision methods it is possible to also monitor hundreds of variables in a single operating unit, and these variables may be recorded hundreds or thousands of times per day. In the absence of appropriate processing method, only limited information can be extracted from these data. Hence, a tool is required that can project the high-dimensional process space into a low-dimensional space amenable to direct visualization, and that can also identify key variables and important features of the data. Our contribution based on powerful techniques for development of a new monitoring method based on multi-scale entropy MSE in order to characterize the behaviour of the concentrations of different gases present in synthesis and soft sensor based on PCA is applied to estimate these variables.Keywords: ammonia synthesis, concentrations of different gases, soft sensor, multi-scale entropy, multivarite statistics
Procedia PDF Downloads 34518267 Study on Ecological Water Demand Evaluation of Typical Mountainous Rivers in Zhejiang Province: Taking Kaihua River as an Example
Authors: Kaiping Xu, Aiju You, Lei Hua
Abstract:
In view of the ecological environmental problems and protection needs of mountainous rivers in Zhejiang province, a suitable ecological water demand evaluation system was established based on investigation and monitoring. Taking the Kaihua river as an example, the research on ecological water demand and the current situation evaluation were carried out. The main types of ecological water demand in Majin River are basic ecological flow and lake wetland outside the river, and instream flow and water demands for water quality in Zhongcun river. In the wet season, each ecological water demand is 18.05m3/s and 2.56m3 / s, and in the dry season is 3.00m3/s and 0.61m3/s. Three indexes of flow, duration and occurrence time are used to evaluate the ecological water demand. The degree of ecological water demand in the past three years is low level of satisfaction. Meanwhile, the existing problems are analyzed, and put forward reasonable and operable safeguards and suggestions.Keywords: Zhejiang province, mountainous river, ecological water demand, Kaihua river, evaluation
Procedia PDF Downloads 24618266 Pharmacovigilance: An Empowerment in Safe Utilization of Pharmaceuticals
Authors: Pankaj Prashar, Bimlesh Kumar, Ankita Sood, Anamika Gautam
Abstract:
Pharmacovigilance (PV) is a rapidly growing discipline in pharmaceutical industries as an integral part of clinical research and drug development over the past few decades. PV carries a breadth of scope from drug manufacturing to its regulation with safer utilization. The fundamental steps of PV not only includes data collection and verification, coding of drugs with adverse drug reactions, causality assessment and timely reporting to the authorities but also monitoring drug manufacturing, safety issues, product quality and conduction of due diligence. Standardization of adverse event information, collaboration of multiple departments in different companies, preparation of documents in accordance to both governmental as well as non-governmental organizations (FDA, EMA, GVP, ICH) are the advancements in discipline of PV. De-harmonization, lack of predictive drug safety models, improper funding by government, non-reporting, and non-acceptability of ADRs by developing countries and reports directly from patients to the monitoring centres respectively are the major road backs of PV. Mandatory pharmacovigilance reporting, frequent inspections, funding by government, educating and training medical students, pharmacists and nurses in this segment can bring about empowerment in PV. This area needs to be addressed with a sense of urgency for the safe utilization of pharmaceuticals.Keywords: pharmacovigilance, regulatory, adverse event, drug safety
Procedia PDF Downloads 12718265 Optimal Analysis of Grounding System Design for Distribution Substation
Authors: Thong Lantharthong, Nattchote Rugthaicharoencheep, Att Phayomhom
Abstract:
This paper presents the electrical effect of two neighboring distribution substation during the construction phase. The size of auxiliary grounding grid have an effect on entire grounding system. The bigger the size of auxiliary grounding grid, the lower the GPR and maximum touch voltage, with the exception that when the two grids are unconnected, i.e. the bigger the size of auxiliary grounding grid, the higher the maximum step voltage. The results in this paper could be served as design guideline of grounding system, and perhaps remedy of some troublesome grounding grids in power distribution’s system. Modeling and simulation is carried out on the Current Distribution Electromagnetic interference Grounding and Soil structure (CDEGS) program. The simulation results exhibit the design and analysis of power system grounding and perhaps could be set as a standard in grounding system design and modification in distribution substations.Keywords: grounding system, touch voltage, step voltage, safety criteria
Procedia PDF Downloads 45518264 Comparative Study between Inertial Navigation System and GPS in Flight Management System Application
Authors: Othman Maklouf, Matouk Elamari, M. Rgeai, Fateh Alej
Abstract:
In modern avionics the main fundamental component is the flight management system (FMS). An FMS is a specialized computer system that automates a wide variety of in-flight tasks, reducing the workload on the flight crew to the point that modern civilian aircraft no longer carry flight engineers or navigators. The main function of the FMS is in-flight management of the flight plan using various sensors such as Global Positioning System (GPS) and Inertial Navigation System (INS) to determine the aircraft's position and guide the aircraft along the flight plan. GPS which is satellite based navigation system, and INS which generally consists of inertial sensors (accelerometers and gyroscopes). GPS is used to locate positions anywhere on earth, it consists of satellites, control stations, and receivers. GPS receivers take information transmitted from the satellites and uses triangulation to calculate a user’s exact location. The basic principle of an INS is based on the integration of accelerations observed by the accelerometers on board the moving platform, the system will accomplish this task through appropriate processing of the data obtained from the specific force and angular velocity measurements. Thus, an appropriately initialized inertial navigation system is capable of continuous determination of vehicle position, velocity and attitude without the use of the external information. The main objective of article is to introduce a comparative study between the two systems under different conditions and scenarios using MATLAB with SIMULINK software.Keywords: flight management system, GPS, IMU, inertial navigation system
Procedia PDF Downloads 30218263 Modeling of Particle Reduction and Volatile Compounds Profile during Chocolate Conching by Electronic Nose and Genetic Programming (GP) Based System
Authors: Juzhong Tan, William Kerr
Abstract:
Conching is one critical procedure in chocolate processing, where special flavors are developed, and smooth mouse feel the texture of the chocolate is developed due to particle size reduction of cocoa mass and other additives. Therefore, determination of the particle size and volatile compounds profile of cocoa bean is important for chocolate manufacturers to ensure the quality of chocolate products. Currently, precise particle size measurement is usually done by laser scattering which is expensive and inaccessible to small/medium size chocolate manufacturers. Also, some other alternatives, such as micrometer and microscopy, can’t provide good measurements and provide little information. Volatile compounds analysis of cocoa during conching, has similar problems due to its high cost and limited accessibility. In this study, a self-made electronic nose system consists of gas sensors (TGS 800 and 2000 series) was inserted to a conching machine and was used to monitoring the volatile compound profile of chocolate during the conching. A model correlated volatile compounds profiles along with factors including the content of cocoa, sugar, and the temperature during the conching to particle size of chocolate particles by genetic programming was established. The model was used to predict the particle size reduction of chocolates with different cocoa mass to sugar ratio (1:2, 1:1, 1.5:1, 2:1) at 8 conching time (15min, 30min, 1h, 1.5h, 2h, 4h, 8h, and 24h). And the predictions were compared to laser scattering measurements of the same chocolate samples. 91.3% of the predictions were within the range of later scatting measurement ± 5% deviation. 99.3% were within the range of later scatting measurement ± 10% deviation.Keywords: cocoa bean, conching, electronic nose, genetic programming
Procedia PDF Downloads 25718262 Leuco Dye-Based Thermochromic Systems for Application in Temperature Sensing
Authors: Magdalena Wilk-Kozubek, Magdalena Rowińska, Krzysztof Rola, Joanna Cybińska
Abstract:
Leuco dye-based thermochromic systems are classified as intelligent materials because they exhibit thermally induced color changes. Thanks to this feature, they are mainly used as temperature sensors in many industrial sectors. For example, placing a thermochromic material on a chemical reactor may warn about exceeding the maximum permitted temperature for a chemical process. Usually two components, a color former and a developer are needed to produce a system with irreversible color change. The color former is an electron donating (proton accepting) compound such as fluoran leuco dye. The developer is an electron accepting (proton donating) compound such as organic carboxylic acid. When the developer melts, the color former - developer complex is created and the termochromic system becomes colored. Typically, the melting point of the applied developer determines the temperature at which the color change occurs. When the lactone ring of the color former is closed, then the dye is in its colorless state. The ring opening, induced by the addition of a proton, causes the dye to turn into its colored state. Since the color former and the developer are often solid, they can be incorporated into polymer films to facilitate their practical use in industry. The objective of this research was to fabricate a leuco dye-based termochromic system that will irreversibly change color after reaching the temperature of 100°C. For this purpose, benzofluoran leuco dye (as color former) and phenoxyacetic acid (as developer with a melting point of 100°C) were introduced into the polymer films during the drop casting process. The film preparation process was optimized in order to obtain thin films with appropriate properties such as transparency, flexibility and homogeneity. Among the optimized factors were the concentration of benzofluoran leuco dye and phenoxyacetic acid, the type, average molecular weight and concentration of the polymer, and the type and concentration of the surfactant. The selected films, containing benzofluoran leuco dye and phenoxyacetic acid, were combined by mild heat treatment. Structural characterization of single and combined films was carried out by FTIR spectroscopy, morphological analysis was performed by optical microscopy and SEM, phase transitions were examined by DSC, color changes were investigated by digital photography and UV-Vis spectroscopy, while emission changes were studied by photoluminescence spectroscopy. The resulting thermochromic system is colorless at room temperature, but after reaching 100°C the developer melts and it turns irreversibly pink. Therefore, it could be used as an additional sensor to warn against boiling of water in power plants using water cooling. Currently used electronic temperature indicators are prone to faults and unwanted third-party actions. The sensor constructed in this work is transparent, thanks to which it can be unnoticed by an outsider and constitute a reliable reference for the person responsible for the apparatus.Keywords: color developer, leuco dye, thin film, thermochromism
Procedia PDF Downloads 10418261 Monitoring of Formaldehyde over Punjab Pakistan Using Car Max-Doas and Satellite Observation
Authors: Waqas Ahmed Khan, Faheem Khokhaar
Abstract:
Air pollution is one of the main perpetrators of climate change. GHGs cause melting of glaciers and cause change in temperature and heavy rain fall many gasses like Formaldehyde is not direct precursor that damage ozone like CO2 or Methane but Formaldehyde (HCHO) form glyoxal (CHOCHO) that has effect on ozone. Countries around the globe have unique air quality monitoring protocols to describe local air pollution. Formaldehyde is a colorless, flammable, strong-smelling chemical that is used in building materials and to produce many household products and medical preservatives. Formaldehyde also occurs naturally in the environment. It is produced in small amounts by most living organisms as part of normal metabolic processes. Pakistan lacks the monitoring facilities on larger scale to measure the atmospheric gasses on regular bases. Formaldehyde is formed from Glyoxal and effect mountain biodiversity and livelihood. So its monitoring is necessary in order to maintain and preserve biodiversity. Objective: Present study is aimed to measure atmospheric HCHO vertical column densities (VCDs) obtained from ground-base and compute HCHO data in Punjab and elevated areas (Rawalpindi & Islamabad) by satellite observation during the time period of 2014-2015. Methodology: In order to explore the spatial distributing of H2CO, various fields campaigns including international scientist by using car Max-Doas. Major focus was on the cities along national highways and industrial region of Punjab Pakistan. Level 2 data product of satellite instruments OMI retrieved by differential optical absorption spectroscopy (DOAS) technique are used. Spatio-temporal distribution of HCHO column densities over main cities and region of Pakistan has been discussed. Results: Results show the High HCHO column densities exceeding permissible limit over the main cities of Pakistan particularly the areas with rapid urbanization and enhanced economic growth. The VCDs value over elevated areas of Pakistan like Islamabad, Rawalpindi is around 1.0×1016 to 34.01×1016 Molecules’/cm2. While Punjab has values revolving around the figure 34.01×1016. Similarly areas with major industrial activity showed high amount of HCHO concentrations. Tropospheric glyoxal VCDs were found to be 4.75 × 1015 molecules/cm2. Conclusion: Results shows that monitoring site surrounded by Margalla hills (Islamabad) have higher concentrations of Formaldehyde. Wind data shows that industrial areas and areas having high economic growth have high values as they provide pathways for transmission of HCHO. Results obtained from this study would help EPA, WHO and air protection departments in order to monitor air quality and further preservation and restoration of mountain biodiversity.Keywords: air quality, formaldehyde, Max-Doas, vertical column densities (VCDs), satellite instrument, climate change
Procedia PDF Downloads 21418260 Simulation and Optimization of Hybrid Energy System Autonomous PV-Diesel-Wind Power with Battery Storage for Relay Antenna Telecommunication
Authors: Tahri Toufik, Bouchachia Mohamed, Braikia Oussama
Abstract:
The objective of this work is the design and optimization of a hybrid PV-Diesel-Wind power system with storage in order to power a relay antenna telecommunication isolated in Chlef region. The aim of the simulation of this hybrid system by the HOMER software is to determine the size and the number of each element of the system and to determine the optimal technical and economic configuration using monthly average values per year for a fixed charge antenna relay telecommunication of 22kWh/d.Keywords: HOMER, hybrid, PV-diesel-wind system, relay antenna telecommunication
Procedia PDF Downloads 52118259 Development of Mobile Application for Internship Program Management Using the Concept of Model View Controller (MVC) Pattern
Authors: Shutchapol Chopvitayakun
Abstract:
Nowadays, especially for the last 5 years, mobile devices, mobile applications and mobile users, through the deployment of wireless communication and mobile phone cellular network, all these components are growing significantly bigger and stronger. They are being integrated into each other to create multiple purposes and pervasive deployments into every business and non-business sector such as education, medicine, traveling, finance, real estate and many more. Objective of this study was to develop a mobile application for seniors or last-year students who enroll the internship program at each tertiary school (undergraduate school) and do onsite practice at real field sties, real organizations and real workspaces. During the internship session, all students as the interns are required to exercise, drilling and training onsite with specific locations and specific tasks or may be some assignments from their supervisor. Their work spaces are both private and government corporates and enterprises. This mobile application is developed under schema of a transactional processing system that enables users to keep daily work or practice log, monitor true working locations and ability to follow daily tasks of each trainee. Moreover, it provides useful guidance from each intern’s advisor, in case of emergency. Finally, it can summarize all transactional data then calculate each internship cumulated hours from the field practice session for each individual intern.Keywords: internship, mobile application, Android OS, smart phone devices, mobile transactional processing system, guidance and monitoring, tertiary education, senior students, model view controller (MVC)
Procedia PDF Downloads 31818258 Controversies and Contradiction in (IR) Reversibility and the Equilibrium of Reactive Systems
Authors: Joao Teotonio Manzi
Abstract:
Reversibility, irreversibility, equilibrium and steady-state that play a central role in the thermodynamic analysis of processes arising in the context of reactive systems are discussed in this article. Such concepts have generated substantial doubts, even among the most experienced researchers, and engineers, because from the literature, conclusive or definitive statements cannot be extracted. Concepts such as the time-reversibility of irreversible processes seem paradoxical, requiring further analysis. Equilibrium and reversibility, which appear to be of the same nature, have also been re-examined in the light of maximum entropy. The goal of this paper is to revisit and explore these concepts based on classical thermodynamics in order to have a better understanding them due to their impacts on technological advances, as a result, to generate an optimal procedure for designing, monitoring, and engineering optimization. Furthermore, an effective graphic procedure for dimensioning a Plug Flow Reactor has been provided. Thus, to meet the needs of chemical engineering from a simple conceptual analysis but with significant practical effects, a macroscopic approach is taken so as to integrate the different parts of this paper.Keywords: reversibility, equilibrium, steady-state, thermodynamics, reactive system
Procedia PDF Downloads 10918257 Optimal Operation of a Photovoltaic Induction Motor Drive Water Pumping System
Authors: Nelson K. Lujara
Abstract:
The performance characteristics of a photovoltaic induction motor drive water pumping system with and without maximum power tracker is analyzed and presented. The analysis is done through determination and assessment of critical loss components in the system using computer aided design (CAD) tools for optimal operation of the system. The results can be used to formulate a well-calibrated computer aided design package of photovoltaic water pumping systems based on the induction motor drive. The results allow the design engineer to pre-determine the flow rate and efficiency of the system to suit particular application.Keywords: photovoltaic, water pumping, losses, induction motor
Procedia PDF Downloads 30418256 Improvement of the Q-System Using the Rock Engineering System: A Case Study of Water Conveyor Tunnel of Azad Dam
Authors: Sahand Golmohammadi, Sana Hosseini Shirazi
Abstract:
Because the status and mechanical parameters of discontinuities in the rock mass are included in the calculations, various methods of rock engineering classification are often used as a starting point for the design of different types of structures. The Q-system is one of the most frequently used methods for stability analysis and determination of support systems of underground structures in rock, including tunnel. In this method, six main parameters of the rock mass, namely, the rock quality designation (RQD), joint set number (Jn), joint roughness number (Jr), joint alteration number (Ja), joint water parameter (Jw) and stress reduction factor (SRF) are required. In this regard, in order to achieve a reasonable and optimal design, identifying the effective parameters for the stability of the mentioned structures is one of the most important goals and the most necessary actions in rock engineering. Therefore, it is necessary to study the relationships between the parameters of a system and how they interact with each other and, ultimately, the whole system. In this research, it has attempted to determine the most effective parameters (key parameters) from the six parameters of rock mass in the Q-system using the rock engineering system (RES) method to improve the relationships between the parameters in the calculation of the Q value. The RES system is, in fact, a method by which one can determine the degree of cause and effect of a system's parameters by making an interaction matrix. In this research, the geomechanical data collected from the water conveyor tunnel of Azad Dam were used to make the interaction matrix of the Q-system. For this purpose, instead of using the conventional methods that are always accompanied by defects such as uncertainty, the Q-system interaction matrix is coded using a technique that is actually a statistical analysis of the data and determining the correlation coefficient between them. So, the effect of each parameter on the system is evaluated with greater certainty. The results of this study show that the formed interaction matrix provides a reasonable estimate of the effective parameters in the Q-system. Among the six parameters of the Q-system, the SRF and Jr parameters have the maximum and minimum impact on the system, respectively, and also the RQD and Jw parameters have the maximum and minimum impact on the system, respectively. Therefore, by developing this method, we can obtain a more accurate relation to the rock mass classification by weighting the required parameters in the Q-system.Keywords: Q-system, rock engineering system, statistical analysis, rock mass, tunnel
Procedia PDF Downloads 7618255 Futuristic Black Box Design Considerations and Global Networking for Real Time Monitoring of Flight Performance Parameters
Authors: K. Parandhama Gowd
Abstract:
The aim of this research paper is to conceptualize, discuss, analyze and propose alternate design methodologies for futuristic Black Box for flight safety. The proposal also includes global networking concepts for real time surveillance and monitoring of flight performance parameters including GPS parameters. It is expected that this proposal will serve as a failsafe real time diagnostic tool for accident investigation and location of debris in real time. In this paper, an attempt is made to improve the existing methods of flight data recording techniques and improve upon design considerations for futuristic FDR to overcome the trauma of not able to locate the block box. Since modern day communications and information technologies with large bandwidth are available coupled with faster computer processing techniques, the attempt made in this paper to develop a failsafe recording technique is feasible. Further data fusion/data warehousing technologies are available for exploitation.Keywords: flight data recorder (FDR), black box, diagnostic tool, global networking, cockpit voice and data recorder (CVDR), air traffic control (ATC), air traffic, telemetry, tracking and control centers ATTTCC)
Procedia PDF Downloads 57718254 Predicting Oil Spills in Real-Time: A Machine Learning and AIS Data-Driven Approach
Authors: Tanmay Bisen, Aastha Shayla, Susham Biswas
Abstract:
Oil spills from tankers can cause significant harm to the environment and local communities, as well as have economic consequences. Early predictions of oil spills can help to minimize these impacts. Our proposed system uses machine learning and neural networks to predict potential oil spills by monitoring data from ship Automatic Identification Systems (AIS). The model analyzes ship movements, speeds, and changes in direction to identify patterns that deviate from the norm and could indicate a potential spill. Our approach not only identifies anomalies but also predicts spills before they occur, providing early detection and mitigation measures. This can prevent or minimize damage to the reputation of the company responsible and the country where the spill takes place. The model's performance on the MV Wakashio oil spill provides insight into its ability to detect and respond to real-world oil spills, highlighting areas for improvement and further research.Keywords: Anomaly Detection, Oil Spill Prediction, Machine Learning, Image Processing, Graph Neural Network (GNN)
Procedia PDF Downloads 7918253 Creating a Digital Map to Monitor the Care of People Living with HIV/Aids in Porto Alegre, Brazil: An Experience Report
Authors: Tiago Sigal Linhares, Ana Amélia Nascimento da Silva Bones, Juliana Miola, McArthur Alexander Barrow, Airton Tetelbom Stein
Abstract:
Introduction: As a result of increased globalization and changing migration trends, it is expected that a significant portion of People Living with HIV/AIDS (PLWHA) will change their place of residence over time. In order to provide better health care, monitor the HIV epidemic and plan urban public health care and policies, there is a growing need to formulate a strategy for monitoring PLWHA care, location and migration patterns. The Porto Alegre District is characterized by a high prevalence of PLWHA and is considered one of the epicenters of HIV epidemic in Latin America. Objectives: The aim of this study is to create a digital and easily editable map in order to create a visual representation of the location of PLWHA and to monitor their migration within the city and the country in an effort to promote longitudinal care. Methods: This Experience Report used Google Maps Map Creator to generate an active digital map showing the location and changes in residence of 165 PLWHA who received care at two Primary Health Care (PHC) clinics, which attended an estimated population of five thousand patients, in downtown Porto Alegre over the last four years. Their current addresses were discovered in the unified Brazilian health care system digital records (e-SUS) and updated on the map. Results: A digital map with PLWHA current residence location was created. It was possible to demonstrate visually areas with a large concentration of PLWHA and the migration of the population within the city as wells as other cities, regions and states. Conclusions: An easily reproducible and free map could aid in PLWHA monitoring, urban public health planning, target interventions and situational diagnosis. Moreover, a visual representation of PLWHA location and migration could help bring more attention and investments to areas with geographic inequities or higher prevalence of PLWHA. It also enables notification of local PHC units of monitored patients inside their area, which are in clinical risk or with treatment abandonment through active case findings, improving the care of PLWHA.Keywords: health care, medical public health, theoretical and conceptual innovations, urban public health
Procedia PDF Downloads 12718252 The Temperature Effects on the Microstructure and Profile in Laser Cladding
Authors: P. C. Chiu, Jehnming Lin
Abstract:
In this study, a 50-W CO2 laser was used for the clad of 304L powders on the stainless steel substrate with a temperature sensor and image monitoring system. The laser power and cladding speed and focal position were modified to achieve the requirement of the workpiece flatness and mechanical properties. The numerical calculation is based on ANSYS to analyze the temperature change of the moving heat source at different surface positions when coating the workpiece, and the effect of the process parameters on the bath size was discussed. The temperature of stainless steel powder in the nozzle outlet reacting with the laser was simulated as a process parameter. In the experiment, the difference of the thermal conductivity in three-dimensional space is compared with single-layer cladding and multi-layer cladding. The heat dissipation pattern of the single-layer cladding is the steel plate and the multi-layer coating is the workpiece itself. The relationship between the multi-clad temperature and the profile was analyzed by the temperature signal from an IR pyrometer.Keywords: laser cladding, temperature, profile, microstructure
Procedia PDF Downloads 22718251 Using the UK as a Case Study to Assess the Current State of Large Woody Debris Restoration as a Tool for Improving the Ecological Status of Natural Watercourses Globally
Authors: Isabelle Barrett
Abstract:
Natural watercourses provide a range of vital ecosystem services, notably freshwater provision. They also offer highly heterogeneous habitat which supports an extreme diversity of aquatic life. Exploitation of rivers, changing land use and flood prevention measures have led to habitat degradation and subsequent biodiversity loss; indeed, freshwater species currently face a disproportionate rate of extinction compared to their terrestrial and marine counterparts. Large woody debris (LWD) encompasses the trees, large branches and logs which fall into watercourses, and is responsible for important habitat characteristics. Historically, natural LWD has been removed from streams under the assumption that it is not aesthetically pleasing and is thus ecologically unfavourable, despite extensive evidence contradicting this. Restoration efforts aim to replace lost LWD in order to reinstate habitat heterogeneity. This paper aims to assess the current state of such restoration schemes for improving fluvial ecological health in the UK. A detailed review of the scientific literature was conducted alongside a meta-analysis of 25 UK-based projects involving LWD restoration. Projects were chosen for which sufficient information was attainable for analysis, covering a broad range of budgets and scales. The most effective strategies for river restoration encompass ecological success, stakeholder engagement and scientific advancement, however few projects surveyed showed sensitivity to all three; for example, only 32% of projects stated biological aims. Focus tended to be on stakeholder engagement and public approval, since this is often a key funding driver. Consequently, there is a tendency to focus on the aesthetic outcomes of a project, however physical habitat restoration does not necessarily lead to direct biodiversity increases. This highlights the significance of rivers as highly heterogeneous environments with multiple interlinked processes, and emphasises a need for a stronger scientific presence in project planning. Poor scientific rigour means monitoring is often lacking, with varying, if any, definitions of success which are rarely pre-determined. A tendency to overlook negative or neutral results was apparent, with unjustified focus often put on qualitative results. The temporal scale of monitoring is typically inadequate to facilitate scientific conclusions, with only 20% of projects surveyed reporting any pre-restoration monitoring. Furthermore, monitoring is often limited to a few variables, with biotic monitoring often fish-focussed. Due to their longer life cycles and dispersal capability, fish are usually poor indicators of environmental change, making it difficult to attribute any changes in ecological health to restoration efforts. Although the potential impact of LWD restoration may be positive, this method of restoration could simply be making short-term, small-scale improvements; without addressing the underlying symptoms of degradation, for example water quality, the issue cannot be fully resolved. Promotion of standardised monitoring for LWD projects could help establish a deeper understanding of the ecology surrounding the practice, supporting movement towards adaptive management in which scientific evidence feeds back to practitioners, enabling the design of more efficient projects with greater ecological success. By highlighting LWD, this study hopes to address the difficulties faced within river management, and emphasise the need for a more holistic international and inter-institutional approach to tackling problems associated with degradation.Keywords: biological monitoring, ecological health, large woody debris, river management, river restoration
Procedia PDF Downloads 22118250 Analysis and Modeling of Photovoltaic System with Different Research Methods of Maximum Power Point Tracking
Authors: Mehdi Ameur, Ahmed Essakdi, Tamou Nasser
Abstract:
The purpose of this paper is the analysis and modeling of the photovoltaic system with MPPT techniques. This system is developed by combining the models of established solar module and DC-DC converter with the algorithms of perturb and observe (P&O), incremental conductance (INC) and fuzzy logic controller(FLC). The system is simulated under different climate conditions and MPPT algorithms to determine the influence of these conditions on characteristic power-voltage of PV system. According to the comparisons of the simulation results, the photovoltaic system can extract the maximum power with precision and rapidity using the MPPT algorithms discussed in this paper.Keywords: photovoltaic array, maximum power point tracking, MPPT, perturb and observe, P&O, incremental conductance, INC, hill climbing, HC, fuzzy logic controller, FLC
Procedia PDF Downloads 43118249 Development and Application of the Proctoring System with Face Recognition for User Registration on the Educational Information Portal
Authors: Meruyert Serik, Nassipzhan Duisegaliyeva, Danara Tleumagambetova, Madina Ermaganbetova
Abstract:
This research paper explores the process of creating a proctoring system by evaluating the implementation of practical face recognition algorithms. Students of educational programs reviewed the research work "6B01511-Computer Science", "7M01511-Computer Science", "7M01525- STEM Education," and "8D01511-Computer Science" of Eurasian National University named after L.N. Gumilyov. As an outcome, a proctoring system will be created, enabling the conduction of tests and ensuring academic integrity checks within the system. Due to the correct operation of the system, test works are carried out. The result of the creation of the proctoring system will be the basis for the automation of the informational, educational portal developed by machine learning.Keywords: artificial intelligence, education portal, face recognition, machine learning, proctoring
Procedia PDF Downloads 13218248 Propellant Less Propulsion System Using Microwave Thrusters
Authors: D. Pradeep Mitra, Prafulla
Abstract:
Looking to the word propellant-less system it makes us to believe that it is an impossible one, but this paper demonstrates the use of microwaves to create a system which makes impossible to be possible, it means a propellant-less propulsion system using microwaves. In these thrusters, microwaves are radiated into a sealed parabolic cavity through a waveguide, which act on the surface of the cavity and follow the axis of the thrusters to produce thrust. The advantages of these thrusters are: (1) Producing thrust without propellant; without erosion, wear, and thermal stress from the hot exhaust gas; and at the same time increasing quality. (2) If the microwave output power is stable, the performance of thrusters is not affected by its working environment. This paper is demonstrated from general maxwell equations. These equations are used to create the mathematical model of the thrusters. These mathematical model helps us to calculate the Q factor and calculate the approximate thrust which would be generated in the system.Keywords: propellant less, microwaves, parabolic wave guide, propulsion system
Procedia PDF Downloads 38618247 Numerical Simulation of Flow and Heat Transfer Characteristics with Various Working Conditions inside a Reactor of Wet Scrubber
Authors: Jonghyuk Yoon, Hyoungwoon Song, Youngbae Kim, Eunju Kim
Abstract:
Recently, with the rapid growth of semiconductor industry, lots of interests have been focused on after treatment system that remove the polluted gas produced from semiconductor manufacturing process, and a wet scrubber is the one of the widely used system. When it comes to mechanism of removing the gas, the polluted gas is removed firstly by chemical reaction in a reactor part. After that, the polluted gas stream is brought into contact with the scrubbing liquid, by spraying it with the liquid. Effective design of the reactor part inside the wet scrubber is highly important since removal performance of the polluted gas in the reactor plays an important role in overall performance and stability. In the present study, a CFD (Computational Fluid Dynamics) analysis was performed to figure out the thermal and flow characteristics inside unit a reactor of wet scrubber. In order to verify the numerical result, temperature distribution of the numerical result at various monitoring points was compared to the experimental result. The average error rates (12~15%) between them was shown and the numerical result of temperature distribution was in good agreement with the experimental data. By using validated numerical method, the effect of the reactor geometry on heat transfer rate was also taken into consideration. Uniformity of temperature distribution was improved about 15%. Overall, the result of present study could be useful information to identify the fluid behavior and thermal performance for various scrubber systems. This project is supported by the ‘R&D Center for the reduction of Non-CO₂ Greenhouse gases (RE201706054)’ funded by the Korea Ministry of Environment (MOE) as the Global Top Environment R&D Program.Keywords: semiconductor, polluted gas, CFD (Computational Fluid Dynamics), wet scrubber, reactor
Procedia PDF Downloads 14818246 Development of a Low-Cost Smart Insole for Gait Analysis
Authors: S. M. Khairul Halim, Mojtaba Ghodsi, Morteza Mohammadzaheri
Abstract:
Gait analysis is essential for diagnosing musculoskeletal and neurological conditions. However, current methods are often complex and expensive. This paper introduces a methodology for analysing gait parameters using a smart insole with a built-in accelerometer. The system measures stance time, swing time, step count, and cadence and wirelessly transmits data to a user-friendly IoT dashboard for centralized processing. This setup enables remote monitoring and advanced data analytics, making it a versatile tool for medical diagnostics and everyday usage. Integration with IoT enhances the portability and connectivity of the device, allowing for secure, encrypted data access over the Internet. This feature supports telemedicine and enables personalized treatment plans tailored to individual needs. Overall, the approach provides a cost-effective (almost 25 GBP), accurate, and user-friendly solution for gait analysis, facilitating remote tracking and customized therapy.Keywords: gait analysis, IoT, smart insole, accelerometer sensor
Procedia PDF Downloads 2618245 Development of Web Application for Warehouse Management System: A Case Study of Ceramics Factory
Authors: Thanaphat Suwanaklang, Supaporn Suwannarongsri
Abstract:
Presently, there are many industries in Thailand producing various products for both domestic distribution and export to foreign countries. Warehouse is one of the most important areas of business needing to store their products. Such businesses need to have a suitable warehouse management system for reducing the storage time and using the space as much as possible. This paper proposes the development of a web application for a warehouse management system. One of the ceramics factories in Thailand is conducted as a case study. By applying the ABC analysis, fixed location, commodity system, ECRS, and 7-waste theories and principles, the web application for the warehouse management system of the selected ceramics factory is developed to design the optimal storage area for groups of products and design the optimal routes of forklifts. From experimental results, it was found that the warehouse management system developed via the web application can reduce the travel distance of forklifts and the time of searching for storage area by 100% once compared with the conventional method. In addition, the entire storage area can be on-line and real-time monitored.Keywords: warehouse management system, warehouse design method, logistics system, web application
Procedia PDF Downloads 14018244 Determination of Gross Alpha and Gross Beta Activity in Water Samples by iSolo Alpha/Beta Counting System
Authors: Thiwanka Weerakkody, Lakmali Handagiripathira, Poshitha Dabare, Thisari Guruge
Abstract:
The determination of gross alpha and beta activity in water is important in a wide array of environmental studies and these parameters are considered in international legislations on the quality of water. This technique is commonly applied as screening method in radioecology, environmental monitoring, industrial applications, etc. Measuring of Gross Alpha and Beta emitters by using iSolo alpha beta counting system is an adequate nuclear technique to assess radioactivity levels in natural and waste water samples due to its simplicity and low cost compared with the other methods. Twelve water samples (Six samples of commercially available bottled drinking water and six samples of industrial waste water) were measured by standard method EPA 900.0 consisting of the gas-less, firm wear based, single sample, manual iSolo alpha beta counter (Model: SOLO300G) with solid state silicon PIPS detector. Am-241 and Sr90/ Y90 calibration standards were used to calibrate the detector. The minimum detectable activities are 2.32mBq/L and 406mBq/L, for alpha and beta activity, respectively. Each of the 2L water samples was evaporated (at low heat) to a small volume and transferred into 50mm stainless steel counting planchet evenly (for homogenization) and heated by IR lamp and the constant weighted residue was obtained. Then the samples were counted for gross alpha and beta. Sample density on the planchet area was maintained below 5mg/cm. Large quantities of solid wastes sludges and waste water are generated every year due to various industries. This water can be reused for different applications. Therefore implementation of water treatment plants and measuring water quality parameters in industrial waste water discharge is very important before releasing them into the environment. This waste may contain different types of pollutants, including radioactive substances. All these measured waste water samples having gross alpha and beta activities, lower than the maximum tolerance limits for industrial waste water discharge of industrial waste in to inland surface water, that is 10-9µCi/mL and 10-8µCi/mL for gross alpha and beta respectively (National Environmental Act, No. 47 of 1980). This is according to extraordinary gazette of the democratic socialist republic of Sri Lanka in February 2008. The measured water samples were below the recommended radioactivity levels and do not pose any radiological hazard when releasing the environment. Drinking water is an essential requirement of life. All the drinking water samples were below the permissible levels of 0.5Bq/L for gross alpha activity and 1Bq/L for gross beta activity. The values have been proposed by World Health Organization in 2011; therefore the water is acceptable for consumption of humans without any further clarification with respect to their radioactivity. As these screening levels are very low, the individual dose criterion (IDC) would usually not be exceeded (0.1mSv y⁻¹). IDC is a criterion for evaluating health risks from long term exposure to radionuclides in drinking water. Recommended level of 0.1mSv/y expressed a very low level of health risk. This monitoring work will be continued further for environmental protection purposes.Keywords: drinking water, gross alpha, gross beta, waste water
Procedia PDF Downloads 20118243 Energy-Aware Scheduling in Real-Time Systems: An Analysis of Fair Share Scheduling and Priority-Driven Preemptive Scheduling
Authors: Su Xiaohan, Jin Chicheng, Liu Yijing, Burra Venkata Durga Kumar
Abstract:
Energy-aware scheduling in real-time systems aims to minimize energy consumption, but issues related to resource reservation and timing constraints remain challenges. This study focuses on analyzing two scheduling algorithms, Fair-Share Scheduling (FFS) and Priority-Driven Preemptive Scheduling (PDPS), for solving these issues and energy-aware scheduling in real-time systems. Based on research on both algorithms and the processes of solving two problems, it can be found that Fair-Share Scheduling ensures fair allocation of resources but needs to improve with an imbalanced system load, and Priority-Driven Preemptive Scheduling prioritizes tasks based on criticality to meet timing constraints through preemption but relies heavily on task prioritization and may not be energy efficient. Therefore, improvements to both algorithms with energy-aware features will be proposed. Future work should focus on developing hybrid scheduling techniques that minimize energy consumption through intelligent task prioritization, resource allocation, and meeting time constraints.Keywords: energy-aware scheduling, fair-share scheduling, priority-driven preemptive scheduling, real-time systems, optimization, resource reservation, timing constraints
Procedia PDF Downloads 12318242 Effect of Adding Horizontal Steel Bracing System to Ordinary Moment Steel Frames Subjected to Wind Load
Authors: Yousef Al-Qaryouti, Besan Alagawani
Abstract:
The main concern of this study is to evaluate the effect of adding horizontal steel bracing system to ordinary moment resisting steel frames subjected to wind load. Similar frames without bracing systems are also to be compared. A general analytical study was carried out to obtain the influence of such system in resisting wind load. Linear static analysis has been carried out using ETABS software by applying fixed wind load defined according to ASCE7-10 for three-, six-, nine-, and twelve-story ordinary moment steel frame buildings including and not including horizontal steel bracing system. The results showed that the lateral drift due to wind load decreased by adding horizontal bracing system. Also, the results show that effect of such system is more efficient to low-rise buildings.Keywords: horizontal bracing system, steel moment frames, wind load resisting system, linear static analysis
Procedia PDF Downloads 29118241 An Architecture Framework for Design of Assembly Expert System
Authors: Chee Fai Tan, L. S. Wahidin, S. N. Khalil
Abstract:
Nowadays, manufacturing cost is one of the important factors that will affect the product cost as well as company profit. There are many methods that have been used to reduce the manufacturing cost in order for a company to stay competitive. One of the factors that effect manufacturing cost is the time. Expert system can be used as a method to reduce the manufacturing time. The purpose of the expert system is to diagnose and solve the problem of design of assembly. The paper describes an architecture framework for design of assembly expert system that focuses on commercial vehicle seat manufacturing industry.Keywords: design of assembly, expert system, vehicle seat, mechanical engineering
Procedia PDF Downloads 44318240 Introduction of an Approach of Complex Virtual Devices to Achieve Device Interoperability in Smart Building Systems
Authors: Thomas Meier
Abstract:
One of the major challenges for sustainable smart building systems is to support device interoperability, i.e. connecting sensor or actuator devices from different vendors, and present their functionality to the external applications. Furthermore, smart building systems are supposed to connect with devices that are not available yet, i.e. devices that become available on the market sometime later. It is of vital importance that a sustainable smart building platform provides an appropriate external interface that can be leveraged by external applications and smart services. An external platform interface must be stable and independent of specific devices and should support flexible and scalable usage scenarios. A typical approach applied in smart home systems is based on a generic device interface used within the smart building platform. Device functions, even of rather complex devices, are mapped to that generic base type interface by means of specific device drivers. Our new approach, presented in this work, extends that approach by using the smart building system’s rule engine to create complex virtual devices that can represent the most diverse properties of real devices. We examined and evaluated both approaches by means of a practical case study using a smart building system that we have developed. We show that the solution we present allows the highest degree of flexibility without affecting external application interface stability and scalability. In contrast to other systems our approach supports complex virtual device configuration on application layer (e.g. by administration users) instead of device configuration at platform layer (e.g. platform operators). Based on our work, we can show that our approach supports almost arbitrarily flexible use case scenarios without affecting the external application interface stability. However, the cost of this approach is additional appropriate configuration overhead and additional resource consumption at the IoT platform level that must be considered by platform operators. We conclude that the concept of complex virtual devices presented in this work can be applied to improve the usability and device interoperability of sustainable intelligent building systems significantly.Keywords: Internet of Things, smart building, device interoperability, device integration, smart home
Procedia PDF Downloads 27418239 Elements of Usability and Sociability in Activity Management System for e-Masjid
Authors: Hidayah bt Rahmalan, Marhazli Kipli, Muhammad Suffian Sikandar Ghani, Maisarah Abu, Muhammad Faisal Ashaari, Norlizam Md Sukiban
Abstract:
This study presents an example of activity management system for e-Masjid implementing elements of usability and sociability. It is expected to resolve the shortcomings of the most e-Masjid that provide lot of activities to their community. However, the data on handling a lot of activities or events in which involve a lot of people will be difficult to manipulate. Thus, this paper presents the usability and sociability element on an activity management system that not only eases the job for the user but being practical for future when the community join any events. For the time being, this activity management system was only applied for Sayyidina Abu Bakar Mosque in Utem, Malacca.Keywords: e-masjid, usability, sociability, activity management system
Procedia PDF Downloads 369