Search results for: gross energy
7077 Simulation Tools for Training in the Case of Energy Sector Crisis
Authors: H. Malachova, A. Oulehlova, D. Rezac
Abstract:
Crisis preparedness training is the best possible strategy for identifying weak points, understanding vulnerability, and finding possible strategies for mitigation of blackout consequences. Training represents an effective tool for developing abilities and skills to cope with crisis situations. This article builds on the results of the research carried out in the field of preparation, realization, process, and impacts of training on subjects of energy sector critical infrastructure as a part of crisis preparedness. The research has revealed that the subjects of energy sector critical infrastructure have not realized training and therefore are not prepared for the restoration of the energy supply and black start after blackout regardless of the fact that most subjects state blackout and subsequent black start as key dangers. Training, together with mutual communication and processed crisis documentation, represent a basis for successful solutions for dealing with emergency situations. This text presents the suggested model of SIMEX simulator as a tool which supports managing crisis situations, containing training environment. Training models, possibilities of constructive simulation making use of non-aggregated as well as aggregated entities and tools of communication channels of individual simulator nodes have been introduced by the article.Keywords: communication, energetic critical infrastructure, training, simulation
Procedia PDF Downloads 3867076 Future trends of MED-TVC Desalination Technology
Authors: Irfan Wazeer
Abstract:
Desalination has become one of the major water treatment process in several countries around the world where shortage of water is a serious problem. Energy consumption is a vital economic factor in selecting the type of desalination processes because current desalination processes require large amount of energy which is costly. Multi-effect desalination system with thermal vapor compression (MED-TVC) is particularly more attractive than other thermal desalination systems due to its low energy consumption. MED-TVC is characterized by high performance ratio (PR), easier operation, low maintenance requirements and simple geometry. These attractive features make MED-TVC highly competitive to other well established desalination techniques that include the reverse osmosis (RO) and multi-stage flash desalination (MSF). The primary goal of this paper is to present a preview of some aspects related with the theory of the technology, parametric study of the MED-TVC systems and its development. It will analyzed the current and future aspects of the MED-TVC technology in view of latest installed plants.Keywords: MED-TVC, parallel feed, performance ratio, GOR
Procedia PDF Downloads 2617075 An Integrated Emergency Management System for the Tourism Industry in Oman
Authors: Majda Al Salti
Abstract:
Tourism industry is considered globally as one of the leading industries due to its noticeable contribution to countries' gross domestic product (GDP) and job creation. However, tourism is vulnerable to crisis and disaster that requires its preparedness. With its limited capabilities, there is a need to improve links and the understanding between the tourism industry and the emergency services, thus facilitating future emergency response to any potential incident. This study aims to develop the concept of an integrated emergency management system for the tourism industry. The study used face-to-face semi-structured interviews to evaluate the level of crisis and disaster preparedness of the tourism industry in Oman. The findings suggested that there is a lack of understanding of crisis and disaster management, and hence preparedness level among Oman Tourism Authorities appears to be under-expectation. Therefore, a clear need for tourism sector inter- and intra-integration and collaboration is important in the pre-disaster stage. The need for such integrations can help the tourism industry in Oman to prepare for future incidents as well as identifying its requirements in time of crisis for effective response.Keywords: tourism, emergency services, crisis, disaster
Procedia PDF Downloads 1227074 On the Efficiency of a Double-Cone Gravitational Motor and Generator
Authors: Barenten Suciu, Akio Miyamura
Abstract:
In this paper, following the study-case of an inclined plane gravitational machine, efficiency of a double-cone gravitational motor and generator is evaluated. Two types of efficiency ratios, called translational efficiency and rotational efficiency, are defined relative to the intended duty of the gravitational machine, which can be either the production of translational kinetic energy, or rotational kinetic energy. One proved that, for pure rolling movement of the double- cone, in the absence of rolling friction, the total mechanical energy is conserved. In such circumstances, as the motion of the double-cone progresses along rails, the translational efficiency decreases and the rotational efficiency increases, in such way that sum of the rotational and translational efficiencies remains unchanged and equal to 1. Results obtained allow a comparison of the gravitational machine with other types of motor-generators, in terms of the achievable efficiency.Keywords: efficiency, friction, gravitational motor and generator, rolling and sliding, truncated double-cone
Procedia PDF Downloads 2937073 Energy Metabolites Show Cross-Protective Plastic Responses for Stress Resistance in a Circumtropical Drosophila Species
Authors: Ankita Pathak, Ashok Munjal, Ravi Parkash
Abstract:
Plastic responses to multiple environmental stressors in wet or dry seasonal populations of tropical Drosophila species have received less attention. We tested plastic effects of heat hardening, acclimation to drought or starvation; and changes in trehalose, proline and body lipids in D. ananassae flies reared under wet or dry season specific conditions. Wet season flies revealed significant increase in heat knockdown, starvation resistance and body lipids after heat hardening. However, accumulation of proline was observed only after desiccation acclimation of dry season flies while wet season flies elicited no proline but trehalose only. Therefore, drought-induced proline can be a marker metabolite for dry season flies. Further, partial utilization of proline and trehalose under heat hardening reflects their possible thermoprotective effects. Heat hardening elicited cross-protection to starvation stress. Stressor-specific accumulation or utilization, as well as rates of metabolic change for each energy metabolite, were significantly higher in wet season flies than dry season flies. Energy metabolite changes due to inter-related stressors (heat vs. desiccation or starvation) resulted in possible maintenance of energetic homeostasis in wet or dry season flies. Thus, low or high humidity induced plastic changes in energy metabolites can provide cross-protection to seasonally varying climatic stressors.Keywords: wet-dry seasons, plastic changes, stress related traits, energy metabolites, cross protection
Procedia PDF Downloads 1747072 Investigation of Chlorophylls a and b Interaction with Inner and Outer Surfaces of Single-Walled Carbon Nanotube Using Molecular Dynamics Simulation
Authors: M. Dehestani, M. Ghasemi-Kooch
Abstract:
In this work, adsorption of chlorophylls a and b pigments in aqueous solution on the inner and outer surfaces of single-walled carbon nanotube (SWCNT) has been studied using molecular dynamics simulation. The linear interaction energy algorithm has been used to calculate the binding free energy. The results show that the adsorption of two pigments is fine on the both positions. Although there is the close similarity between these two pigments, their interaction with the nanotube is different. This result is useful to separate these pigments from one another. According to interaction energy between the pigments and carbon nanotube, interaction between these pigments-SWCNT on the inner surface is stronger than the outer surface. The interaction of SWCNT with chlorophylls phytol tail is stronger than the interaction of SWCNT with porphyrin ring of chlorophylls.Keywords: adsorption, chlorophyll, interaction, molecular dynamics simulation, nanotube
Procedia PDF Downloads 2367071 The Effect of Flue Gas Condensation on the Exergy Efficiency and Economic Performance of a Waste-To-Energy Plant
Authors: Francis Chinweuba Eboh, Tobias Richards
Abstract:
In this study, a waste-to-energy combined heat and power plant under construction was modelled and simulated with the Aspen Plus software. The base case process plant was evaluated and compared when integrated with flue gas condensation (FGC) in order to find out the impact of the exergy efficiency and economic feasibility as well as the effect of overall system exergy losses and revenue generated in the investigated plant. The economic evaluations were carried out using the vendor cost data from Aspen process economic analyser. The results indicate that 4 % increase in the exergy efficiency and 29 % reduction in the exergy loss in the flue gas were obtained when the flue gas condensation was incorporated. Furthermore, with the integrated FGC, the net present values (NPV) and income generated in the base process plant were increased by 29 % and 10 % respectively after 20 years of operation.Keywords: economic feasibility, exergy efficiency, exergy losses, flue gas condensation, waste-to-energy
Procedia PDF Downloads 1967070 Design of Residential Geothermal Cooling System in Kuwait
Authors: Tebah KH A AlFouzan, Meznah Dahlous Ali Alkreebani, Fatemah Salem Dekheel Alrasheedi, Hanadi Bandar Rughayan AlNomas, Muneerah Mohammad Sulaiman ALOjairi
Abstract:
Article spotlights the heat transfer process based beneath the earth’s surface. The process starts by exchanging the heat found in the building as fluid in the pipes absorbs it, then transports it down the soil consuming cool temperature exchange, recirculating, and rebounding to deliver cool air. This system is a renewable energy that is reliable and sustainable. The analysis showed the disposal of fossil fuels, energy preservation, 400% efficiency, long lifespan, and lower maintenance. Investigation displays the system’s types of design, whether open or closed loop and piping layout. Finally, the geothermal cooling study presents the challenges of creating a prototype in Kuwait, as constraints are applicable due to geography.Keywords: cooling system, engineering, geothermal cooling, natural ventilation, renewable energy
Procedia PDF Downloads 917069 Enhancing Building Performance Simulation Through Artificial Intelligence
Authors: Thamer Mahmmoud Muhammad Al Jbarat
Abstract:
Building Performance Simulation plays a crucial role in optimizing energy efficiency, comfort, and sustainability in buildings. This paper explores the integration of Artificial Intelligence techniques into Building Performance Simulation to enhance accuracy, efficiency, and adaptability. The synthesis of Artificial Intelligence and Building Performance Simulation offers promising avenues for addressing complex building dynamics, optimizing energy consumption, and improving occupants' comfort. This paper examines various Artificial Intelligence methodologies and their applications in Building Performance Simulation, highlighting their potential benefits and challenges. Through a comprehensive review of existing literature and case studies, this paper presents insights into the current state, future directions, and implications of Artificial Intelligence driven Building Performance Simulation on the built environmentKeywords: artificial intelligence, building performance, energy efficiency, building performance simulation, buildings sustainability, built environment.
Procedia PDF Downloads 337068 Comparison Analysis of Fuzzy Logic Controler Based PV-Pumped Hydro and PV-Battery Storage Systems
Authors: Seada Hussen, Frie Ayalew
Abstract:
Integrating different energy resources, like solar PV and hydro, is used to ensure reliable power to rural communities like Hara village in Ethiopia. Hybrid power system offers power supply for rural villages by providing an alternative supply for the intermittent nature of renewable energy resources. The intermittent nature of renewable energy resources is a challenge to electrifying rural communities in a sustainable manner with solar resources. Major rural villages in Ethiopia are suffering from a lack of electrification, that cause our people to suffer deforestation, travel for long distance to fetch water, and lack good services like clinic and school sufficiently. The main objective of this project is to provide a balanced, stable, reliable supply for Hara village, Ethiopia using solar power with a pumped hydro energy storage system. The design of this project starts by collecting data from villages and taking solar irradiance data from NASA. In addition to this, geographical arrangement and location are also taken into consideration. After collecting this, all data analysis and cost estimation or optimal sizing of the system and comparison of solar with pumped hydro and solar with battery storage system is done using Homer Software. And since solar power only works in the daytime and pumped hydro works at night time and also at night and morning, both load will share to cover the load demand; this need controller designed to control multiple switch and scheduling in this project fuzzy logic controller is used to control this scenario. The result of the simulation shows that solar with pumped hydro energy storage system achieves good results than with a battery storage system since the comparison is done considering storage reliability, cost, storage capacity, life span, and efficiency.Keywords: pumped hydro storage, solar energy, solar PV, battery energy storage, fuzzy logic controller
Procedia PDF Downloads 867067 FACTS Based Stabilization for Smart Grid Applications
Authors: Adel. M. Sharaf, Foad H. Gandoman
Abstract:
Nowadays, Photovoltaic-PV Farms/ Parks and large PV-Smart Grid Interface Schemes are emerging and commonly utilized in Renewable Energy distributed generation. However, PV-hybrid-Dc-Ac Schemes using interface power electronic converters usually has negative impact on power quality and stabilization of modern electrical network under load excursions and network fault conditions in smart grid. Consequently, robust FACTS based interface schemes are required to ensure efficient energy utilization and stabilization of bus voltages as well as limiting switching/fault onrush current condition. FACTS devices are also used in smart grid-Battery Interface and Storage Schemes with PV-Battery Storage hybrid systems as an elegant alternative to renewable energy utilization with backup battery storage for electric utility energy and demand side management to provide needed energy and power capacity under heavy load conditions. The paper presents a robust interface PV-Li-Ion Battery Storage Interface Scheme for Distribution/Utilization Low Voltage Interface using FACTS stabilization enhancement and dynamic maximum PV power tracking controllers. Digital simulation and validation of the proposed scheme is done using MATLAB/Simulink software environment for Low Voltage- Distribution/Utilization system feeding a hybrid Linear-Motorized inrush and nonlinear type loads from a DC-AC Interface VSC-6-pulse Inverter Fed from the PV Park/Farm with a back-up Li-Ion Storage Battery.Keywords: AC FACTS, smart grid, stabilization, PV-battery storage, Switched Filter-Compensation (SFC)
Procedia PDF Downloads 4157066 Review of Existing Pumped Storage Technologies and their Application in the Case of Bistrica Pump Storage Plant
Authors: Dušan Bojović, Wei Huang, Zdravko Stojanović, Jovan Ilić
Abstract:
In an era of ever-growing electricity generation from renewable energy sources, namely wind and solar, a need for reliable energy storage and intensive balancing of the electric power system gains significance. For decades, pump storage hydroelectric power plants have proven to be an important asset regarding the storage of generated electricity. However, with the increasing overall share of wind and solar in electric systems at large, the importance of electric grid stability keeps growing. A large pump storage project, the Bistrica Pump Storage Plant (PSP), is currently under development in Serbia. The Bistrica PSP will be designed as a 600+ MW power plant, which is envisaged as a significant contributor to the Serbian power grid stability as more and more renewable energy sources are implemented over time. PSP Bistrica is seen as a strategically important project on the green agenda path of the Electric Power Industry of Serbia as a necessary pre-condition for the safe implementation of other renewable energy sources. The importance of such a plant would also play an important role in reducing the electricity production from coal, i.e., thermoelectric power plants. During the project’s development, various techniques and technologies are evaluated for the purpose of determining the optimum (the most profitable) solution. Over the course of this paper, these technologies – such as frequency-regulated pump turbines and ternary sets will be presented, with a detailed explanation of their possible application within the Bistrica PSP project and their relative advantages/disadvantages in this particular case.Keywords: hydraulic turbines, pumped storage, renewable energy, competing technologies
Procedia PDF Downloads 967065 Evaluation of Hybrid Viscoelastic Damper for Passive Energy Dissipation
Authors: S. S. Ghodsi, M. H. Mehrabi, Zainah Ibrahim, Meldi Suhatril
Abstract:
This research examines the performance of a hybrid passive control device for enhancing the seismic response of steel frame structures. The device design comprises a damper which employs a viscoelastic material to control both shear and axial strain. In the design, energy is dissipated through the shear strain of a two-layer system of viscoelastic pads which are located between steel plates. In addition, viscoelastic blocks have been included on either side of the main shear damper which obtains compressive strains in the viscoelastic blocks. These dampers not only dissipate energy but also increase the stiffness of the steel frame structure, and the degree to which they increase the stiffness may be controlled by the size and shape. In this research, the cyclical behavior of the damper was examined both experimentally and numerically with finite element modeling. Cyclic loading results of the finite element modeling reveal fundamental characteristics of this hybrid viscoelastic damper. The results indicate that incorporating a damper of the design can significantly improve the seismic performance of steel frame structures.Keywords: cyclic loading, energy dissipation, hybrid damper, passive control system, viscoelastic damper
Procedia PDF Downloads 2117064 Use of Fault Tree Analysis for Technical Assessment of Waste-to-Energy Plants
Authors: Ying-Chu Chen
Abstract:
Waste to energy (WTE) technology is becoming increasingly important throughout the world. There are 24 WTE plants in operation in Taiwan that might be ranked the top in density (number of MSW incinerators/area) in the world. Many problems exist in WTE plants, such as low-quality construction, leakage of pipelines, irregular feedings, and lack of maintenance. These problems should be identified and analyzed for effective implementation and efficient operation of WTE plants. This research applies a fault tree analysis (FTA) to identify failures and evaluate their effects on the operation of WTE plants from a technical point of view. Five subsystems of a WTE plant were defined, including loading system, incineration system, effluent disposal system, structural components, and control system. This research results proved that FTA is suitable for WTE evaluation and is an effective analysis tool for technical evaluation in the field of WTE technology.Keywords: delphi method, fault tree approach, municipal solid waste, waste to energy, WTE
Procedia PDF Downloads 5697063 Reconstruction of Holographic Dark Energy in Chameleon Brans-Dicke Cosmology
Authors: Surajit Chattopadhyay
Abstract:
Accelerated expansion of the current universe is well-established in the literature. Dark energy and modified gravity are two approaches to account for this accelerated expansion. In the present work, we consider scalar field models of dark energy, namely, tachyon and DBI essence in the framework of chameleon Brans-Dicke cosmology. The equation of state parameter is reconstructed and the subsequent cosmological implications are studied. We examined the stability for the obtained solutions of the crossing of the phantom divide under a quantum correction of massless conformally invariant fields and we have seen that quantum correction could be small when the phantom crossing occurs and the obtained solutions of the phantom crossing could be stable under the quantum correction. In the subsequent phase, we have established a correspondence between the NHDE model and the quintessence, the DBI-essence and the tachyon scalar field models in the framework of chameleon Brans–Dicke cosmology. We reconstruct the potentials and the dynamics for these three scalar field models we have considered. The reconstructed potentials are found to increase with the evolution of the universe and in a very late stage they are observed to decay.Keywords: dark energy, holographic principle, modified gravity, reconstruction
Procedia PDF Downloads 4177062 Event Driven Dynamic Clustering and Data Aggregation in Wireless Sensor Network
Authors: Ashok V. Sutagundar, Sunilkumar S. Manvi
Abstract:
Energy, delay and bandwidth are the prime issues of wireless sensor network (WSN). Energy usage optimization and efficient bandwidth utilization are important issues in WSN. Event triggered data aggregation facilitates such optimal tasks for event affected area in WSN. Reliable delivery of the critical information to sink node is also a major challenge of WSN. To tackle these issues, we propose an event driven dynamic clustering and data aggregation scheme for WSN that enhances the life time of the network by minimizing redundant data transmission. The proposed scheme operates as follows: (1) Whenever the event is triggered, event triggered node selects the cluster head. (2) Cluster head gathers data from sensor nodes within the cluster. (3) Cluster head node identifies and classifies the events out of the collected data using Bayesian classifier. (4) Aggregation of data is done using statistical method. (5) Cluster head discovers the paths to the sink node using residual energy, path distance and bandwidth. (6) If the aggregated data is critical, cluster head sends the aggregated data over the multipath for reliable data communication. (7) Otherwise aggregated data is transmitted towards sink node over the single path which is having the more bandwidth and residual energy. The performance of the scheme is validated for various WSN scenarios to evaluate the effectiveness of the proposed approach in terms of aggregation time, cluster formation time and energy consumed for aggregation.Keywords: wireless sensor network, dynamic clustering, data aggregation, wireless communication
Procedia PDF Downloads 4557061 Comparison of DPC and FOC Vector Control Strategies on Reducing Harmonics Caused by Nonlinear Load in the DFIG Wind Turbine
Authors: Hamid Havasi, Mohamad Reza Gholami Dehbalaei, Hamed Khorami, Shahram Karimi, Hamdi Abdi
Abstract:
Doubly-fed induction generator (DFIG) equipped with a power converter is an efficient tool for converting mechanical energy of a variable speed system to a fixed-frequency electrical grid. Since electrical energy sources faces with production problems such as harmonics caused by nonlinear loads, so in this paper, compensation performance of DPC and FOC method on harmonics reduction of a DFIG wind turbine connected to a nonlinear load in MATLAB Simulink model has been simulated and effect of each method on nonlinear load harmonic elimination has been compared. Results of the two mentioned control methods shows the advantage of the FOC method on DPC method for harmonic compensation. Also, the fifth and seventh harmonic components of the network and THD greatly reduced.Keywords: DFIG machine, energy conversion, nonlinear load, THD, DPC, FOC
Procedia PDF Downloads 5957060 Geothermal Energy Evaluation of Lower Benue Trough Using Spectral Analysis of Aeromagnetic Data
Authors: Stella C. Okenu, Stephen O. Adikwu, Martins E. Okoro
Abstract:
The geothermal energy resource potential of the Lower Benue Trough (LBT) in Nigeria was evaluated in this study using spectral analysis of high-resolution aeromagnetic (HRAM) data. The reduced to the equator aeromagnetic data was divided into sixteen (16) overlapping blocks, and each of the blocks was analyzed to obtain the radial averaged power spectrum which enabled the computation of the top and centroid depths to magnetic sources. The values were then used to assess the Curie Point Depth (CPD), geothermal gradients, and heat flow variations in the study area. Results showed that CPD varies from 7.03 to 18.23 km, with an average of 12.26 km; geothermal gradient values vary between 31.82 and 82.50°C/km, with an average of 51.21°C/km, while heat flow variations range from 79.54 to 206.26 mW/m², with an average of 128.02 mW/m². Shallow CPD zones that run from the eastern through the western and southwestern parts of the study area correspond to zones of high geothermal gradient values and high subsurface heat flow distributions. These areas signify zones associated with anomalous subsurface thermal conditions and are therefore recommended for detailed geothermal energy exploration studies.Keywords: geothermal energy, curie-point depth, geothermal gradient, heat flow, aeromagnetic data, LBT
Procedia PDF Downloads 827059 Degeneracy and Defectiveness in Non-Hermitian Systems with Open Boundary
Authors: Yongxu Fu, Shaolong Wan
Abstract:
We study the band degeneracy, defectiveness, as well as exceptional points of non-Hermitian systems and materials analytically. We elaborate on the energy bands, the band degeneracy, and the defectiveness of eigenstates under open boundary conditions based on developing a general theory of one-dimensional (1D) non-Hermitian systems. We research the presence of the exceptional points in a generalized non-Hermitian Su-Schrieffer-Heeger model under open boundary conditions. Beyond our general theory, there exist infernal points in 1D non-Hermitian systems, where the energy spectra under open boundary conditions converge on some discrete energy values. We study two 1D non-Hermitian models with the existence of infernal points. We generalize the infernal points to the infernal knots in four-dimensional non-Hermitian systems.Keywords: non-hermitian, degeneracy, defectiveness, exceptional points, infernal points
Procedia PDF Downloads 1367058 Nitrogen Doping Effect on Enhancement of Electrochemical Performance of a Carbon Nanotube Based Microsupercapacitor
Authors: Behnoush Dousti, Ye Choi, Gil S. Lee
Abstract:
Microsupercapacitors (MScs) are known as the future of miniaturized energy sources that can be coupled to a battery to deliver stable and constant energy to microelectronics. Among all their counterparts, electrochemical microsupercapacitor have drawn the most research attention due to their higher power density and long cycle life. Designing the microstructure and choosing the electroactive materials are two significant factors that greatly affect the performance of the device. Here, we report successful fabrication and characterization of a microsupercapacitor with interdigitated structure based on Carbon nanotube sheets (CNT sheet). Novel structure of highly aligned CNT sheet as the electrode materials which also offers excellent conductivity and large surface area along with doping with nitrogen, enabled us to develop a device with serval order of magnitude higher electrochemical performance than the pristine CNT in aqueous electrolyte including high specific capacitance and rate capabilities and excellent cycle life over 10000 cycles. Geometric parameters such as finger width and gap size were also studied and it was shown the device performance is much depended on them. Results of this study confirms the potential of CNT sheet for future energy storage devices.Keywords: carbon nanotube, energy storage systems, microsupercapacitor, nitrogen doping
Procedia PDF Downloads 1347057 Life-Cycle Cost and Life-Cycle Assessment of Photovoltaic/Thermal Systems (PV/T) in Swedish Single-Family Houses
Authors: Arefeh Hesaraki
Abstract:
The application of photovoltaic-thermal hybrids (PVT), which delivers both electricity and heat simultaneously from the same system, has become more popular during the past few years. This study addresses techno-economic and environmental impacts assessment of photovoltaic/thermal systems combined with a ground-source heat pump (GSHP) for three single-family houses located in Stockholm, Sweden. Three case studies were: (1) A renovated building built in 1936, (2) A renovated building built in 1973, and (3) A new building built-in 2013. Two simulation programs of SimaPro 9.1 and IDA Indoor Climate and Energy 4.8 (IDA ICE) were applied to analyze environmental impacts and energy usage, respectively. The cost-effectiveness of the system was evaluated using net present value (NPV), internal rate of return (IRR), and discounted payback time (DPBT) methods. In addition to cost payback time, the studied PVT system was evaluated using the energy payback time (EPBT) method. EPBT presents the time that is needed for the installed system to generate the same amount of energy which was utilized during the whole lifecycle (fabrication, installation, transportation, and end-of-life) of the system itself. Energy calculation by IDA ICE showed that a 5 m² PVT was sufficient to create a balance between the maximum heat production and the domestic hot water consumption during the summer months for all three case studies. The techno-economic analysis revealed that combining a 5 m² PVT with GSHP in the second case study possess the smallest DPBT and the highest NPV and IRR among the three case studies. It means that DPBTs (IRR) were 10.8 years (6%), 12.6 years (4%), and 13.8 years (3%) for the second, first, and the third case study, respectively. Moreover, environmental assessment of embodied energy during cradle- to- grave life cycle of the studied PVT, including fabrication, delivery of energy and raw materials, manufacture process, installation, transportation, operation phase, and end of life, revealed approximately two years of EPBT in all cases.Keywords: life-cycle cost, life-cycle assessment, photovoltaic/thermal, IDA ICE, net present value
Procedia PDF Downloads 1177056 An Integrated Power Generation System Design Developed between Solar Energy-Assisted Dual Absorption Cycles
Authors: Asli Tiktas, Huseyin Gunerhan, Arif Hepbasli
Abstract:
Solar energy, with its abundant and clean features, is one of the prominent renewable energy sources in multigeneration energy systems where various outputs, especially power generation, are produced together. In the literature, concentrated solar energy systems, which are an expensive technology, are mostly used in solar power plants where medium-high capacity production outputs are achieved. In addition, although different methods have been developed and proposed for solar energy-supported integrated power generation systems by different investigators, absorption technology, which is one of the key points of the present study, has been used extensively in cooling systems in these studies. Unlike these common uses mentioned in the literature, this study designs a system in which a flat plate solar collector (FPSC), Rankine cycle, absorption heat transformer (AHT), and cooling systems (ACS) are integrated. The system proposed within the scope of this study aims to produce medium-high-capacity electricity, heating, and cooling outputs using a technique different from the literature, with lower production costs than existing systems. With the proposed integrated system design, the average production costs based on electricity, heating, and cooling load production for similar scale systems are 5-10% of the average production costs of 0.685 USD/kWh, 0.247 USD/kWh, and 0.342 USD/kWh. In the proposed integrated system design, this will be achieved by increasing the outlet temperature of the AHT and FPSC system first, expanding the high-temperature steam coming out of the absorber of the AHT system in the turbine up to the condenser temperature of the ACS system, and next directly integrating it into the evaporator of this system and then completing the AHT cycle. Through this proposed system, heating and cooling will be carried out by completing the AHT and ACS cycles, respectively, while power generation will be provided because of the expansion of the turbine. Using only a single generator in the production of these three outputs together, the costs of additional boilers and the need for a heat source are also saved. In order to demonstrate that the system proposed in this study offers a more optimum solution, the techno-economic parameters obtained based on energy, exergy, economic, and environmental analysis were compared with the parameters of similar scale systems in the literature. The design parameters of the proposed system were determined through a parametric optimization study to exceed the maximum efficiency and effectiveness and reduce the production cost rate values of the compared systems.Keywords: solar energy, absorption technology, Rankine cycle, multigeneration energy system
Procedia PDF Downloads 627055 Reduction of Cooling Demands in a Subtropical Humid Climate Zone: A Study on Roofs of Existing Residential Building Using Passive
Authors: Megha Jain, K. K. Pathak
Abstract:
In sub-tropical humid climates, it is estimated most of the urban peak load of energy consumption is used to satisfy air-conditioning or air-coolers cooling demand in summer time. As the urbanization rate in developing nation – like the case in India is rising rapidly, the pressure placed on energy resources to satisfy inhabitants’ indoor comfort requirements is consequently increasing too. This paper introduces passive cooling through roof as a means of reducing energy cooling loads for satisfying human comfort requirements in a sub-tropical climate. Experiments were performed by applying different insulators which are locally available solar reflective materials to insulate the roofs of five rooms of 4 case buildings; three rooms having RCC (Reinforced Cement Concrete) roof and two having Asbestos sheet roof of existing buildings. The results are verified by computer simulation using Computational Fluid Dynamics tools with FLUENT software. The result of using solar reflective paint with high albedo coating shows a fall of 4.8⁰C in peak hours and saves 303 kWh considering energy load with air conditioner during the summer season in comparison to non insulated flat roof energy load of residential buildings in Bhopal. An optimum solution of insulator for both types of roofs is presented. It is recommended that the selected cool roof solution be combined with insulation on other elements of envelope, to increase the indoor thermal comfort. The application is intended for low cost residential buildings in composite and warm climate like Bhopal.Keywords: cool roof, computational fluid dynamics, energy loads, insulators, passive cooling, subtropical climate, thermal performance
Procedia PDF Downloads 1737054 Design and Development of Solar Water Cooler Using Principle of Evaporation
Authors: Vipul Shiralkar, Rohit Khadilkar, Shekhar Kulkarni, Ismail Mullani, Omkar Malvankar
Abstract:
The use of water cooler has increased and become an important appliance in the world of global warming. Most of the coolers are electrically operated. In this study an experimental setup of evaporative water cooler using solar energy is designed and developed. It works on the principle of heat transfer using evaporation of water. Water is made to flow through copper tubes arranged in a specific array manner. Cotton plug is wrapped on copper tubes and rubber pipes are arranged in the same way as copper tubes above it. Water percolated from rubber pipes is absorbed by cotton plug. The setup has 40L water carrying capacity with forced cooling arrangement and variable speed fan which uses solar energy stored in 20Ah capacity battery. Fan speed greatly affects the temperature drop. Tests were performed at different fan speed. Maximum temperature drop achieved was 90C at 1440 rpm of fan speed. This temperature drop is very attractive. This water cooler uses solar energy hence it is cost efficient and it is affordable to rural community as well. The cooler is free from any harmful emissions like other refrigerants and hence environmental friendly. Very less maintenance is required as compared to the conventional electrical water cooler.Keywords: evaporation, cooler, energy, copper, solar, cost
Procedia PDF Downloads 3247053 Exploring the Potential of PVDF/CCB Composites Filaments as Potential Materials in Energy Harvesting Applications
Authors: Fawad Ali, Mohammad Albakri
Abstract:
The increasing demand for advanced multifunctional materials has led to significant research in polymer composites, particularly polyvinylidene fluoride (PVDF) and conducting carbon black (CCB) composites. This paper explores the development and application of PVDF/CCB conducting electrodes for energy harvesting applications. PVDF is renowned for its chemical resistance, thermal stability, and mechanical strength, making it an ideal matrix for composite materials in demanding environments. When combined with CCB, known for its excellent electrical conductivity, the resulting composite electrodes not only retain the advantageous properties of PVDF but also gain enhanced electrical conductivity. This synergy makes PVDF/CCB composites suitable for energy-harvesting devices that require both durability and electrical functionality. These electrodes can be used in sensors, actuators, and flexible electronics where efficient energy conversion is critical. The study provides a comprehensive overview of PVDF/CCB conducting electrodes, from synthesis and characterization to practical applications, and discusses challenges in optimizing these materials for industrial use and future development. This research aims to contribute to the understanding of conductive polymer composites and their potential in advancing sustainable energy technologies. This paper explores the development and application of polyvinylidene fluoride (PVDF) and conducting carbon black (CCB) composite conducting electrodes for energy harvesting applications. PVDF is renowned for its piezoelectric and mechanical strength, making it an ideal matrix for composite materials in demanding environments. When combined with CCB, known for its excellent electrical conductivity, the resulting composite electrodes not only retain the advantageous properties of PVDF but also gain enhanced electrical conductivity. This synergy makes PVDF/CCB composites suitable for energy-harvesting devices that require both durability and electrical functionality. These electrodes can be used in sensors, actuators, and flexible electronics where efficient energy conversion is critical. The study provides a comprehensive overview of PVDF/CCB conducting electrodes, from synthesis and characterization to practical applications. This research aims to contribute to the understanding of conductive polymer composites and their potential in advancing sustainable energy technologies.Keywords: additive manufacturing, polyvinylidene fluoride (PVDF), conducting polymer composite, energy harvesting, materials characterization
Procedia PDF Downloads 247052 Comparative Study of Urban Structure between an Island-Type and a General-Type City
Authors: Tomoya Oshiro, Hiroko Ono
Abstract:
Japan's aging population is increasing due to the decrease in birthrate. It causes various problems like the decrease in the gross domestic product of the country. The reason is why the local government of Japan has been on the way to a sustainable city recently. Then it is essential to get control of an urban structure to make the compact city successful. There are many kinds of paper about the compact city; however, the paper about a compact city of the island-type city is less. The purpose of this study is to clarify difference of urban structure between an island-type and a general city type. The method which has conducted in this research has two steps. First of all, by using evaluation indexes in the handbook, we evaluated the urban structures among each same -population-class cities from 50,000 to 100,000 people. Next, to clear the difference about the urban structure and feature between island-type and general-type cities compare the radar chart which is composed with each evaluation indexes of urban structure. Moreover, in order to clarify the relationship between evaluation indexes and the place of residence by using GIS software to show up population density on the map. As a result of this research, the management of local government and the local economy in evaluation indexes are indicated to be negative point in comparison of island-type cities with general cities. However, evaluation indexes of safety/security and low-carbon/energy are proved to be positive point. The research to find the difference features of the island-type of urban structure proves that the management of local government or the local economy is negative point in these island-type cities. In addition, the public transportation coverage in Miyako Island, Sado Island, and Amakusa Island show low value compare with other islands and average value. Relationship between evaluation indexes of an urban structure and the place of residence prove that the place of residence is related to public transportation coverage. If the place of residence is spread out, the public transportation coverage will be decreased. The results of this research reveal that the finances in island-type cities are negative point compare to general cities. This problem is caused by declining population. In addition, the place of residence is related to the public transportation coverage. Even though, it needs a much money to increase the public transportation coverage. It is possibly to cause other problems furthermore the aspect of finance is influenced by that as well. The conclusion in this research suggests that it is important for creating the compact city in island-type cities that we first need to address solving the problems about the management of local government and the local economy.Keywords: sustainable city, comparative analysis, geographic information system, urban structure
Procedia PDF Downloads 1547051 Study on Energy Performance Comparison of Information Centric Network Based on Difference of Network Architecture
Authors: Takumi Shindo, Koji Okamura
Abstract:
The first generation of the wide area network was circuit centric network. How the optimal circuit can be signed was the most important issue to get the best performance. This architecture had succeeded for line based telephone system. The second generation was host centric network and Internet based on this architecture has very succeeded world widely. And Internet became as new social infrastructure. Currently the architecture of the network is based on the location of the information. This future network is called Information centric network (ICN). The information-centric network (ICN) has being researched by many projects and different architectures for implementation of ICN have been proposed. The goal of this study is to compare performances of those ICN architectures. In this paper, the authors propose general ICN model which can represent two typical ICN architectures and compare communication performances using request routing. Finally, simulation results are shown. Also, we assume that this network architecture should be adapt to energy on-demand routing.Keywords: ICN, information centric network, CCN, energy
Procedia PDF Downloads 3427050 Integration of Icf Walls as Diurnal Solar Thermal Storage with Microchannel Solar Assisted Heat Pump for Space Heating and Domestic Hot Water Production
Authors: Mohammad Emamjome Kashan, Alan S. Fung
Abstract:
In Canada, more than 32% of the total energy demand is related to the building sector. Therefore, there is a great opportunity for Greenhouse Gases (GHG) reduction by integrating solar collectors to provide building heating load and domestic hot water (DHW). Despite the cold winter weather, Canada has a good number of sunny and clear days that can be considered for diurnal solar thermal energy storage. Due to the energy mismatch between building heating load and solar irradiation availability, relatively big storage tanks are usually needed to store solar thermal energy during the daytime and then use it at night. On the other hand, water tanks occupy huge space, especially in big cities, space is relatively expensive. This project investigates the possibility of using a specific building construction material (ICF – Insulated Concrete Form) as diurnal solar thermal energy storage that is integrated with a heat pump and microchannel solar thermal collector (MCST). Not much literature has studied the application of building pre-existing walls as active solar thermal energy storage as a feasible and industrialized solution for the solar thermal mismatch. By using ICF walls that are integrated into the building envelope, instead of big storage tanks, excess solar energy can be stored in the concrete of the ICF wall that consists of EPS insulation layers on both sides to store the thermal energy. In this study, two solar-based systems are designed and simulated inTransient Systems Simulation Program(TRNSYS)to compare ICF wall thermal storage benefits over the system without ICF walls. In this study, the heating load and DHW of a Canadian single-family house located in London, Ontario, are provided by solar-based systems. The proposed system integrates the MCST collector, a water-to-water HP, a preheat tank, the main tank, fan coils (to deliver the building heating load), and ICF walls. During the day, excess solar energy is stored in the ICF walls (charging cycle). Thermal energy can be restored from the ICF walls when the preheat tank temperature drops below the ICF wall (discharging process) to increase the COP of the heat pump. The evaporator of the heat pump is taking is coupled with the preheat tank. The provided warm water by the heat pump is stored in the second tank. Fan coil units are in contact with the tank to provide a building heating load. DHW is also delivered is provided from the main tank. It is investigated that the system with ICF walls with an average solar fraction of 82%- 88% can cover the whole heating demand+DHW of nine months and has a 10-15% higher average solar fraction than the system without ICF walls. Sensitivity analysis for different parameters influencing the solar fraction is discussed in detail.Keywords: net-zero building, renewable energy, solar thermal storage, microchannel solar thermal collector
Procedia PDF Downloads 1247049 The Temperature Influence for Gasification in the Advanced Biomass Gasifier
Authors: Narsimhulu Sanke, D. N. Reddy
Abstract:
The paper is to discuss about the influence of the temperature in the advanced biomass gasifier for gasification, when tested four different biomass fuels individually in the gasification laboratory of Centre for Energy Technology (CET). The gasifier is developed in CET to test any kind of biomass fuel for gasification without changing the gasifier. The gasifier can be used for batch operations and observed and found that there were no operational problems.Keywords: biomass fuels, temperature, advanced downdraft gasifier, tar, renewable energy sources
Procedia PDF Downloads 4967048 Alteration of Sex Steroid Hormone Levels in Sex Reversed Chickens
Authors: A. H. Shaikat, M. B. Hossain, S. K. M. A. Islam, M. M. Hassan, S. A. Khan, A. K. M. Saifuddin, M. N. Islam, M. A. Hoque
Abstract:
A total of eighteen (18) sex reversed chickens with unusual phenotypic characteristics of male birds were identified over 2000 Hyline layer chickens at Motaher Poultry Farm, Ramu, Cox’s Bazar. Chickens were subdivided into two groups (case = 18, control = 20) based on the appearance of sex-reversed secondary sexual characteristics. Phenotypic traits of studied chickens were measured with farm management details. Hormone assay using ELISA, autopsy followed by gross examination of viscera was performed. The study found higher body weight (gm) (1579.3; 95% CI: 1561.7-1596.8), comb length (cm) (12.2; 11.5-12.8), comb width (cm) (7.9; 7.7-8.2), wattle length (cm) (4.9; 4.8-5.1) distinct spur, and shortened pubic bones distance, suggesting decrease oviposition in sex-reversed chickens. Testosterone concentration (ng/ml) (8.5; 6.4-10.6) was significantly higher (p<0.001) along with decrease estrogen (pg/ml) (5.1; 4.9-5.5) and progesterone concentration (pg/ml) (310.9; 289.4-332.5) in sex-reversed chickens. Mass abdominal fat deposition with atrophied ovary was found upon exploration of viscera.Keywords: ovary, phenotypic traits, sex hormone, sex reversal
Procedia PDF Downloads 452