Search results for: relaxation training
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4244

Search results for: relaxation training

2564 Using Structural Equation Modeling to Measure the Impact of Young Adult-Dog Personality Characteristics on Dog Walking Behaviours during the COVID-19 Pandemic

Authors: Renata Roma, Christine Tardif-Williams

Abstract:

Engaging in daily walks with a dog (f.e. Canis lupus familiaris) during the COVID-19 pandemic may be linked to feelings of greater social-connectedness and global self-worth, and lower stress after controlling for mental health issues, lack of physical contact with others, and other stressors associated with the current pandemic. Therefore, maintaining a routine of dog walking might mitigate the effects of stressors experienced during the pandemic and promote well-being. However, many dog owners do not walk their dogs for many reasons, which are related to the owner’s and the dog’s personalities. Note that the consistency of certain personality characteristics among dogs demonstrates that it is possible to accurately measure different dimensions of personality in both dogs and their human counterparts. In addition, behavioural ratings (e.g., the dog personality questionnaire - DPQ) are reliable tools to assess the dog’s personality. Clarifying the relevance of personality factors in the context of young adult-dog relationships can shed light on interactional aspects that can potentially foster protective behaviours and promote well-being among young adults during the pandemic. This study examines if and how nine combinations of dog- and young adult-related personality characteristics (e.g., neuroticism-fearfulness) can amplify the influence of personality factors in the context of dog walking during the COVID-19 pandemic. Responses to an online large-scale survey among 440 (389 females; 47 males; 4 nonbinaries, Mage=20.7, SD= 2.13 range=17-25) young adults living with a dog in Canada were analyzed using structural equation modeling (SEM). As extraversion, conscientiousness, and neuroticism, measured through the five-factor model (FFM) inventory, are related to maintaining a routine of physical activities, these dimensions were selected for this analysis. Following an approach successfully adopted in the field of dog-human interactions, the FFM was used as the organizing framework to measure and compare the human’s and the dog’s personality in the context of dog walking. The dog-related personality dimensions activity/excitability, responsiveness to training, and fearful were correlated dimensions captured through DPQ and were added to the analysis. Two questions were used to assess dog walking. The actor-partner interdependence model (APIM) was used to check if the young adult’s responses about the dog were biased; no significant bias was observed. Activity/excitability and responsiveness to training in dogs were greatly associated with dog walking. For young adults, high scores in conscientiousness and extraversion predicted more walks with the dog. Conversely, higher scores in neuroticism predicted less engagement in dog walking. For participants high in conscientiousness, the dog’s responsiveness to training (standardized=0.14, p=0.02) and the dog’s activity/excitability (standardized=0.15, p=0.00) levels moderated dog walking behaviours by promoting more daily walks. These results suggest that some combinations in young adult and dog personality characteristics are associated with greater synergy in the young adult-dog dyad that might amplify the impact of personality factors on young adults’ dog-walking routines. These results can inform programs designed to promote the mental and physical health of young adults during the Covid-19 pandemic by highlighting the impact of synergy and reciprocity in personality characteristics between young adults and dogs.

Keywords: Covid-19 pandemic, dog walking, personality, structural equation modeling, well-being

Procedia PDF Downloads 118
2563 Problem Solving: Process or Product? A Mathematics Approach to Problem Solving in Knowledge Management

Authors: A. Giannakopoulos, S. B. Buckley

Abstract:

Problem solving in any field is recognised as a prerequisite for any advancement in knowledge. For example in South Africa it is one of the seven critical outcomes of education together with critical thinking. As a systematic way to problem solving was initiated in mathematics by the great mathematician George Polya (the father of problem solving), more detailed and comprehensive ways in problem solving have been developed. This paper is based on the findings by the author and subsequent recommendations for further research in problem solving and critical thinking. Although the study was done in mathematics, there is no doubt by now in almost anyone’s mind that mathematics is involved to a greater or a lesser extent in all fields, from symbols, to variables, to equations, to logic, to critical thinking. Therefore it stands to reason that mathematical principles and learning cannot be divorced from any field. In management of knowledge situations, the types of problems are similar to mathematics problems varying from simple to analogical to complex; from well-structured to ill-structured problems. While simple problems could be solved by employees by adhering to prescribed sequential steps (the process), analogical and complex problems cannot be proceduralised and that diminishes the capacity of the organisation of knowledge creation and innovation. The low efficiency in some organisations and the low pass rates in mathematics prompted the author to view problem solving as a product. The authors argue that using mathematical approaches to knowledge management problem solving and treating problem solving as a product will empower the employee through further training to tackle analogical and complex problems. The question the authors asked was: If it is true that problem solving and critical thinking are indeed basic skills necessary for advancement of knowledge why is there so little literature of knowledge management (KM) about them and how they are connected and advance KM?This paper concludes with a conceptual model which is based on general accepted principles of knowledge acquisition (developing a learning organisation), knowledge creation, sharing, disseminating and storing thereof, the five pillars of knowledge management (KM). This model, also expands on Gray’s framework on KM practices and problem solving and opens the doors to a new approach to training employees in general and domain specific areas problems which can be adapted in any type of organisation.

Keywords: critical thinking, knowledge management, mathematics, problem solving

Procedia PDF Downloads 600
2562 Assessment, Diagnosis and Treatment, Simulation for the Nurse Practitioner Student

Authors: Helen Coronel, Will Brewer, Peggy Bergeron, Clarissa Hall, Victoria Casson

Abstract:

Simulation-based training provides the nurse practitioner (NP) student with a safe and controlled environment in which they can practice a real-life scenario. This type of learning fosters critical thinking skills essential to practice. The expectation of this study was that students would have an increase in their competency and confidence after performing the simulation. Approximately 8.4% of Americans suffer from depression. The state of Alabama is ranked 47th out of 50 for access to mental health care. As a result of this significant shortage of mental health providers, primary care providers are frequently put in the position of screening for and treating mental health conditions, such as depression. Family nurse practitioners are often utilized as primary care providers, making their ability to assess, diagnose and treat these disorders a necessary skill. The expected outcome of this simulation is an increase in confidence, competency and the empowerment of the nurse practitioner student’s ability to assess, diagnose and treat a common mood disorder they may encounter in practice. The Kirkpatrick Module was applied for this study. A non-experimental design using descriptive statistical analysis was utilized. The simulation was based on a common psychiatric mood disorder frequently observed in primary care and mental health clinics. Students were asked to watch a voiceover power point presentation prior to their on-campus simulation. The presentation included training on the assessment, diagnosis, and treatment of a patient with depression. Prior to the simulation, the students completed a pre-test, then participated in the simulation, and completed a post-test when done. Apple iPads were utilized to access a simulated health record. Major findings of the study support an increase in students’ competency and confidence when assessing, diagnosing, and treating an adult patient with depression.

Keywords: advanced practice, nurse practitioner, simulation, primary care, depression

Procedia PDF Downloads 97
2561 Readiness of Iran’s Insurance Industry Salesforce to Accept Changing to Become Islamic Personal Financial Planners

Authors: Pedram Saadati, Zahra Nazari

Abstract:

Today, the role and importance of financial technology businesses in Iran have increased significantly. Although, in Iran, there is no Islamic or non-Islamic personal financial planning field of study in the universities or educational centers, the profession of personal financial planning is not defined, and there is no software introduced in this regard for advisors or consumers. The largest sales network of financial services in Iran belongs to the insurance industry, and there is an untapped market for international companies in Iran that can contribute to 130 thousand representatives in the insurance industry and 28 million families by providing training and personal financial advisory software. To the best of the author's knowledge, despite the lack of previous internal studies in this field, the present study investigates the level of readiness of the salesforce of the insurance industry to accept this career and its technology. The statistical population of the research is made up of managers, insurance sales representatives, assistants and heads of sales departments of insurance companies. An 18-minute video was prepared that introduced and taught the job of Islamic personal financial planning and explained its difference from its non-Islamic model. This video was provided to the respondents. The data collection tool was a research-made questionnaire. To investigate the factors affecting technology acceptance and job change, independent T descriptive statistics and Pearson correlation were used, and Friedman's test was used to rank the effective factors. The results indicate the mental perception and very positive attitude of the insurance industry activists towards the usefulness of this job and its technology, and the studied sample confirmed the intention of training in this knowledge. Based on research results, the change in the customer's attitude towards the insurance advisor and the possibility of increasing income are considered as the reasons for accepting. However, Restrictions on using investment opportunities due to Islamic financial services laws and the uncertainty of the position of the central insurance in this regard are considered as the most important obstacles.

Keywords: fintech, insurance, personal financial planning, wealth management

Procedia PDF Downloads 50
2560 Seismic Evaluation of Multi-Plastic Hinge Design Approach on RC Shear Wall-Moment Frame Systems against Near-Field Earthquakes

Authors: Mohsen Tehranizadeh, Mahboobe Forghani

Abstract:

The impact of higher modes on the seismic response of dual structural system consist of concrete moment-resisting frame and with RC shear walls is investigated against near-field earthquakes in this paper. a 20 stories reinforced concrete shear wall-special moment frame structure is designed in accordance with ASCE7 requirements and The nonlinear model of the structure was performed on OpenSees platform. Nonlinear time history dynamic analysis with 3 near-field records are performed on them. In order to further understand the structural collapse behavior in the near field, the response of the structure at the moment of collapse especially the formation of plastic hinges is explored. The results revealed that the amplification of moment at top of the wall due to higher modes, the plastic hinge can form in the upper part of wall, even when designed and detailed for plastic hinging at the base only (according to ACI code).on the other hand, shear forces in excess of capacity design values can develop due to the contribution of the higher modes of vibration to dynamic response due to the near field can cause brittle shear or sliding failure modes. The past investigation on shear walls clearly shows the dual-hinge design concept is effective at reducing the effects of the second mode of response. An advantage of the concept is that, when combined with capacity design, it can result in relaxation of special reinforcing detailing in large portions of the wall. In this study, to investigate the implications of multi-design approach, 4 models with varies arrangement of hinge plastics at the base and height of the shear wall are considered. results base on time history analysis showed that the dual or multi plastic hinges approach can be useful in order to control the high moment and shear demand of higher mode effect.

Keywords: higher mode effect, Near-field earthquake, nonlinear time history analysis, multi plastic hinge design

Procedia PDF Downloads 431
2559 Family and Community Care for the Elderly: An Implementation Research in Local Community, Thailand

Authors: Sumattana Glangkarn, Vorapoj Promasatayaprot

Abstract:

Background: Proportion of population ageing in Thailand has been increased rapidly in the past decades according to living longer and the fertility rates have decreased. The most important challenge related to this situation is to consider how to improve quality and years of healthy of life. This study aimed to implement the older persons’ long term care (LTC) system for elderly care by family and community. Method: The Consolidated Framework for Implementation Research (CFIR) was employed for guiding and evaluating an implementation process in ageing care. The CFIR composed of five major domains: intervention characteristics, outer setting, inner setting, characteristics of the individuals involved, and the process of implementation. Results: most elderly participants were couples, educating primary school and living with children and grandchildren. More than half of them had chronic diseases such as diabetes mellitus and hypertension. Factor analysis revealed factors related to health care of older participants which consisted of exercise, diet, accidental prevention, relaxation, self-care capacity, joyfulness, family relationship, and personal hygiene. A pre-implementation phase showed intervention characteristics included facilities and services of the LTC policy from the Ministry of Public Health. The complexities of the LTC and relative advantages were explained. Community leaders, public health volunteers, care givers and health professionals had participated in the LTC activities. Outer and inner settings consisted of context of community, culture, and readiness. Characteristics of the individuals related to knowledge, self-efficacy, perceptions, and believes. The process consisted of planning, acting, observing, and reflecting. The implementation outcomes and service outcomes had been evaluated during-implementation phase. Conclusion: the participation of caregivers, community leaders, public health volunteers, and health professionals had supported the LTC services. Thus, family and community care could improve quality of life of the ageing.

Keywords: ageing, CFIR, long term care, implementation

Procedia PDF Downloads 179
2558 Computational Linguistic Implications of Gender Bias: Machines Reflect Misogyny in Society

Authors: Irene Yi

Abstract:

Machine learning, natural language processing, and neural network models of language are becoming more and more prevalent in the fields of technology and linguistics today. Training data for machines are at best, large corpora of human literature and at worst, a reflection of the ugliness in society. Computational linguistics is a growing field dealing with such issues of data collection for technological development. Machines have been trained on millions of human books, only to find that in the course of human history, derogatory and sexist adjectives are used significantly more frequently when describing females in history and literature than when describing males. This is extremely problematic, both as training data, and as the outcome of natural language processing. As machines start to handle more responsibilities, it is crucial to ensure that they do not take with them historical sexist and misogynistic notions. This paper gathers data and algorithms from neural network models of language having to deal with syntax, semantics, sociolinguistics, and text classification. Computational analysis on such linguistic data is used to find patterns of misogyny. Results are significant in showing the existing intentional and unintentional misogynistic notions used to train machines, as well as in developing better technologies that take into account the semantics and syntax of text to be more mindful and reflect gender equality. Further, this paper deals with the idea of non-binary gender pronouns and how machines can process these pronouns correctly, given its semantic and syntactic context. This paper also delves into the implications of gendered grammar and its effect, cross-linguistically, on natural language processing. Languages such as French or Spanish not only have rigid gendered grammar rules, but also historically patriarchal societies. The progression of society comes hand in hand with not only its language, but how machines process those natural languages. These ideas are all extremely vital to the development of natural language models in technology, and they must be taken into account immediately.

Keywords: computational analysis, gendered grammar, misogynistic language, neural networks

Procedia PDF Downloads 123
2557 Numerical Solution of Steady Magnetohydrodynamic Boundary Layer Flow Due to Gyrotactic Microorganism for Williamson Nanofluid over Stretched Surface in the Presence of Exponential Internal Heat Generation

Authors: M. A. Talha, M. Osman Gani, M. Ferdows

Abstract:

This paper focuses on the study of two dimensional magnetohydrodynamic (MHD) steady incompressible viscous Williamson nanofluid with exponential internal heat generation containing gyrotactic microorganism over a stretching sheet. The governing equations and auxiliary conditions are reduced to a set of non-linear coupled differential equations with the appropriate boundary conditions using similarity transformation. The transformed equations are solved numerically through spectral relaxation method. The influences of various parameters such as Williamson parameter γ, power constant λ, Prandtl number Pr, magnetic field parameter M, Peclet number Pe, Lewis number Le, Bioconvection Lewis number Lb, Brownian motion parameter Nb, thermophoresis parameter Nt, and bioconvection constant σ are studied to obtain the momentum, heat, mass and microorganism distributions. Moment, heat, mass and gyrotactic microorganism profiles are explored through graphs and tables. We computed the heat transfer rate, mass flux rate and the density number of the motile microorganism near the surface. Our numerical results are in better agreement in comparison with existing calculations. The Residual error of our obtained solutions is determined in order to see the convergence rate against iteration. Faster convergence is achieved when internal heat generation is absent. The effect of magnetic parameter M decreases the momentum boundary layer thickness but increases the thermal boundary layer thickness. It is apparent that bioconvection Lewis number and bioconvection parameter has a pronounced effect on microorganism boundary. Increasing brownian motion parameter and Lewis number decreases the thermal boundary layer. Furthermore, magnetic field parameter and thermophoresis parameter has an induced effect on concentration profiles.

Keywords: convection flow, similarity, numerical analysis, spectral method, Williamson nanofluid, internal heat generation

Procedia PDF Downloads 184
2556 Modeling Biomass and Biodiversity across Environmental and Management Gradients in Temperate Grasslands with Deep Learning and Sentinel-1 and -2

Authors: Javier Muro, Anja Linstadter, Florian Manner, Lisa Schwarz, Stephan Wollauer, Paul Magdon, Gohar Ghazaryan, Olena Dubovyk

Abstract:

Monitoring the trade-off between biomass production and biodiversity in grasslands is critical to evaluate the effects of management practices across environmental gradients. New generations of remote sensing sensors and machine learning approaches can model grasslands’ characteristics with varying accuracies. However, studies often fail to cover a sufficiently broad range of environmental conditions, and evidence suggests that prediction models might be case specific. In this study, biomass production and biodiversity indices (species richness and Fishers’ α) are modeled in 150 grassland plots for three sites across Germany. These sites represent a North-South gradient and are characterized by distinct soil types, topographic properties, climatic conditions, and management intensities. Predictors used are derived from Sentinel-1 & 2 and a set of topoedaphic variables. The transferability of the models is tested by training and validating at different sites. The performance of feed-forward deep neural networks (DNN) is compared to a random forest algorithm. While biomass predictions across gradients and sites were acceptable (r2 0.5), predictions of biodiversity indices were poor (r2 0.14). DNN showed higher generalization capacity than random forest when predicting biomass across gradients and sites (relative root mean squared error of 0.5 for DNN vs. 0.85 for random forest). DNN also achieved high performance when using the Sentinel-2 surface reflectance data rather than different combinations of spectral indices, Sentinel-1 data, or topoedaphic variables, simplifying dimensionality. This study demonstrates the necessity of training biomass and biodiversity models using a broad range of environmental conditions and ensuring spatial independence to have realistic and transferable models where plot level information can be upscaled to landscape scale.

Keywords: ecosystem services, grassland management, machine learning, remote sensing

Procedia PDF Downloads 219
2555 Biological Hazards and Laboratory inflicted Infections in Sub-Saharan Africa

Authors: Godfrey Muiya Mukala

Abstract:

This research looks at an array of fields in Sub-Saharan Africa comprising agriculture, food enterprises, medicine, organisms genetically modified, microbiology, and nanotechnology that can be gained from biotechnological research and development. Findings into dangerous organisms, mainly bacterial germs, rickettsia, fungi, parasites, or organisms that are genetically engineered, have immensely posed questions attributed to the biological danger they bring forth to human beings and the environment because of their uncertainties. In addition, the recurrence of previously managed diseases or the inception of new diseases are connected to biosafety challenges, especially in rural set-ups in low and middle-income countries. Notably, biotechnology laboratories are required to adopt biosafety measures to protect their workforce, community, environment, and ecosystem from unforeseen materials and organisms. Sensitization and inclusion of educational frameworks for laboratory workers are essential to acquiring a solid knowledge of harmful biological agents. This is in addition to human pathogenicity, susceptibility, and epidemiology to the biological data used in research and development. This article reviews and analyzes research intending to identify the proper implementation of universally accepted practices in laboratory safety and biological hazards. This research identifies ideal microbiological methods, adequate containment equipment, sufficient resources, safety barriers, specific training, and education of the laboratory workforce to decrease and contain biological hazards. Subsequently, knowledge of standardized microbiological techniques and processes, in addition to the employment of containment facilities, protective barriers, and equipment, is far-reaching in preventing occupational infections. Similarly, reduction of risks and prevention may be attained by training, education, and research on biohazards, pathogenicity, and epidemiology of the relevant microorganisms. In this technique, medical professionals in rural setups may adopt the knowledge acquired from the past to project possible concerns in the future.

Keywords: sub-saharan africa, biotechnology, laboratory, infections, health

Procedia PDF Downloads 78
2554 High-Fidelity Materials Screening with a Multi-Fidelity Graph Neural Network and Semi-Supervised Learning

Authors: Akeel A. Shah, Tong Zhang

Abstract:

Computational approaches to learning the properties of materials are commonplace, motivated by the need to screen or design materials for a given application, e.g., semiconductors and energy storage. Experimental approaches can be both time consuming and costly. Unfortunately, computational approaches such as ab-initio electronic structure calculations and classical or ab-initio molecular dynamics are themselves can be too slow for the rapid evaluation of materials, often involving thousands to hundreds of thousands of candidates. Machine learning assisted approaches have been developed to overcome the time limitations of purely physics-based approaches. These approaches, on the other hand, require large volumes of data for training (hundreds of thousands on many standard data sets such as QM7b). This means that they are limited by how quickly such a large data set of physics-based simulations can be established. At high fidelity, such as configuration interaction, composite methods such as G4, and coupled cluster theory, gathering such a large data set can become infeasible, which can compromise the accuracy of the predictions - many applications require high accuracy, for example band structures and energy levels in semiconductor materials and the energetics of charge transfer in energy storage materials. In order to circumvent this problem, multi-fidelity approaches can be adopted, for example the Δ-ML method, which learns a high-fidelity output from a low-fidelity result such as Hartree-Fock or density functional theory (DFT). The general strategy is to learn a map between the low and high fidelity outputs, so that the high-fidelity output is obtained a simple sum of the physics-based low-fidelity and correction, Although this requires a low-fidelity calculation, it typically requires far fewer high-fidelity results to learn the correction map, and furthermore, the low-fidelity result, such as Hartree-Fock or semi-empirical ZINDO, is typically quick to obtain, For high-fidelity outputs the result can be an order of magnitude or more in speed up. In this work, a new multi-fidelity approach is developed, based on a graph convolutional network (GCN) combined with semi-supervised learning. The GCN allows for the material or molecule to be represented as a graph, which is known to improve accuracy, for example SchNet and MEGNET. The graph incorporates information regarding the numbers of, types and properties of atoms; the types of bonds; and bond angles. They key to the accuracy in multi-fidelity methods, however, is the incorporation of low-fidelity output to learn the high-fidelity equivalent, in this case by learning their difference. Semi-supervised learning is employed to allow for different numbers of low and high-fidelity training points, by using an additional GCN-based low-fidelity map to predict high fidelity outputs. It is shown on 4 different data sets that a significant (at least one order of magnitude) increase in accuracy is obtained, using one to two orders of magnitude fewer low and high fidelity training points. One of the data sets is developed in this work, pertaining to 1000 simulations of quinone molecules (up to 24 atoms) at 5 different levels of fidelity, furnishing the energy, dipole moment and HOMO/LUMO.

Keywords: .materials screening, computational materials, machine learning, multi-fidelity, graph convolutional network, semi-supervised learning

Procedia PDF Downloads 44
2553 Constructing a Semi-Supervised Model for Network Intrusion Detection

Authors: Tigabu Dagne Akal

Abstract:

While advances in computer and communications technology have made the network ubiquitous, they have also rendered networked systems vulnerable to malicious attacks devised from a distance. These attacks or intrusions start with attackers infiltrating a network through a vulnerable host and then launching further attacks on the local network or Intranet. Nowadays, system administrators and network professionals can attempt to prevent such attacks by developing intrusion detection tools and systems using data mining technology. In this study, the experiments were conducted following the Knowledge Discovery in Database Process Model. The Knowledge Discovery in Database Process Model starts from selection of the datasets. The dataset used in this study has been taken from Massachusetts Institute of Technology Lincoln Laboratory. After taking the data, it has been pre-processed. The major pre-processing activities include fill in missed values, remove outliers; resolve inconsistencies, integration of data that contains both labelled and unlabelled datasets, dimensionality reduction, size reduction and data transformation activity like discretization tasks were done for this study. A total of 21,533 intrusion records are used for training the models. For validating the performance of the selected model a separate 3,397 records are used as a testing set. For building a predictive model for intrusion detection J48 decision tree and the Naïve Bayes algorithms have been tested as a classification approach for both with and without feature selection approaches. The model that was created using 10-fold cross validation using the J48 decision tree algorithm with the default parameter values showed the best classification accuracy. The model has a prediction accuracy of 96.11% on the training datasets and 93.2% on the test dataset to classify the new instances as normal, DOS, U2R, R2L and probe classes. The findings of this study have shown that the data mining methods generates interesting rules that are crucial for intrusion detection and prevention in the networking industry. Future research directions are forwarded to come up an applicable system in the area of the study.

Keywords: intrusion detection, data mining, computer science, data mining

Procedia PDF Downloads 298
2552 MEAL Project–Modifying Eating Attitudes and Actions through Learning

Authors: E. Oliver, A. Cebolla, A. Dominguez, A. Gonzalez-Segura, E. de la Cruz, S. Albertini, L. Ferrini, K. Kronika, T. Nilsen, R. Baños

Abstract:

The main objective of MEAL is to develop a pedagogical tool aimed to help teachers and nutritionists (students and professionals) to acquire, train, promote and deliver to children basic nutritional education and healthy eating behaviours competencies. MEAL is focused on eating behaviours and not only in nutritional literacy, and will use new technologies like Information and Communication Technologies (ICTs) and serious games (SG) platforms to consolidate the nutritional competences and habits.

Keywords: nutritional education, pedagogical ICT platform, serious games, training course

Procedia PDF Downloads 529
2551 Improving Productivity in a Glass Production Line through Applying Principles of Total Productive Maintenance (TPM)

Authors: Omar Bataineh

Abstract:

Total productive maintenance (TPM) is a principle-based method that aims to get a high-level production with no breakdowns, no slow running and no defects. Key principles of TPM were applied in this work to improve the performance of the glass production line at United Beverage Company in Kuwait, which is producing bottles of soft drinks. Principles such as 5S as a foundation for TPM implementation, developing a program for equipment management, Cause and Effect Analysis (CEA), quality improvement, training and education of employees were employed. After the completion of TPM implementation, it was possible to increase the Overall Equipment Effectiveness (OEE) from 23% to 40%.

Keywords: OEE, TPM, FMEA, CEA

Procedia PDF Downloads 339
2550 From a Top Sport Event to a Sporting Activity

Authors: Helge Rupprich, Elke Knisel

Abstract:

In a time of mediazation and reduced physical movement, it is important to change passivity (akinesa) into physical activity to improve health. The approach is to encourage children, junior athletes, recreational athletes, and semi-professional athletes to do sports while attending a top sport event. The concept has the slogan: get out off your seat and move! A top sport event of a series of professional beach volleyball tournaments with 330.000 life viewers, 13,70 million cumulative reach viewers and 215,13 million advertising contacts is used as framework for different sports didactic approaches, social integrative approaches and migration valuations. An important aim is to use the big radiant power of the top sport event to extract active participants from the viewers of the top sport event. Even if it is the goal to improve physical activity, it is necessary to differentiate between the didactic approaches. The first approach contains psycho motoric exercises with children (N=158) between two and five years which was used in the project ‘largest sandbox of the city’. The second approach is social integration and promotion of activity of students (N=54) in the form of a student beach volleyball tournament. The third approach is activity in companies. It is based on the idea of health motivation of employees (N=62) in a big beach volleyball tournament. Fourth approach is to improve the sports leisure time activities of recreational athletes (N=292) in different beach volleyball tournaments. Fifthly approach is to build a foreign friendly measure which is implemented in junior athlete training with the French and German junior national team (N=16). Sixthly approach is to give semi professional athletes a tournament to develop their relation to active life. Seventh approach is social integration for disadvantaged people (N=123) in form of training with professional athletes. The top sport beach volleyball tournament had 80 athletes (N=80) and 34.000 viewers. In sum 785 athletes (N=785) did sports in 13 days. Over 34.000 viewers where counted in the first three days of top sport event. The project was evaluated positively by the City of Dresden, Politics of Saxony and the participants and will be continued in Dresden and expanded for the season 2015 in Jena.

Keywords: beach volleyball, event, sports didactic, sports project

Procedia PDF Downloads 497
2549 Climate-Smart Agriculture Technologies and Determinants of Farmers’ Adoption Decisions in the Great Rift Valley of Ethiopia

Authors: Theodrose Sisay, Kindie Tesfaye, Mengistu Ketema, Nigussie Dechassa, Mezegebu Getnet

Abstract:

Agriculture is a sector that is very vulnerable to the effects of climate change and contributes to anthropogenic greenhouse gas (GHG) emissions in the atmosphere. By lowering emissions and adjusting to the change, it can also help to reduce climate change. Utilizing Climate-Smart Agriculture (CSA) technology that can sustainably boost productivity, improve resilience, and lower GHG emissions is crucial. This study sought to identify the CSA technologies used by farmers and assess adoption levels and factors that influence them. In order to gather information from 384 smallholder farmers in the Great Rift Valley (GRV) of Ethiopia, a cross-sectional survey was carried out. Data were analysed using percentage, chi-square test, t-test, and multivariate probit model. Results showed that crop diversification, agroforestry, and integrated soil fertility management were the most widely practiced technologies. The results of the Chi-square and t-tests showed that there are differences and significant and positive connections between adopters and non-adopters based on various attributes. The chi-square and t-test results confirmed that households who were older had higher incomes, greater credit access, knowledge of the climate, better training, better education, larger farms, higher incomes, and more frequent interactions with extension specialists had a positive and significant association with CSA technology adopters. The model result showed that age, sex, and education of the head, farmland size, livestock ownership, income, access to credit, climate information, training, and extension contact influenced the selection of CSA technologies. Therefore, effective action must be taken to remove barriers to the adoption of CSA technologies, and taking these adoption factors into account in policy and practice is anticipated to support smallholder farmers in adapting to climate change while lowering emissions.

Keywords: climate change, climate-smart agriculture, smallholder farmers, multivariate probit model

Procedia PDF Downloads 131
2548 Wetland Community and Their Livelihood Opportunities in the Face of Changing Climatic Condition in Southwest Bangladesh

Authors: Mohsina Aktar, Bishawjit Mallick

Abstract:

Bangladesh faces the multidimensional manifestations of climate change e.g. flood, cyclone, sea level rise, drainage congestion, salinity, etc. This study aimed at to find out the community’s perception of the perceived impact of climate change on their wetland resource based livelihood, to analyze their present livelihood scenario and to find out required institutional setup to strengthen present livelihood scenario. Therefore, this study required both quantitative analysis like quantification of wetland resources, occupation, etc. and also exploratory information like policy and institutional reform. For quantitative information 200 questionnaire survey and in some cases observation survey and for socially shareable qualitative and quantitative issues case study and focus group discussion were conducted. In-Depth interview was conducted for socially non-shareable qualitative issues. The overall findings of this study have been presented maintaining a sequence- perception about climate change effect, livelihood scenario and required institutional support of the wetland community. Flood has been ranked where cyclone effect is comparatively less disastrous in this area. Heavy rainfall comes after the cyclone. Female members responded almost same about the ranking and effects of frequently occurred and devastating effects of climate change. People are much more aware of the impact of climate change. Training of Care in RVCC project helps to increase their knowledge level. If the level of education can be increased, people can fight against calamity and poverty with more confidence. People seem to overcome the problems of water logging and thus besides involving in Hydroponics (33.3%) as prime occupation in monsoon; they are also engaged in other business related activities. January to May is the low-income season for the farmers. But some people don’t want to change their traditional occupation and their age is above 45. The young earning member wants to utilize their lean income period by alternative occupation. People who do not have own land and performing water transportation or other types of occupation are now interested about Hydroponics. People who give their land on rent are now thinking about renting their land in monsoon as through that they can earn a sound amount rather than get nothing. What they require is just seed, training, and capital. Present marketing system faces the problem of communication. So this sector needed to be developed. Involvement of women in income earning activity is very low (5.1%), and 100% women are housewives. They became inferior due to their educational level and dominance of their husband. Only one NGO named BCAS (Bangladesh Center for Advanced Studies) has been found engage training facilities and advocacy for this purpose. Upazilla agricultural extension office like other GO remains inactive to give support the community for extension and improvement of Hydroponics agriculture. If the community gets proper support and inspiration, they can fight against crisis of low-income and climate change, with the Hydroponics cultivation system successfully.

Keywords: wetland community, hydroponics, climate change adaptation, livelihood

Procedia PDF Downloads 274
2547 Exploring a Cross-Sectional Analysis Defining Social Work Leadership Competencies in Social Work Education and Practice

Authors: Trevor Stephen, Joshua D. Aceves, David Guyer, Jona Jacobson

Abstract:

As a profession, social work has much to offer individuals, groups, and organizations. A multidisciplinary approach to understanding and solving complex challenges and a commitment to developing and training ethical practitioners outlines characteristics of a profession embedded with leadership skills. This presentation will take an overview of the historical context of social work leadership, examine social work as a unique leadership model composed of its qualities and theories that inform effective leadership capability as it relates to our code of ethics. Reflect critically on leadership theories and their foundational comparison. Finally, a look at recommendations and implementation to social work education and practice. Similar to defining leadership, there is no universally accepted definition of social work leadership. However, some distinct traits and characteristics are essential. Recent studies help set the stage for this research proposal because they measure views on effective social work leadership among social work and non-social leaders and followers. However, this research is interested in working backward from that approach and examining social workers' leadership preparedness perspectives based solely on social work training, competencies, values, and ethics. Social workers understand how to change complex structures and challenge resistance to change to improve the well-being of organizations and those they serve. Furthermore, previous studies align with the idea of practitioners assessing their skill and capacity to engage in leadership but not to lead. In addition, this research is significant because it explores aspiring social work leaders' competence to translate social work practice into direct leadership skills. The research question seeks to answer whether social work training and competencies are sufficient to determine whether social workers believe they possess the capacity and skill to engage in leadership practice. Aim 1: Assess whether social workers have the capacity and skills to assume leadership roles. Aim 2: Evaluate how the development of social workers is sufficient in defining leadership. This research intends to reframe the misconception that social workers do not possess the capacity and skills to be effective leaders. On the contrary, social work encompasses a framework dedicated to lifelong development and growth. Social workers must be skilled, competent, ethical, supportive, and empathic. These are all qualities and traits of effective leadership, whereas leaders are in relation with others and embody partnership and collaboration with followers and stakeholders. The proposed study is a cross-sectional quasi-experimental survey design that will include the distribution of a multi-level social work leadership model and assessment tool. The assessment tool aims to help define leadership in social work using a Likert scale model. A cross-sectional research design is appropriate for answering the research questions because the measurement survey will help gather data using a structured tool. Other than the proposed social work leadership measurement tool, there is no other mechanism based on social work theory and designed to measure the capacity and skill of social work leadership.

Keywords: leadership competencies, leadership education, multi-level social work leadership model, social work core values, social work leadership, social work leadership education, social work leadership measurement tool

Procedia PDF Downloads 175
2546 Effects of Safety Intervention Program towards Behaviors among Rubber Wood Processing Workers Using Theory of Planned Behavior

Authors: Junjira Mahaboon, Anongnard Boonpak, Nattakarn Worrasan, Busma Kama, Mujalin Saikliang, Siripor Dankachatarn

Abstract:

Rubber wood processing is one of the most important industries in southern Thailand. The process has several safety hazards for example unsafe wood cutting machine guarding, wood dust, noise, and heavy lifting. However, workers’ occupational health and safety measures to promote their behaviors are still limited. This quasi-experimental research was to determine factors affecting workers’ safety behaviors using theory of planned behavior after implementing job safety intervention program. The purposes were to (1) determine factors affecting workers’ behaviors and (2) to evaluate effectiveness of the intervention program. The sample of study was 66 workers from a rubber wood processing factory. Factors in the Theory of Planned Behavior model (TPB) were measured before and after the intervention. The factors of TPB included attitude towards behavior, subjective norm, perceived behavioral control, intention, and behavior. Firstly, Job Safety Analysis (JSA) was conducted and Safety Standard Operation Procedures (SSOP) were established. The questionnaire was also used to collect workers’ characteristics and TPB factors. Then, job safety intervention program to promote workers’ behavior according to SSOP were implemented for a four month period. The program included SSOP training, personal protective equipment use, and safety promotional campaign. After that, the TPB factors were again collected. Paired sample t-test and independent t-test were used to analyze the data. The result revealed that attitude towards behavior and intention increased significantly after the intervention at p<0.05. These factors also significantly determined the workers’ safety behavior according to SSOP at p<0.05. However, subjective norm, and perceived behavioral control were not significantly changed nor related to safety behaviors. In conclusion, attitude towards behavior and workers’ intention should be promoted to encourage workers’ safety behaviors. SSOP intervention program e.g. short meeting, safety training, and promotional campaign should be continuously implemented in a routine basis to improve workers’ behavior.

Keywords: job safety analysis, rubber wood processing workers, safety standard operation procedure, theory of planned behavior

Procedia PDF Downloads 195
2545 Identification of Candidate Congenital Heart Defects Biomarkers by Applying a Random Forest Approach on DNA Methylation Data

Authors: Kan Yu, Khui Hung Lee, Eben Afrifa-Yamoah, Jing Guo, Katrina Harrison, Jack Goldblatt, Nicholas Pachter, Jitian Xiao, Guicheng Brad Zhang

Abstract:

Background and Significance of the Study: Congenital Heart Defects (CHDs) are the most common malformation at birth and one of the leading causes of infant death. Although the exact etiology remains a significant challenge, epigenetic modifications, such as DNA methylation, are thought to contribute to the pathogenesis of congenital heart defects. At present, no existing DNA methylation biomarkers are used for early detection of CHDs. The existing CHD diagnostic techniques are time-consuming and costly and can only be used to diagnose CHDs after an infant was born. The present study employed a machine learning technique to analyse genome-wide methylation data in children with and without CHDs with the aim to find methylation biomarkers for CHDs. Methods: The Illumina Human Methylation EPIC BeadChip was used to screen the genome‐wide DNA methylation profiles of 24 infants diagnosed with congenital heart defects and 24 healthy infants without congenital heart defects. Primary pre-processing was conducted by using RnBeads and limma packages. The methylation levels of top 600 genes with the lowest p-value were selected and further investigated by using a random forest approach. ROC curves were used to analyse the sensitivity and specificity of each biomarker in both training and test sample sets. The functionalities of selected genes with high sensitivity and specificity were then assessed in molecular processes. Major Findings of the Study: Three genes (MIR663, FGF3, and FAM64A) were identified from both training and validating data by random forests with an average sensitivity and specificity of 85% and 95%. GO analyses for the top 600 genes showed that these putative differentially methylated genes were primarily associated with regulation of lipid metabolic process, protein-containing complex localization, and Notch signalling pathway. The present findings highlight that aberrant DNA methylation may play a significant role in the pathogenesis of congenital heart defects.

Keywords: biomarker, congenital heart defects, DNA methylation, random forest

Procedia PDF Downloads 160
2544 Predictive Analysis of the Stock Price Market Trends with Deep Learning

Authors: Suraj Mehrotra

Abstract:

The stock market is a volatile, bustling marketplace that is a cornerstone of economics. It defines whether companies are successful or in spiral. A thorough understanding of it is important - many companies have whole divisions dedicated to analysis of both their stock and of rivaling companies. Linking the world of finance and artificial intelligence (AI), especially the stock market, has been a relatively recent development. Predicting how stocks will do considering all external factors and previous data has always been a human task. With the help of AI, however, machine learning models can help us make more complete predictions in financial trends. Taking a look at the stock market specifically, predicting the open, closing, high, and low prices for the next day is very hard to do. Machine learning makes this task a lot easier. A model that builds upon itself that takes in external factors as weights can predict trends far into the future. When used effectively, new doors can be opened up in the business and finance world, and companies can make better and more complete decisions. This paper explores the various techniques used in the prediction of stock prices, from traditional statistical methods to deep learning and neural networks based approaches, among other methods. It provides a detailed analysis of the techniques and also explores the challenges in predictive analysis. For the accuracy of the testing set, taking a look at four different models - linear regression, neural network, decision tree, and naïve Bayes - on the different stocks, Apple, Google, Tesla, Amazon, United Healthcare, Exxon Mobil, J.P. Morgan & Chase, and Johnson & Johnson, the naïve Bayes model and linear regression models worked best. For the testing set, the naïve Bayes model had the highest accuracy along with the linear regression model, followed by the neural network model and then the decision tree model. The training set had similar results except for the fact that the decision tree model was perfect with complete accuracy in its predictions, which makes sense. This means that the decision tree model likely overfitted the training set when used for the testing set.

Keywords: machine learning, testing set, artificial intelligence, stock analysis

Procedia PDF Downloads 97
2543 Gender Justice and Empowerment: A Study of Chhara Bootlegger Women of Ahmedabad

Authors: Neeta Khurana, Ritu Sharma

Abstract:

This paper is an impact assessment study of the rehabilitation work done for Chhara women in the rural precincts of Ahmedabad. The Chharas constitute a denotified tribe and live in abject poverty. The women of this community are infamous absconders of law and active bootleggers of locally made liquor. As part of a psychological study with a local NGO, the authors headed a training program aimed at rehabilitating and providing these women alternate modes of employment, thereby driving them away from a life of crime. The paper centers on the idea of women entrepreneurship and women empowerment. It notes the importance of handholding in a conflict situation. Most of the research on Chharas is either focused on victimising them for state-sponsored violence or mostly makes a plea on reconditioning them in the mainstream. Going against this trend, this paper which documents the study argues that making these poor women self-dependent is a panacea for their sluggish development. The alienation caused due to the demonisation of the community has made them abandon traditional modes of employment. This has further led the community astray into making illegal country liquor causing further damage to their reputation. Women are at the centre of this vicious circle facing much repression and ostracisation. The study conducted by the PDPU team was an attempt to change this dogmatic alienation of these poor women. It was found that with consistent support and reformist approach towards law, it is possible to drive these women away from a life of penury repression and crime. The aforementioned study uses empirical tools to verify this claim. Placed at the confluence of the sociology of gender and psychology, this paper is a good way to argue that law enforcement cannot be effective without sensitisation to the ground realities of conflict. The study conducted from which the paper borrows was a scientific survey focused on markers of gender and caste realities of the Chharas. The paper mentions various dynamics involved in the training program that paved the way for the successful employment of the women. In an attempt to explain its uniqueness, the paper also has a section on comparing similar social experiments.

Keywords: employment, gender, handholding, rehabilitation

Procedia PDF Downloads 131
2542 Game “EZZRA” as an Innovative Solution

Authors: Mane Varosyan, Diana Tumanyan, Agnesa Martirosyan

Abstract:

There are many catastrophic events that end with dire consequences, and to avoid them, people should be well-armed with the necessary information about these situations. During the last years, Serious Games have increasingly gained popularity for training people for different types of emergencies. The major discussed problem is the usage of gamification in education. Moreover, it is mandatory to understand how and what kind of gamified e-learning modules promote engagement. As the theme is emergency, we also find out people’s behavior for creating the final approach. Our proposed solution is an educational video game, “EZZRA”.

Keywords: gamification, education, emergency, serious games, game design, virtual reality, digitalisation

Procedia PDF Downloads 78
2541 Smartphone-Based Human Activity Recognition by Machine Learning Methods

Authors: Yanting Cao, Kazumitsu Nawata

Abstract:

As smartphones upgrading, their software and hardware are getting smarter, so the smartphone-based human activity recognition will be described as more refined, complex, and detailed. In this context, we analyzed a set of experimental data obtained by observing and measuring 30 volunteers with six activities of daily living (ADL). Due to the large sample size, especially a 561-feature vector with time and frequency domain variables, cleaning these intractable features and training a proper model becomes extremely challenging. After a series of feature selection and parameters adjustment, a well-performed SVM classifier has been trained.

Keywords: smart sensors, human activity recognition, artificial intelligence, SVM

Procedia PDF Downloads 145
2540 Importance of CT and Timed Barium Esophagogram in the Contemporary Treatment of Patients with Achalasia

Authors: Sanja Jovanovic, Aleksandar Simic, Ognjan Skrobic, Dragan Masulovic, Aleksandra Djuric-Stefanovic

Abstract:

Introduction: Achalasia is an idiopathic primary esophageal motility disorder characterized by esophageal peristalsis and impaired swallow-induced relaxation of the lower esophageal sphincter (LES). It is a rare disease that affects both genders with an incidence of 1/100.000 and a prevalence rate of 10/100,000 per year. Objective: Laparoscopic Heller myotomy (LHM) represents a therapy of choice for patients with achalasia, providing excellent outcomes. The aim of this study was to evaluate the significance of computed tomography (CT) in analyzing achalasia subtypes and timed barium esophagogram (TBE) in evaluation of LHM success, as a part of standardized diagnostic protocol. Method: Fifty-one patients with achalasia, confirmed by manometric studies, in addition to standardized diagnostic methods, underwent CT and TBE. CT was done with multiplanar reconstruction, measuring the wall thickness above the esophago-gastric junction in the axial plane. TBE was performed preoperatively and two days postoperatively swallowing low-density barium sulfate, and plane upright frontal films were performed 1, 2 and 5 minutes after the ingestion. In all patients, LHM was done, and pre and postoperative height and weight of the barium column were compared. Results: According to CT findings we divided patients into 3 subtypes of achalasia according to wall thickness: < 4mm as subtype one, between 4 - 9mm as II, and > 10 mm as subtype 3. Correlation of manometric results, as a reference values, and CT findings indicated CT sensitivity of 90% and specificity of 70 % in establishing subtypes of achalasia. The preoperative values of TBE at 1, 2 and 5 minutes were: median barium column height 17.4 ± 7.4, 15.9 ± 6.2 and 13.9 ± 6.2 cm; median column width 5 ± 1.5, 4.7 ± 1.6 and 4.5 ± 1.8 cm respectively. LHM significantly reduced these values (height 7 ± 4.6, 5.8 ± 4.2, 3.7 ± 3.4 cm; width 2.9 ± 1.3, 2.6 ± 1.3 and 2.4 ± 1.4 cm), indicating the quantitative estimates of emptying as excellent (p value < 0.01). Conclusion: CT has high sensitivity and specificity in evaluation of achalasia subtypes, and can be introduced as an additional method for standardized evaluation of these patients. The quantitative assessment of TBE based on measurements of the barium column is an accurate and beneficial method, which adequately estimates esophageal emptying success of LHM.

Keywords: achalasia, computed tomography, esophagography, myotomy

Procedia PDF Downloads 238
2539 Representation of Emotions and Characters in Turkish and Indian Series

Authors: Lienjang Zeite

Abstract:

Over the past few years, Turkish and Indian series have been distributed worldwide to countless households and have found ardent followers across different age group. The series have captured numerous hearts. Turkish and Indian series have become not only one of the best means of entertainment and relaxation but also a platform to learn and appreciate shared emotions and social messages. The popularity of the series has created a kind of interest in representing human emotions and stories like never before. The demands for such series have totally shifted the entertainment industry at a new level. The interest and vibe created by the series have had impacts on various departments spanning from technology to the fashion industry and it has also become the bridge to connect viewers across the globe. The series have amassed avid admirers who find solace in the beautiful visual representations of human relationships whether it is of lovers, family or friendship. The influence of Turkish and Indian series in many parts of the world has created a cultural phenomenon that has taken viewers beyond cultural and language differences. From China to Latin America, Arab countries and the Caucasus region, the series have been accepted and loved by millions of viewers. It has captivated audiences ranging from grandmothers to teenagers. Issues like language barrier are easily solved by means of translation or dubbing making it easier to understand and enjoy the series. Turkey and India are two different countries with their own unique culture and traditions. Both the countries are exporters of series in large scale. The series function as a platform to reveal the plots and shed lights on characters of all kinds. Both the countries produce series that are more or less similar in nature. However, there are also certain issues that are shown in different ways and light. The paper will discuss how emotions are represented in Turkish and Indian series. It will also discuss the ways the series have impacted the art of representing emotions and characters in the digital era. The representation of culture through Turkish and Indian series will be explored as well. The paper will also locate the issue of gender roles and how relationships are forged or abandoned in the series. The issue of character formation and importance of moral factors will be discussed. It will also examine the formula and ingredients of turning human emotions and characters into a much loved series.

Keywords: characters, cultural phenomenon, emotions, Turkish and Indian series

Procedia PDF Downloads 138
2538 Application of Groundwater Level Data Mining in Aquifer Identification

Authors: Liang Cheng Chang, Wei Ju Huang, You Cheng Chen

Abstract:

Investigation and research are keys for conjunctive use of surface and groundwater resources. The hydrogeological structure is an important base for groundwater analysis and simulation. Traditionally, the hydrogeological structure is artificially determined based on geological drill logs, the structure of wells, groundwater levels, and so on. In Taiwan, groundwater observation network has been built and a large amount of groundwater-level observation data are available. The groundwater level is the state variable of the groundwater system, which reflects the system response combining hydrogeological structure, groundwater injection, and extraction. This study applies analytical tools to the observation database to develop a methodology for the identification of confined and unconfined aquifers. These tools include frequency analysis, cross-correlation analysis between rainfall and groundwater level, groundwater regression curve analysis, and decision tree. The developed methodology is then applied to groundwater layer identification of two groundwater systems: Zhuoshui River alluvial fan and Pingtung Plain. The abovementioned frequency analysis uses Fourier Transform processing time-series groundwater level observation data and analyzing daily frequency amplitude of groundwater level caused by artificial groundwater extraction. The cross-correlation analysis between rainfall and groundwater level is used to obtain the groundwater replenishment time between infiltration and the peak groundwater level during wet seasons. The groundwater regression curve, the average rate of groundwater regression, is used to analyze the internal flux in the groundwater system and the flux caused by artificial behaviors. The decision tree uses the information obtained from the above mentioned analytical tools and optimizes the best estimation of the hydrogeological structure. The developed method reaches training accuracy of 92.31% and verification accuracy 93.75% on Zhuoshui River alluvial fan and training accuracy 95.55%, and verification accuracy 100% on Pingtung Plain. This extraordinary accuracy indicates that the developed methodology is a great tool for identifying hydrogeological structures.

Keywords: aquifer identification, decision tree, groundwater, Fourier transform

Procedia PDF Downloads 158
2537 Effects of Robot-Assisted Hand Training on Upper Extremity Performance in Patients with Stroke: A Randomized Crossover Controlled, Assessor-Blinded Study

Authors: Hsin-Chieh Lee, Fen-Ling Kuo, Jui-Chi Lin

Abstract:

Background: Upper extremity functional impairment that occurs after stroke includes hemiplegia, synergy movement, muscle hypertonicity, and somatosensory impairment, which result in inefficient and inaccurate movement. Robot-assisted rehabilitation is an intensive training approach that is effective in sensorimotor and hand function recovery. However, these systems mostly focused on the proximal part of the upper limb rather than the distal part. The device used in our study was Gloreha Sinfonia, which focuses on the distal part of the upper limb and uses a dynamic support system to facilitate the whole limb function. The objective of this study was to investigate the effects of robot-assisted therapy (RT) with Gloreha device on sensorimotor, and ADLs in patients with stroke. Method: Patients with stroke (N=25) participated AB or BA (A = 12 RT sessions and B = 12 conventional therapy (CT) sessions) for 6 weeks (60 min at each session, twice a week), with 1-month break for washout period. The performance of the patients was assessed by a blinded assessor at 4 time points (pretest 1, posttest 1, pretest 2, posttest 2) which including the Fugl–Meyer Assessment-upper extremity (FMA-UE), box and block test, electromyography of the extensor digitorum communis (EDC) and brachioradialis, a grip dynamometer for motor evaluation; Semmes–Weinstein hand monofilament and Revision of the Nottingham Sensory Assessment for sensory evaluation; and the Modified Barthel Index (MBI) for assessing the ADL ability. Result: RT group significantly improved FMA-UE proximal scores (p = 0.038), FMA-UE total scores (p = 0.046), and MBI (p = 0.030). The EDC exhibited higher efficiency during the small block grasping task in the RT group than in the CT group (p = 0.050). Conclusions: RT with the Gloreha device might lead to beneficial effects on arm motor function, ADL ability, and EDC muscle recruitment efficacy in patients with subacute to chronic stroke.

Keywords: activities of daily living, hand function, robotic rehabilitation, stroke

Procedia PDF Downloads 119
2536 Groundwater Potential Delineation Using Geodetector Based Convolutional Neural Network in the Gunabay Watershed of Ethiopia

Authors: Asnakew Mulualem Tegegne, Tarun Kumar Lohani, Abunu Atlabachew Eshete

Abstract:

Groundwater potential delineation is essential for efficient water resource utilization and long-term development. The scarcity of potable and irrigation water has become a critical issue due to natural and anthropogenic activities in meeting the demands of human survival and productivity. With these constraints, groundwater resources are now being used extensively in Ethiopia. Therefore, an innovative convolutional neural network (CNN) is successfully applied in the Gunabay watershed to delineate groundwater potential based on the selected major influencing factors. Groundwater recharge, lithology, drainage density, lineament density, transmissivity, and geomorphology were selected as major influencing factors during the groundwater potential of the study area. For dataset training, 70% of samples were selected and 30% were used for serving out of the total 128 samples. The spatial distribution of groundwater potential has been classified into five groups: very low (10.72%), low (25.67%), moderate (31.62%), high (19.93%), and very high (12.06%). The area obtains high rainfall but has a very low amount of recharge due to a lack of proper soil and water conservation structures. The major outcome of the study showed that moderate and low potential is dominant. Geodetoctor results revealed that the magnitude influences on groundwater potential have been ranked as transmissivity (0.48), recharge (0.26), lineament density (0.26), lithology (0.13), drainage density (0.12), and geomorphology (0.06). The model results showed that using a convolutional neural network (CNN), groundwater potentiality can be delineated with higher predictive capability and accuracy. CNN-based AUC validation platform showed that 81.58% and 86.84% were accrued from the accuracy of training and testing values, respectively. Based on the findings, the local government can receive technical assistance for groundwater exploration and sustainable water resource development in the Gunabay watershed. Finally, the use of a detector-based deep learning algorithm can provide a new platform for industrial sectors, groundwater experts, scholars, and decision-makers.

Keywords: CNN, geodetector, groundwater influencing factors, Groundwater potential, Gunabay watershed

Procedia PDF Downloads 24
2535 Influence of Spelling Errors on English Language Performance among Learners with Dysgraphia in Public Primary Schools in Embu County, Kenya

Authors: Madrine King'endo

Abstract:

This study dealt with the influence of spelling errors on English language performance among learners with dysgraphia in public primary schools in West Embu, Embu County, Kenya. The study purposed to investigate the influence of spelling errors on the English language performance among the class three pupils with dysgraphia in public primary schools. The objectives of the study were to identify the spelling errors that learners with dysgraphia make when writing English words and classify the spelling errors they make. Further, the study will establish how the spelling errors affect the performance of the language among the study participants, and suggest the remediation strategies that teachers could use to address the errors. The study could provide the stakeholders with relevant information in writing skills that could help in developing a responsive curriculum to accommodate the teaching and learning needs of learners with dysgraphia, and probably ensure training of teachers in teacher training colleges is tailored within the writing needs of the pupils with dysgraphia. The study was carried out in Embu county because the researcher did not find any study in related literature review concerning the influence of spelling errors on English language performance among learners with dysgraphia in public primary schools done in the area. Moreover, besides being relatively populated enough for a sample population of the study, the area was fairly cosmopolitan to allow a generalization of the study findings. The study assumed the sampled schools will had class three pupils with dysgraphia who exhibited written spelling errors. The study was guided by two spelling approaches: the connectionist stimulation of spelling process and orthographic autonomy hypothesis with a view to explain how participants with learning disabilities spell written words. Data were collected through interviews, pupils’ exercise books, and progress records, and a spelling test made by the researcher based on the spelling scope set for class three pupils by the ministry of education in the primary education syllabus. The study relied on random sampling techniques in identifying general and specific participants. Since the study used children in schools as participants, voluntary consent was sought from themselves, their teachers and the school head teachers who were their caretakers in a school setting.

Keywords: dysgraphia, writing, language, performance

Procedia PDF Downloads 156