Search results for: neural progentor cells
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4926

Search results for: neural progentor cells

3246 Hot Carrier Photocurrent as a Candidate for an Intrinsic Loss in a Single Junction Solar Cell

Authors: Jonas Gradauskas, Oleksandr Masalskyi, Ihor Zharchenko

Abstract:

The advancement in improving the efficiency of conventional solar cells toward the Shockley-Queisser limit seems to be slowing down or reaching a point of saturation. The challenges hindering the reduction of this efficiency gap can be categorized into extrinsic and intrinsic losses, with the former being theoretically avoidable. Among the five intrinsic losses, two — the below-Eg loss (resulting from non-absorption of photons with energy below the semiconductor bandgap) and thermalization loss —contribute to approximately 55% of the overall lost fraction of solar radiation at energy bandgap values corresponding to silicon and gallium arsenide. Efforts to minimize the disparity between theoretically predicted and experimentally achieved efficiencies in solar cells necessitate the integration of innovative physical concepts. Hot carriers (HC) present a contemporary approach to addressing this challenge. The significance of hot carriers in photovoltaics is not fully understood. Although their excessive energy is thought to indirectly impact a cell's performance through thermalization loss — where the excess energy heats the lattice, leading to efficiency loss — evidence suggests the presence of hot carriers in solar cells. Despite their exceptionally brief lifespan, tangible benefits arise from their existence. The study highlights direct experimental evidence of hot carrier effect induced by both below- and above-bandgap radiation in a singlejunction solar cell. Photocurrent flowing across silicon and GaAs p-n junctions is analyzed. The photoresponse consists, on the whole, of three components caused by electron-hole pair generation, hot carriers, and lattice heating. The last two components counteract the conventional electron-hole generation-caused current required for successful solar cell operation. Also, a model of the temperature coefficient of the voltage change of the current–voltage characteristic is used to obtain the hot carrier temperature. The distribution of cold and hot carriers is analyzed with regard to the potential barrier height of the p-n junction. These discoveries contribute to a better understanding of hot carrier phenomena in photovoltaic devices and are likely to prompt a reevaluation of intrinsic losses in solar cells.

Keywords: solar cell, hot carriers, intrinsic losses, efficiency, photocurrent

Procedia PDF Downloads 65
3245 Automated Heart Sound Classification from Unsegmented Phonocardiogram Signals Using Time Frequency Features

Authors: Nadia Masood Khan, Muhammad Salman Khan, Gul Muhammad Khan

Abstract:

Cardiologists perform cardiac auscultation to detect abnormalities in heart sounds. Since accurate auscultation is a crucial first step in screening patients with heart diseases, there is a need to develop computer-aided detection/diagnosis (CAD) systems to assist cardiologists in interpreting heart sounds and provide second opinions. In this paper different algorithms are implemented for automated heart sound classification using unsegmented phonocardiogram (PCG) signals. Support vector machine (SVM), artificial neural network (ANN) and cartesian genetic programming evolved artificial neural network (CGPANN) without the application of any segmentation algorithm has been explored in this study. The signals are first pre-processed to remove any unwanted frequencies. Both time and frequency domain features are then extracted for training the different models. The different algorithms are tested in multiple scenarios and their strengths and weaknesses are discussed. Results indicate that SVM outperforms the rest with an accuracy of 73.64%.

Keywords: pattern recognition, machine learning, computer aided diagnosis, heart sound classification, and feature extraction

Procedia PDF Downloads 263
3244 Graph Based Traffic Analysis and Delay Prediction Using a Custom Built Dataset

Authors: Gabriele Borg, Alexei Debono, Charlie Abela

Abstract:

There on a constant rise in the availability of high volumes of data gathered from multiple sources, resulting in an abundance of unprocessed information that can be used to monitor patterns and trends in user behaviour. Similarly, year after year, Malta is also constantly experiencing ongoing population growth and an increase in mobilization demand. This research takes advantage of data which is continuously being sourced and converting it into useful information related to the traffic problem on the Maltese roads. The scope of this paper is to provide a methodology to create a custom dataset (MalTra - Malta Traffic) compiled from multiple participants from various locations across the island to identify the most common routes taken to expose the main areas of activity. This use of big data is seen being used in various technologies and is referred to as ITSs (Intelligent Transportation Systems), which has been concluded that there is significant potential in utilising such sources of data on a nationwide scale. Furthermore, a series of traffic prediction graph neural network models are conducted to compare MalTra to large-scale traffic datasets.

Keywords: graph neural networks, traffic management, big data, mobile data patterns

Procedia PDF Downloads 131
3243 Designing a Thermal Management System for Lithium Ion Battery Packs in Electric Vehicles

Authors: Ekin Esen, Mohammad Alipour, Riza Kizilel

Abstract:

Rechargeable lithium-ion batteries have been replacing lead-acid batteries for the last decade due to their outstanding properties such as high energy density, long shelf life, and almost no memory effect. Besides these, being very light compared to lead acid batteries has gained them their dominant place in the portable electronics market, and they are now the leading candidate for electric vehicles (EVs) and hybrid electric vehicles (HEVs). However, their performance strongly depends on temperature, and this causes some inconveniences for their utilization in extreme temperatures. Since weather conditions vary across the globe, this situation limits their utilization for EVs and HEVs and makes a thermal management system obligatory for the battery units. The objective of this study is to understand thermal characteristics of Li-ion battery modules for various operation conditions and design a thermal management system to enhance battery performance in EVs and HEVs. In the first part of our study, we investigated thermal behavior of commercially available pouch type 20Ah LiFePO₄ (LFP) cells under various conditions. Main parameters were chosen as ambient temperature and discharge current rate. Each cell was charged and discharged at temperatures of 0°C, 10°C, 20°C, 30°C, 40°C, and 50°C. The current rate of charging process was 1C while it was 1C, 2C, 3C, 4C, and 5C for discharge process. Temperatures of 7 different points on the cells were measured throughout charging and discharging with N-type thermocouples, and a detailed temperature profile was obtained. In the second part of our study, we connected 4 cells in series by clinching and prepared 4S1P battery modules similar to ones in EVs and HEVs. Three reference points were determined according to the findings of the first part of the study, and a thermocouple is placed on each reference point on the cells composing the 4S1P battery modules. In the end, temperatures of 6 points in the module and 3 points on the top surface were measured and changes in the surface temperatures were recorded for different discharge rates (0.2C, 0.5C, 0.7C, and 1C) at various ambient temperatures (0°C – 50°C). Afterwards, aluminum plates with channels were placed between the cells in the 4S1P battery modules, and temperatures were controlled with airflow. Airflow was provided with a regular compressor, and the effect of flow rate on cell temperature was analyzed. Diameters of the channels were in mm range, and shapes of the channels were determined in order to make the cell temperatures uniform. Results showed that the designed thermal management system could help keeping the cell temperatures in the modules uniform throughout charge and discharge processes. Other than temperature uniformity, the system was also beneficial to keep cell temperature close to the optimum working temperature of Li-ion batteries. It is known that keeping the temperature at an optimum degree and maintaining uniform temperature throughout utilization can help obtaining maximum power from the cells in battery modules for a longer time. Furthermore, it will increase safety by decreasing the risk of thermal runaways. Therefore, the current study is believed to be beneficial for wider use of Li batteries for battery modules of EVs and HEVs globally.

Keywords: lithium ion batteries, thermal management system, electric vehicles, hybrid electric vehicles

Procedia PDF Downloads 163
3242 DNA Prime/MVTT Boost Enhances Broadly Protective Immune Response against Mosaic HIV-1 Gag

Authors: Wan Liu, Haibo Wang, Cathy Huang, Zhiwu Tan, Zhiwei Chen

Abstract:

The tremendous diversity of HIV-1 has been a major challenge for an effective AIDS vaccine development. Mosaic approach presents the potential for vaccine design aiming for global protection. The mosaic antigen of HIV-1 Gag allows antigenic breadth for vaccine-elicited immune response against a wider spectrum of viral strains. However, the enhancement of immune response using vaccines is dependent on the strategy used. Heterologous prime/boost regimen has been shown to elicit high levels of immune responses. Here, we investigated whether priming using plasmid DNA with electroporation followed by boosting with the live replication-competent modified vaccinia virus vector TianTan (MVTT) combined with the mosaic antigenic sequence could elicit a greater and broader antigen-specific response against HIV-1 Gag in mice. When compared to DNA or MVTT alone, or MVTT/MVTT group, DNA/MVTT group resulted in coincidentally high frequencies of broadly reactive, Gag-specific, polyfunctional, long-lived, and cytotoxic CD8+ T cells and increased anti-Gag antibody titer. Meanwhile, the vaccination could upregulate PD-1+, and Tim-3+ CD8+ T cell, myeloid-derived suppressive cells and Treg cells to balance the stronger immune response induced. Importantly, the prime/boost vaccination could help control the EcoHIV and mesothelioma AB1-gag challenge. The stronger protective Gag-specific immunity induced by a Mosaic DNA/MVTT vaccine corroborate the promise of the mosaic approach, and the potential of two acceptably safe vectors to enhance anti-HIV immunity and cancer prevention.

Keywords: DNA/MVTT vaccine, EcoHIV, mosaic antigen, mesothelioma AB1-gag

Procedia PDF Downloads 242
3241 A Mobile Application for Analyzing and Forecasting Crime Using Autoregressive Integrated Moving Average with Artificial Neural Network

Authors: Gajaanuja Megalathan, Banuka Athuraliya

Abstract:

Crime is one of our society's most intimidating and threatening challenges. With the majority of the population residing in cities, many experts and data provided by local authorities suggest a rapid increase in the number of crimes committed in these cities in recent years. There has been an increasing graph in the crime rates. People living in Sri Lanka have the right to know the exact crime rates and the crime rates in the future of the place they are living in. Due to the current economic crisis, crime rates have spiked. There have been so many thefts and murders recorded within the last 6-10 months. Although there are many sources to find out, there is no solid way of searching and finding out the safety of the place. Due to all these reasons, there is a need for the public to feel safe when they are introduced to new places. Through this research, the author aims to develop a mobile application that will be a solution to this problem. It is mainly targeted at tourists, and people who recently relocated will gain advantage of this application. Moreover, the Arima Model combined with ANN is to be used to predict crime rates. From the past researchers' works, it is evidently clear that they haven’t used the Arima model combined with Artificial Neural Networks to forecast crimes.

Keywords: arima model, ANN, crime prediction, data analysis

Procedia PDF Downloads 131
3240 The Effect of the Epstein-Barr Virus on the Development of Multiple Sclerosis

Authors: Sina Mahdavi

Abstract:

Background and Objective: Multiple sclerosis (MS) is the most common inflammatory autoimmune disease of the central nervous system (CNS) that affects the myelination process in the CNS. Complex interactions of various "environmental or infectious" factors may act as triggers in autoimmunity and disease progression. The association between viral infections, especially Epstein-Barr virus (EBV) and MS, is one potential cause that is not well understood. In this study, we aim to summarize the available data on EBV infection in MS disease progression. Materials and Methods: For this study, the keywords "Multiple sclerosis," "Epstein-Barr virus," and "central nervous system" in the databases PubMed, Google Scholar, Sid, and MagIran between 2016 and 2022 were searched, and 14 articles were chosen, studied, and analyzed. Results: Demyelinated lesions isolated from MS patients contain EBNAs from EBV proteins. The EBNA1 domain contains a pentapeptide fragment identical to B-crystallin, a heat shock peptide, that is increased in peripheral B cells in response to B-crystallin infection, resulting in myelin-directed autoimmunity mediated by proinflammatory T cells. EBNA2, which is involved in the regulation of viral transcription, may enhance transcription from MS risk loci. A 7-fold increase in the risk of MS has been observed in EBV infection with HLA-DR15 synergy. Conclusion: EBV infection along with a variety of specific genetic risk alleles, cause inflammatory cascades in the CNS by infected B cells. There is a high expression of EBV during the course of MS, which indicates the relationship between EBV and MS, that this virus can play a role in the development of MS by creating an inflammatory state. Therefore, measures to modulate the expression of EBV may be effective in reducing inflammatory processes in demyelinated areas of MS patients.

Keywords: multiple sclerosis, Epstein-Barr virus, central nervous system, EBNAs

Procedia PDF Downloads 94
3239 A Unified Deep Framework for Joint 3d Pose Estimation and Action Recognition from a Single Color Camera

Authors: Huy Hieu Pham, Houssam Salmane, Louahdi Khoudour, Alain Crouzil, Pablo Zegers, Sergio Velastin

Abstract:

We present a deep learning-based multitask framework for joint 3D human pose estimation and action recognition from color video sequences. Our approach proceeds along two stages. In the first, we run a real-time 2D pose detector to determine the precise pixel location of important key points of the body. A two-stream neural network is then designed and trained to map detected 2D keypoints into 3D poses. In the second, we deploy the Efficient Neural Architecture Search (ENAS) algorithm to find an optimal network architecture that is used for modeling the Spatio-temporal evolution of the estimated 3D poses via an image-based intermediate representation and performing action recognition. Experiments on Human3.6M, Microsoft Research Redmond (MSR) Action3D, and Stony Brook University (SBU) Kinect Interaction datasets verify the effectiveness of the proposed method on the targeted tasks. Moreover, we show that our method requires a low computational budget for training and inference.

Keywords: human action recognition, pose estimation, D-CNN, deep learning

Procedia PDF Downloads 146
3238 Submicron Laser-Induced Dot, Ripple and Wrinkle Structures and Their Applications

Authors: P. Slepicka, N. Slepickova Kasalkova, I. Michaljanicova, O. Nedela, Z. Kolska, V. Svorcik

Abstract:

Polymers exposed to laser or plasma treatment or modified with different wet methods which enable the introduction of nanoparticles or biologically active species, such as amino-acids, may find many applications both as biocompatible or anti-bacterial materials or on the contrary, can be applied for a decrease in the number of cells on the treated surface which opens application in single cell units. For the experiments, two types of materials were chosen, a representative of non-biodegradable polymers, polyethersulphone (PES) and polyhydroxybutyrate (PHB) as biodegradable material. Exposure of solid substrate to laser well below the ablation threshold can lead to formation of various surface structures. The ripples have a period roughly comparable to the wavelength of the incident laser radiation, and their dimensions depend on many factors, such as chemical composition of the polymer substrate, laser wavelength and the angle of incidence. On the contrary, biopolymers may significantly change their surface roughness and thus influence cell compatibility. The focus was on the surface treatment of PES and PHB by pulse excimer KrF laser with wavelength of 248 nm. The changes of physicochemical properties, surface morphology, surface chemistry and ablation of exposed polymers were studied both for PES and PHB. Several analytical methods involving atomic force microscopy, gravimetry, scanning electron microscopy and others were used for the analysis of the treated surface. It was found that the combination of certain input parameters leads not only to the formation of optimal narrow pattern, but to the combination of a ripple and a wrinkle-like structure, which could be an optimal candidate for cell attachment. The interaction of different types of cells and their interactions with the laser exposed surface were studied. It was found that laser treatment contributes as a major factor for wettability/contact angle change. The combination of optimal laser energy and pulse number was used for the construction of a surface with an anti-cellular response. Due to the simple laser treatment, we were able to prepare a biopolymer surface with higher roughness and thus significantly influence the area of growth of different types of cells (U-2 OS cells).

Keywords: cell response, excimer laser, polymer treatment, periodic pattern, surface morphology

Procedia PDF Downloads 236
3237 Investigating the Influence of Activation Functions on Image Classification Accuracy via Deep Convolutional Neural Network

Authors: Gulfam Haider, sana danish

Abstract:

Convolutional Neural Networks (CNNs) have emerged as powerful tools for image classification, and the choice of optimizers profoundly affects their performance. The study of optimizers and their adaptations remains a topic of significant importance in machine learning research. While numerous studies have explored and advocated for various optimizers, the efficacy of these optimization techniques is still subject to scrutiny. This work aims to address the challenges surrounding the effectiveness of optimizers by conducting a comprehensive analysis and evaluation. The primary focus of this investigation lies in examining the performance of different optimizers when employed in conjunction with the popular activation function, Rectified Linear Unit (ReLU). By incorporating ReLU, known for its favorable properties in prior research, the aim is to bolster the effectiveness of the optimizers under scrutiny. Specifically, we evaluate the adjustment of these optimizers with both the original Softmax activation function and the modified ReLU activation function, carefully assessing their impact on overall performance. To achieve this, a series of experiments are conducted using a well-established benchmark dataset for image classification tasks, namely the Canadian Institute for Advanced Research dataset (CIFAR-10). The selected optimizers for investigation encompass a range of prominent algorithms, including Adam, Root Mean Squared Propagation (RMSprop), Adaptive Learning Rate Method (Adadelta), Adaptive Gradient Algorithm (Adagrad), and Stochastic Gradient Descent (SGD). The performance analysis encompasses a comprehensive evaluation of the classification accuracy, convergence speed, and robustness of the CNN models trained with each optimizer. Through rigorous experimentation and meticulous assessment, we discern the strengths and weaknesses of the different optimization techniques, providing valuable insights into their suitability for image classification tasks. By conducting this in-depth study, we contribute to the existing body of knowledge surrounding optimizers in CNNs, shedding light on their performance characteristics for image classification. The findings gleaned from this research serve to guide researchers and practitioners in making informed decisions when selecting optimizers and activation functions, thus advancing the state-of-the-art in the field of image classification with convolutional neural networks.

Keywords: deep neural network, optimizers, RMsprop, ReLU, stochastic gradient descent

Procedia PDF Downloads 125
3236 Forecasting Thermal Energy Demand in District Heating and Cooling Systems Using Long Short-Term Memory Neural Networks

Authors: Kostas Kouvaris, Anastasia Eleftheriou, Georgios A. Sarantitis, Apostolos Chondronasios

Abstract:

To achieve the objective of almost zero carbon energy solutions by 2050, the EU needs to accelerate the development of integrated, highly efficient and environmentally friendly solutions. In this direction, district heating and cooling (DHC) emerges as a viable and more efficient alternative to conventional, decentralized heating and cooling systems, enabling a combination of more efficient renewable and competitive energy supplies. In this paper, we develop a forecasting tool for near real-time local weather and thermal energy demand predictions for an entire DHC network. In this fashion, we are able to extend the functionality and to improve the energy efficiency of the DHC network by predicting and adjusting the heat load that is distributed from the heat generation plant to the connected buildings by the heat pipe network. Two case-studies are considered; one for Vransko, Slovenia and one for Montpellier, France. The data consists of i) local weather data, such as humidity, temperature, and precipitation, ii) weather forecast data, such as the outdoor temperature and iii) DHC operational parameters, such as the mass flow rate, supply and return temperature. The external temperature is found to be the most important energy-related variable for space conditioning, and thus it is used as an external parameter for the energy demand models. For the development of the forecasting tool, we use state-of-the-art deep neural networks and more specifically, recurrent networks with long-short-term memory cells, which are able to capture complex non-linear relations among temporal variables. Firstly, we develop models to forecast outdoor temperatures for the next 24 hours using local weather data for each case-study. Subsequently, we develop models to forecast thermal demand for the same period, taking under consideration past energy demand values as well as the predicted temperature values from the weather forecasting models. The contributions to the scientific and industrial community are three-fold, and the empirical results are highly encouraging. First, we are able to predict future thermal demand levels for the two locations under consideration with minimal errors. Second, we examine the impact of the outdoor temperature on the predictive ability of the models and how the accuracy of the energy demand forecasts decreases with the forecast horizon. Third, we extend the relevant literature with a new dataset of thermal demand and examine the performance and applicability of machine learning techniques to solve real-world problems. Overall, the solution proposed in this paper is in accordance with EU targets, providing an automated smart energy management system, decreasing human errors and reducing excessive energy production.

Keywords: machine learning, LSTMs, district heating and cooling system, thermal demand

Procedia PDF Downloads 142
3235 Development and Characterization of Mesoporous Silica Nanoparticles of Quercetin in Skin Cancer

Authors: Khusboo Agrawal, S. Saraf

Abstract:

Quercetin, a flavonol provides a cellular protection against UV induced oxidative damages due to its excellent free radical scavenging activity and direct pro-apoptopic effect on tumor cells. However, its topical use is limited due to its unfavorable physicochemical properties. The present study was aimed to evaluate the potential of mesoporous silica nanoparticles as topical carrier system for quercetin delivery. Complexes of quercetin with mesoporous silica was prepared with different weight ratios and characterized by thermo gravimetric analysis, X-ray diffraction, high resolution TEM, FT-IR spectroscopy, zeta potential measurements and differential scanning calorimetry The protective effect of this vehicle on UV-induced degradation of the quercetin was investigated revealing a certain positive influence of the inclusion on the photostability over time. Epidermal accumulation and transdermal permeation of this molecule were ex vivo evaluated by using Franz diffusion cells. The immobilization of Quercetin in mesoporous silica nanoparticles (MSNs) increased the stability without undermining the antioxidant efficacy.

Keywords: cancer, MSNs, quercetin, topical delivery

Procedia PDF Downloads 308
3234 Modelling and Optimisation of Floating Drum Biogas Reactor

Authors: L. Rakesh, T. Y. Heblekar

Abstract:

This study entails the development and optimization of a mathematical model for a floating drum biogas reactor from first principles using thermal and empirical considerations. The model was derived on the basis of mass conservation, lumped mass heat transfer formulations and empirical biogas formation laws. The treatment leads to a system of coupled nonlinear ordinary differential equations whose solution mapped four-time independent controllable parameters to five output variables which adequately serve to describe the reactor performance. These equations were solved numerically using fourth order Runge-Kutta method for a range of input parameter values. Using the data so obtained an Artificial Neural Network with a single hidden layer was trained using Levenberg-Marquardt Damped Least Squares (DLS) algorithm. This network was then fine-tuned for optimal mapping by varying hidden layer size. This fast forward model was then employed as a health score generator in the Bacterial Foraging Optimization code. The optimal operating state of the simplified Biogas reactor was thus obtained.

Keywords: biogas, floating drum reactor, neural network model, optimization

Procedia PDF Downloads 143
3233 Early Recognition and Grading of Cataract Using a Combined Log Gabor/Discrete Wavelet Transform with ANN and SVM

Authors: Hadeer R. M. Tawfik, Rania A. K. Birry, Amani A. Saad

Abstract:

Eyes are considered to be the most sensitive and important organ for human being. Thus, any eye disorder will affect the patient in all aspects of life. Cataract is one of those eye disorders that lead to blindness if not treated correctly and quickly. This paper demonstrates a model for automatic detection, classification, and grading of cataracts based on image processing techniques and artificial intelligence. The proposed system is developed to ease the cataract diagnosis process for both ophthalmologists and patients. The wavelet transform combined with 2D Log Gabor Wavelet transform was used as feature extraction techniques for a dataset of 120 eye images followed by a classification process that classified the image set into three classes; normal, early, and advanced stage. A comparison between the two used classifiers, the support vector machine SVM and the artificial neural network ANN were done for the same dataset of 120 eye images. It was concluded that SVM gave better results than ANN. SVM success rate result was 96.8% accuracy where ANN success rate result was 92.3% accuracy.

Keywords: cataract, classification, detection, feature extraction, grading, log-gabor, neural networks, support vector machines, wavelet

Procedia PDF Downloads 332
3232 Correlation between Vitreoscilla Hemoglobin Gene (Vgb) and Cadmium Uptake in the Heterologous Host Enterobacter Aerogenes in Response to Metabolic Inhibitors

Authors: Khaled Khleifat, Muayyad Abboud, Ahmad Almustafa

Abstract:

The effect of metabolic inhibitor/uncoupler(s) (CCCP and NaN3) and sulfhydryl reagents (dithiothreitol, 2 mercaptoethanol glutathione) on cadmium uptake was investigated in Enterobacter aerogenes strains. They include a transformed strain bearing the Vitreoscillahemoglobin gene, vgb as well as control strains that lack this transformed gene. The vgb-harboring strains showed better uptake of cadmium than vgb-lacking strains. Under low aeration, there was 2 fold enhancement of Cd+2 uptake in vgb-harboring strains compared with 1.6-fold enhancement under high aeration. The CCCP caused 36, 40 and 58% inhibition in cadmium uptake of parental, pUC9 harboring and VHb expressing cells, respectively. Similarly, the sodium azide exerted 44, 38 and 55% inhibition in Cd+2 uptake of parental, pUC9 harboring and VHb expressing cells, respectively. Less extensive inhibition of Cd+2 uptake in the range of 11 to 39% was observed with sulfhydryl reagents.

Keywords: bacterial hemoglobin, VHb, Cd uptake, biosorption

Procedia PDF Downloads 319
3231 Probing Syntax Information in Word Representations with Deep Metric Learning

Authors: Bowen Ding, Yihao Kuang

Abstract:

In recent years, with the development of large-scale pre-trained lan-guage models, building vector representations of text through deep neural network models has become a standard practice for natural language processing tasks. From the performance on downstream tasks, we can know that the text representation constructed by these models contains linguistic information, but its encoding mode and extent are unclear. In this work, a structural probe is proposed to detect whether the vector representation produced by a deep neural network is embedded with a syntax tree. The probe is trained with the deep metric learning method, so that the distance between word vectors in the metric space it defines encodes the distance of words on the syntax tree, and the norm of word vectors encodes the depth of words on the syntax tree. The experiment results on ELMo and BERT show that the syntax tree is encoded in their parameters and the word representations they produce.

Keywords: deep metric learning, syntax tree probing, natural language processing, word representations

Procedia PDF Downloads 68
3230 Enhancing the Efficiency of Organic Solar Cells Using Metallic Nanoparticles

Authors: Sankara Rao Gollu, Ramakant Sharma, G. Srinivas, Souvik Kundu, Dipti Gupta

Abstract:

In recent years, bulk heterojunction organic solar cells (BHJ OSCs) based on polymer–fullerene attracted a large research attention due to their numerous advantages such as light weight, easy processability, eco-friendly, low-cost, and capability for large area roll-to-roll manufacturing. BHJ OSCs usually suffer from insufficient light absorption due to restriction on keeping thin ( < 150 nm) photoactive layer because of small exciton diffusion length ( ~ 10 nm) and low charge carrier mobilities. It is thus highly desirable that light absorption as well as charge transport properties are enhanced by alternative methods so as to improve the device efficiency. In this work, therefore, we have focused on the strategy of incorporating metallic nanostructures in the active layer or charge transport layer to enhance the absorption and improve the charge transport.

Keywords: organic solar cell, efficiency, bulk heterojunction, polymer-fullerene

Procedia PDF Downloads 397
3229 Safety and Efficacy of RM-001, Autologous HBG1/2 Promoter-Modified CD34+Hematopoietic Stem and Progenitor Cells, in Transfusion-Dependent β-Thalassemia

Authors: Rongrong Liu, Li Wang, Hui Xu, Jianpei Fang, Sixi Liu, Xiaolin Yin, Junbin Liang, Gaohui Yan, Yaoyun Li, Yali Zhou, Xinyu Li, Yue Li, Lei Shi, Yongrong Lai, Junjiu Huang, Xinhua Zhang

Abstract:

Background: Beta-Thalassemia is caused by reduced (β+) or absent (β0) synthesis of the β-globin chains of hemoglobin. Transfusions and oral iron chelation therapy have improved the quality of life for patients with Transfusion-Dependent thalassemia (TDT). Recent advances in genome editing platforms of CRISPR-Cas9 have paved the way for induction of HbF by reactivating expression of γ-chain.Aims: We performed CRISPR-Cas9-mediated genome editing of hematopoietic stem cells to mutate HBG1/HBG2 promoter sequence, thereby representing a naturally occurring HPFH-liked mutation, producing RM-001. Here, we present an initial assessment of safety and efficacy of RM-001 in patients with TDT. Methods: Patients (6–35 y of age) with TDT receiving packed red blood cell (pRBC) transfusions of ≥100 mL/kg/y or ≥10 units/y in the previous 2 y were eligible. CD34+ cells were edited with CRISPR-Cas9 using a guide RNA specific for the binding site of BCL11A on the HBG1/2 promoter. Prior to RM-001 product infusion (day 0), patients received myeloablative conditioning with Busulfan from day-7 to day-4. Patients were monitored for AEs Hb expression.Results: Data cut as of 28 Feb 2024, 16 TDT patients have been treated with RM-001 and followed ≥3 months. 5 of these 16 patients had finished their 24 months follow up. Eleven patients have β0/β0 genotype and five patients have β0/β+ genotype. In addition to β-thalassemia, two patients had α- deletion with the genotype of --/αα. Efficacy:All patients received a single dose intravenous infusion of RM-001 cells. 5 of them had been followed 24 months or longer. All patients achieved transfusion-independent (TI, total Hb continued ≥ 9g/dL) (Figure1). Patients demonstrated sustained and clinically meaningful increases in HbF levels since 4 month post-RM-001 infusion (Figure.2). Total hemoglobin in all patients was stable at 10-12g/dL during the follow-up period. Safety:The adverse events observed after RM-001 infusion were consistent with those that are typical of Busulfan-based myeloablation. The allelic editing analysis at 6-month visit showed that the on-target allelic editing frequency in bone marrow cells was 73.44% (64.65% to 84.6%, n=13).Summary/Conclusion: This interim analysis, in which all the 19 patients age from 7.9 to 25yo met the success criteria for the trial with respect to transfusion independence, showed that autologous HBG1/2 promoter-modified CD34+ HSPCs gene therapy resulted in an adequate amount of HbF as early as 2 months after infusion led to near-normal hemoglobin levels, remained transfusion-free through the reported period without product related SAE. After RM-001 infusion, high levels of HbF proportion and on-target editing in bone marrow cells were maintained. Submitted on behalf of the RM-001 Investigators.

Keywords: thalassemian, genetherapy, CRISPR/Cas9, HbF

Procedia PDF Downloads 20
3228 Energy Self-Sufficiency Through Smart Micro-Grids and Decentralised Sector-Coupling

Authors: C. Trapp, A. Vijay, M. Khorasani

Abstract:

Decentralised micro-grids with sector coupling can combat the spatial and temporal intermittence of renewable energy by combining power, transportation and infrastructure sectors. Intelligent energy conversion concepts such as electrolysers, hydrogen engines and fuel cells combined with energy storage using intelligent batteries and hydrogen storage form the back-bone of such a system. This paper describes a micro-grid based on Photo-Voltaic cells, battery storage, innovative modular and scalable Anion Exchange Membrane (AEM) electrolyzer with an efficiency of up to 73%, high-pressure hydrogen storage as well as cutting-edge combustion-engine based Combined Heat and Power (CHP) plant with more than 85% efficiency at the university campus to address the challenges of decarbonization whilst eliminating the necessity for expensive high-voltage infrastructure.

Keywords: sector coupling, micro-grids, energy self-sufficiency, decarbonization, AEM electrolysis, hydrogen CHP

Procedia PDF Downloads 183
3227 Anthelminthic Effect of Clitoria Ternatea on Paramphistomum Cervi in Buffalo (Bubalus Bubalis) of Udaipur, Rajasthan, India

Authors: Bhanupriya Sanger, Kiran Roat, Gayatri Swarnakar

Abstract:

Helminths including Paramphistomum Cervi (P. cervi) are a major cause of reduced production in livestock or domestic ruminant. Rajasthan is the largest state of India having a maximum number of livestock. The economy of rural people largely depends on livestock such as cow, buffalo, goat and sheep. The prevalence of P. cervi helminth parasite is extremely high in buffalo (Bubalus bubalis) of Udaipur, which causes the disease paramphistomiasis. This disease mainly affects milk, meat, wool production and loss of life of buffalo. Chemotherapy is the only efficient and effective tool to cure and control the helminth P. cervi infection, as efficacious vaccines against helminth have not been developed so far. Various veterinary drugs like Albendazole have been used as the standard drug for eliminating P. cervi from buffalo, but these drugs are unaffordable and inaccessible for poor livestock farmers. The fruits, leaves and seeds of Clitoria ternatea Linn. are known for their ethno-medicinal value and commonly known as “Aprajita” in India. Seed extract of Clitoria ternatea found to have a significant anthelmintic action against Paramphistomum cervi at the dose of 35 mg/ml. The tegument of treated P. cervi was compared with controlled parasites by light microscopy. Treated P. cervi showed extensive distortion and destruction of the tegument including ruptured parenchymal cells, disruption of musculature cells, swelling and vacuolization in tegumental and sub tegumental cells. As a result, it can be concluded that the seeds of Clitoria ternatea can be used as the anthelmintic agent. Key words: Paramphistomiasis, Buffalo, Alcoholic extract, Paramphistomum cervi, Clitoria ternatea.

Keywords: buffalo, Clitoria ternatea, Paramphistomiasis, Paramphistomum cervi

Procedia PDF Downloads 229
3226 Evaluating Therapeutic Efficacy of Intravesical Xenogeneic Urothelial Cell Treatment Alone and in Combination with Chemotherapy or Immune Checkpoint Inhibitors in a Mouse Non-Muscle-Invasive Bladder Cancer Model

Authors: Chih-Rong Shyr, Chi-Ping Huang

Abstract:

Intravesical BCG is the gold-standard therapy for high risk non-muscle invasive bladder cancer (NMIBC) after TURBT, but if not responsive to BCG, these BCG unresponsive patients face cystectomy that causes morbidity and comes with a morality risk. To provide the bladder sparing options for patients with BCG-unresponsive NMIBC, several new treatments have been developed to salvage the bladders and prevent progression to muscle invasive or metastatic, but however, most approved or developed treatments still fail in a significant proportion of patients without long term success. Thus more treatment options and the combination of different therapeutic modalities are urgently needed to change the outcomes. Xenogeneic rejection has been proposed to a mechanism of action to induce anti-tumor immunity for the treatment of cancers due to the similarities between rejection mechanism to xenoantigens (proteins, glycans and lipids) and anti-tumor immunities to tumor specific antigens (neoantigens, tumor associated carbohydrates and lipids). Xenogeneic urothelial cells (XUC) of porcine origin have been shown to induce anti-tumor immune responses to inhibit bladder tumor progression in mouse bladder cancer models. To further demonstrate the efficacy of the distinct intravesical XUC treatment in NMIBC, and the combined effects with chemotherapy and immune checkpoint inhibitors (ICIs) as a alternate therapeutic option, this study investigated the therapeutic effects and mechanisms of intravesical XUC immunotherapy in an orthotopic mouse immune competent model of NMIBC, generated from a mouse bladder cancer cell line. We found that the tumor progression was inhibited by intravescial XUC treatment and there was a synergy between intravesical XUC with intravesical chemotherapeutic agent, gemcitabine or systemic ICI, anti-PD1 antibody treatment. The cancer cell proliferation was decreased but the cell death was increased by the intravecisal XUC treatment. Most importantly, the mechanisms of action of intravesical XUC immunotherapy were found to be linked to enhanced infiltration of CD4+ and CD8+ T-cell as well as NK cells, but decreased presence of myeloid immunosuppressive cells in XUC treated tumors. The increased stimulation of immune cells of XUC treated mice to xenogeneic urothelial cells and mouse bladder cancer cells in immune cell proliferation and cytokine secretion were observed both as a monotherapy and in combination with intravesical gemcitabine or systemic anti PD-L1 treatment. In sum, we identified the effects of intravesical XUC treatment in monotherapy and combined therapy on tumor progression and its cellular and molecular events related to immune activation to understand the anti-tumoral mechanisms behind intravesical XUC immunotherapy for NMIBC. These results contribute to the understanding of the mechanisms behind successful xenogeneic cell immunotherapy against NMIBC and characterize a novel therapeutic approach with a new xenogeneic cell modality for BCG-unresponsive NMIBC.

Keywords: xenoantigen, neoantigen, rejection, immunity

Procedia PDF Downloads 7
3225 Earthquake Identification to Predict Tsunami in Andalas Island, Indonesia Using Back Propagation Method and Fuzzy TOPSIS Decision Seconder

Authors: Muhamad Aris Burhanudin, Angga Firmansyas, Bagus Jaya Santosa

Abstract:

Earthquakes are natural hazard that can trigger the most dangerous hazard, tsunami. 26 December 2004, a giant earthquake occurred in north-west Andalas Island. It made giant tsunami which crushed Sumatra, Bangladesh, India, Sri Lanka, Malaysia and Singapore. More than twenty thousand people dead. The occurrence of earthquake and tsunami can not be avoided. But this hazard can be mitigated by earthquake forecasting. Early preparation is the key factor to reduce its damages and consequences. We aim to investigate quantitatively on pattern of earthquake. Then, we can know the trend. We study about earthquake which has happened in Andalas island, Indonesia one last decade. Andalas is island which has high seismicity, more than a thousand event occur in a year. It is because Andalas island is in tectonic subduction zone of Hindia sea plate and Eurasia plate. A tsunami forecasting is needed to mitigation action. Thus, a Tsunami Forecasting Method is presented in this work. Neutral Network has used widely in many research to estimate earthquake and it is convinced that by using Backpropagation Method, earthquake can be predicted. At first, ANN is trained to predict Tsunami 26 December 2004 by using earthquake data before it. Then after we get trained ANN, we apply to predict the next earthquake. Not all earthquake will trigger Tsunami, there are some characteristics of earthquake that can cause Tsunami. Wrong decision can cause other problem in the society. Then, we need a method to reduce possibility of wrong decision. Fuzzy TOPSIS is a statistical method that is widely used to be decision seconder referring to given parameters. Fuzzy TOPSIS method can make the best decision whether it cause Tsunami or not. This work combines earthquake prediction using neural network method and using Fuzzy TOPSIS to determine the decision that the earthquake triggers Tsunami wave or not. Neural Network model is capable to capture non-linear relationship and Fuzzy TOPSIS is capable to determine the best decision better than other statistical method in tsunami prediction.

Keywords: earthquake, fuzzy TOPSIS, neural network, tsunami

Procedia PDF Downloads 495
3224 Biophysical Features of Glioma-Derived Extracellular Vesicles as Potential Diagnostic Markers

Authors: Abhimanyu Thakur, Youngjin Lee

Abstract:

Glioma is a lethal brain cancer whose early diagnosis and prognosis are limited due to the dearth of a suitable technique for its early detection. Current approaches, including magnetic resonance imaging (MRI), computed tomography (CT), and invasive biopsy for the diagnosis of this lethal disease, hold several limitations, demanding an alternative method. Recently, extracellular vesicles (EVs) have been used in numerous biomarker studies, majorly exosomes and microvesicles (MVs), which are found in most of the cells and biofluids, including blood, cerebrospinal fluid (CSF), and urine. Remarkably, glioma cells (GMs) release a high number of EVs, which are found to cross the blood-brain-barrier (BBB) and impersonate the constituents of parent GMs including protein, and lncRNA; however, biophysical properties of EVs have not been explored yet as a biomarker for glioma. We isolated EVs from cell culture conditioned medium of GMs and regular primary culture, blood, and urine of wild-type (WT)- and glioma mouse models, and characterized by nano tracking analyzer, transmission electron microscopy, immunogold-EM, and differential light scanning. Next, we measured the biophysical parameters of GMs-EVs by using atomic force microscopy. Further, the functional constituents of EVs were examined by FTIR and Raman spectroscopy. Exosomes and MVs-derived from GMs, blood, and urine showed distinction biophysical parameters (roughness, adhesion force, and stiffness) and different from that of regular primary glial cells, WT-blood, and -urine, which can be attributed to the characteristic functional constituents. Therefore, biophysical features can be potential diagnostic biomarkers for glioma.

Keywords: glioma, extracellular vesicles, exosomes, microvesicles, biophysical properties

Procedia PDF Downloads 142
3223 Feature Extraction of MFCC Based on Fisher-Ratio and Correlated Distance Criterion for Underwater Target Signal

Authors: Han Xue, Zhang Lanyue

Abstract:

In order to seek more effective feature extraction technology, feature extraction method based on MFCC combined with vector hydrophone is exposed in the paper. The sound pressure signal and particle velocity signal of two kinds of ships are extracted by using MFCC and its evolution form, and the extracted features are fused by using fisher-ratio and correlated distance criterion. The features are then identified by BP neural network. The results showed that MFCC, First-Order Differential MFCC and Second-Order Differential MFCC features can be used as effective features for recognition of underwater targets, and the fusion feature can improve the recognition rate. Moreover, the results also showed that the recognition rate of the particle velocity signal is higher than that of the sound pressure signal, and it reflects the superiority of vector signal processing.

Keywords: vector information, MFCC, differential MFCC, fusion feature, BP neural network

Procedia PDF Downloads 529
3222 Improvement of Direct Torque and Flux Control of Dual Stator Induction Motor Drive Using Intelligent Techniques

Authors: Kouzi Katia

Abstract:

This paper proposes a Direct Torque Control (DTC) algorithm of dual Stator Induction Motor (DSIM) drive using two approach intelligent techniques: Artificial Neural Network (ANN) approach replaces the switching table selector block of conventional DTC and Mamdani Fuzzy Logic controller (FLC) is used for stator resistance estimation. The fuzzy estimation method is based on an online stator resistance correction through the variations of stator current estimation error and its variation. The fuzzy logic controller gives the future stator resistance increment at the output. The main advantage of suggested algorithm control is to reduce the hardware complexity of conventional selectors, to avoid the drive instability that may occur in certain situation and ensure the tracking of the actual of the stator resistance. The effectiveness of the technique and the improvement of the whole system performance are proved by results.

Keywords: artificial neural network, direct torque control, dual stator induction motor, fuzzy logic estimator, switching table

Procedia PDF Downloads 345
3221 Artificial Neural Network Model Based Setup Period Estimation for Polymer Cutting

Authors: Zsolt János Viharos, Krisztián Balázs Kis, Imre Paniti, Gábor Belső, Péter Németh, János Farkas

Abstract:

The paper presents the results and industrial applications in the production setup period estimation based on industrial data inherited from the field of polymer cutting. The literature of polymer cutting is very limited considering the number of publications. The first polymer cutting machine is known since the second half of the 20th century; however, the production of polymer parts with this kind of technology is still a challenging research topic. The products of the applying industrial partner must met high technical requirements, as they are used in medical, measurement instrumentation and painting industry branches. Typically, 20% of these parts are new work, which means every five years almost the entire product portfolio is replaced in their low series manufacturing environment. Consequently, it requires a flexible production system, where the estimation of the frequent setup periods' lengths is one of the key success factors. In the investigation, several (input) parameters have been studied and grouped to create an adequate training information set for an artificial neural network as a base for the estimation of the individual setup periods. In the first group, product information is collected such as the product name and number of items. The second group contains material data like material type and colour. In the third group, surface quality and tolerance information are collected including the finest surface and tightest (or narrowest) tolerance. The fourth group contains the setup data like machine type and work shift. One source of these parameters is the Manufacturing Execution System (MES) but some data were also collected from Computer Aided Design (CAD) drawings. The number of the applied tools is one of the key factors on which the industrial partners’ estimations were based previously. The artificial neural network model was trained on several thousands of real industrial data. The mean estimation accuracy of the setup periods' lengths was improved by 30%, and in the same time the deviation of the prognosis was also improved by 50%. Furthermore, an investigation on the mentioned parameter groups considering the manufacturing order was also researched. The paper also highlights the manufacturing introduction experiences and further improvements of the proposed methods, both on the shop floor and on the quotation preparation fields. Every week more than 100 real industrial setup events are given and the related data are collected.

Keywords: artificial neural network, low series manufacturing, polymer cutting, setup period estimation

Procedia PDF Downloads 245
3220 Experimental and Finite Element Analysis for Mechanics of Soil-Tool Interaction

Authors: A. Armin, R. Fotouhi, W. Szyszkowski

Abstract:

In this paper a 3-D finite element (FE) investigation of soil-blade interaction is described. The effects of blade’s shape and rake angle are examined both numerically and experimentally. The soil is considered as an elastic-plastic granular material with non-associated Drucker-Prager material model. Contact elements with different properties are used to mimic soil-blade sliding and soil-soil cutting phenomena. A separation criterion is presented and a procedure to evaluate the forces acting on the blade is given and discussed in detail. Experimental results were derived from tests using soil bin facility and instruments at the University of Saskatchewan. During motion of the blade, load cells collect data and send them to a computer. The measured forces using load cells had noisy signals which are needed to be filtered. The FE results are compared with experimental results for verification. This technique can be used in blade shape optimization and design of more complicated blade’s shape.

Keywords: finite element analysis, experimental results, blade force, soil-blade contact modeling

Procedia PDF Downloads 320
3219 CNN-Based Compressor Mass Flow Estimator in Industrial Aircraft Vapor Cycle System

Authors: Justin Reverdi, Sixin Zhang, Saïd Aoues, Fabrice Gamboa, Serge Gratton, Thomas Pellegrini

Abstract:

In vapor cycle systems, the mass flow sensor plays a key role for different monitoring and control purposes. However, physical sensors can be inaccurate, heavy, cumbersome, expensive, or highly sensitive to vibrations, which is especially problematic when embedded into an aircraft. The conception of a virtual sensor, based on other standard sensors, is a good alternative. This paper has two main objectives. Firstly, a data-driven model using a convolutional neural network is proposed to estimate the mass flow of the compressor. We show that it significantly outperforms the standard polynomial regression model (thermodynamic maps) in terms of the standard MSE metric and engineer performance metrics. Secondly, a semi-automatic segmentation method is proposed to compute the engineer performance metrics for real datasets, as the standard MSE metric may pose risks in analyzing the dynamic behavior of vapor cycle systems.

Keywords: deep learning, convolutional neural network, vapor cycle system, virtual sensor

Procedia PDF Downloads 61
3218 Evaluation of Airborne Particulate Matter Early Biological Effects in Children with Micronucleus Cytome Assay: The MAPEC_LIFE Project

Authors: E. Carraro, Sa. Bonetta, Si. Bonetta, E. Ceretti, G. C. V. Viola, C. Pignata, S. Levorato, T. Salvatori, S. Vannini, V. Romanazzi, A. Carducci, G. Donzelli, T. Schilirò, A. De Donno, T. Grassi, S. Bonizzoni, A. Bonetti, G. Gilli, U. Gelatti

Abstract:

In 2013, air pollution and particulate matter were classified as carcinogenic to human by the IARC. At present, PM is Europe's most problematic pollutant in terms of harm to health, as reported by European Environmental Agency (EEA) in the EEA Technical Report on Air quality in Europe, 2015. A percentage between 17-30 of the EU urban population lives in areas where the EU air quality 24-hour limit value for PM10 is exceeded. Many studies have found a consistent association between exposure to PM and the incidence and mortality for some chronic diseases (i.e. lung cancer, cardiovascular diseases). Among the mechanisms responsible for these adverse effects, genotoxic damage is of particular concern. Children are a high-risk group in terms of the health effects of air pollution and early exposure during childhood can increase the risk of developing chronic diseases in adulthood. The MAPEC_LIFE (Monitoring Air Pollution Effects on Children for supporting public health policy) is a project founded by EU Life+ Programme (LIFE12 ENV/IT/000614) which intends to evaluate the associations between air pollution and early biological effects in children and to propose a model for estimating the global risk of early biological effects due to air pollutants and other factors in children. This work is focused on the micronuclei frequency in child buccal cells in association with airborne PM levels taking into account the influence of other factors associated with the lifestyle of children. The micronucleus test was performed in exfoliated buccal cells of 6–8 years old children from 5 Italian towns with different air pollution levels. Data on air quality during the study period were obtained from the Regional Agency for Environmental Protection. A questionnaire administered to children’s parents was used to obtain details on family socio-economic status, children health condition, exposures to other indoor and outdoor pollutants (i.e. passive smoke) and life-style, with particular reference to eating habits. During the first sampling campaign (winter 2014-15) 1315 children were recruited and sampled for Micronuclei test in buccal cells. In the sampling period the levels of the main pollutants and PM10 were, as expected, higher in the North of Italy (PM10 mean values 62 μg/m3 in Torino and 40 μg/m3 in Brescia) than in the other towns (Pisa, Perugia, Lecce). A higher Micronucleus frequency in buccal cells of children was found in Brescia (0.6/1000 cells) than in the other towns (range 0.3-0.5/1000 cells). The statistical analysis underlines a relation of the micronuclei frequency with PM concentrations, traffic level near child residence, and level of education of parents. The results suggest that, in addition to air pollution exposure, some other factors, related to lifestyle or further exposures, may influence micronucleus frequency and cellular response to air pollutants.

Keywords: air pollution, buccal cells, children, micronucleus cytome assay

Procedia PDF Downloads 253
3217 Understanding the Performance and Loss Mechanisms in Ag Alloy CZTS Solar Cells: Photocurrent Generation, Charge Separation, and Carrier Transport

Authors: Kang Jian Xian, Huda Abdullah, Md. Akhtaruzzaman, Iskandar Yahya, Mohd Hafiz Dzarfan Othman, Brian Yulianto

Abstract:

The CZTS absorber layer doped with a silver (Ag) is one of the candidates that suggest improving the efficiency of thin films. Silver element functions to reduce antisite defects, increase grain size and create the plasmonic effect. In this work, an experimental study has been done to investigate the electrical and physical properties of CZTS, ACZTS, and AZTS. Ag replaces the Cu in (Cu1-xAgx)2ZnSnS4 (ACZTS) is up to x ≤1. ACZTS thin-films solar cells have been deposited by sol–the gel spin coating method. There are a total of 19 samples done with 11 significant percentages (0%, 10%, 20%… 100%) to show the whole phenomena of efficiency rate and nine specific percentages to find out the best concentration rate for Ag-doped. The obtained results can be helpful for better understanding ACZTS layers.

Keywords: CZTS, ACZTS, AZTS, silver, antisite, efficiency, thin-film solar cell

Procedia PDF Downloads 92