Search results for: learning preferences
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7469

Search results for: learning preferences

5789 Pattern Discovery from Student Feedback: Identifying Factors to Improve Student Emotions in Learning

Authors: Angelina A. Tzacheva, Jaishree Ranganathan

Abstract:

Interest in (STEM) Science Technology Engineering Mathematics education especially Computer Science education has seen a drastic increase across the country. This fuels effort towards recruiting and admitting a diverse population of students. Thus the changing conditions in terms of the student population, diversity and the expected teaching and learning outcomes give the platform for use of Innovative Teaching models and technologies. It is necessary that these methods adapted should also concentrate on raising quality of such innovations and have positive impact on student learning. Light-Weight Team is an Active Learning Pedagogy, which is considered to be low-stake activity and has very little or no direct impact on student grades. Emotion plays a major role in student’s motivation to learning. In this work we use the student feedback data with emotion classification using surveys at a public research institution in the United States. We use Actionable Pattern Discovery method for this purpose. Actionable patterns are patterns that provide suggestions in the form of rules to help the user achieve better outcomes. The proposed method provides meaningful insight in terms of changes that can be incorporated in the Light-Weight team activities, resources utilized in the course. The results suggest how to enhance student emotions to a more positive state, in particular focuses on the emotions ‘Trust’ and ‘Joy’.

Keywords: actionable pattern discovery, education, emotion, data mining

Procedia PDF Downloads 78
5788 The Impact of Experiential Learning on the Success of Upper Division Mechanical Engineering Students

Authors: Seyedali Seyedkavoosi, Mohammad Obadat, Seantorrion Boyle

Abstract:

The purpose of this study is to assess the effectiveness of a nontraditional experiential learning strategy in improving the success and interest of mechanical engineering students, using the Kinematics/Dynamics of Machine course as a case study. This upper-division technical course covers a wide range of topics, including mechanism and machine system analysis and synthesis, yet the complexities of ideas like acceleration, motion, and machine component relationships are hard to explain using standard teaching techniques. To solve this problem, a thorough design project was created that gave students hands-on experience developing, manufacturing, and testing their inventions. The main goals of the project were to improve students' grasp of machine design and kinematics, to develop problem-solving and presenting abilities, and to familiarize them with professional software. A questionnaire survey was done to evaluate the effect of this technique on students' performance and interest in mechanical engineering. The outcomes of the study shed light on the usefulness of nontraditional experiential learning approaches in engineering education.

Keywords: experiential learning, nontraditional teaching, hands-on design project, engineering education

Procedia PDF Downloads 76
5787 Colored Image Classification Using Quantum Convolutional Neural Networks Approach

Authors: Farina Riaz, Shahab Abdulla, Srinjoy Ganguly, Hajime Suzuki, Ravinesh C. Deo, Susan Hopkins

Abstract:

Recently, quantum machine learning has received significant attention. For various types of data, including text and images, numerous quantum machine learning (QML) models have been created and are being tested. Images are exceedingly complex data components that demand more processing power. Despite being mature, classical machine learning still has difficulties with big data applications. Furthermore, quantum technology has revolutionized how machine learning is thought of, by employing quantum features to address optimization issues. Since quantum hardware is currently extremely noisy, it is not practicable to run machine learning algorithms on it without risking the production of inaccurate results. To discover the advantages of quantum versus classical approaches, this research has concentrated on colored image data. Deep learning classification models are currently being created on Quantum platforms, but they are still in a very early stage. Black and white benchmark image datasets like MNIST and Fashion MINIST have been used in recent research. MNIST and CIFAR-10 were compared for binary classification, but the comparison showed that MNIST performed more accurately than colored CIFAR-10. This research will evaluate the performance of the QML algorithm on the colored benchmark dataset CIFAR-10 to advance QML's real-time applicability. However, deep learning classification models have not been developed to compare colored images like Quantum Convolutional Neural Network (QCNN) to determine how much it is better to classical. Only a few models, such as quantum variational circuits, take colored images. The methodology adopted in this research is a hybrid approach by using penny lane as a simulator. To process the 10 classes of CIFAR-10, the image data has been translated into grey scale and the 28 × 28-pixel image containing 10,000 test and 50,000 training images were used. The objective of this work is to determine how much the quantum approach can outperform a classical approach for a comprehensive dataset of color images. After pre-processing 50,000 images from a classical computer, the QCNN model adopted a hybrid method and encoded the images into a quantum simulator for feature extraction using quantum gate rotations. The measurements were carried out on the classical computer after the rotations were applied. According to the results, we note that the QCNN approach is ~12% more effective than the traditional classical CNN approaches and it is possible that applying data augmentation may increase the accuracy. This study has demonstrated that quantum machine and deep learning models can be relatively superior to the classical machine learning approaches in terms of their processing speed and accuracy when used to perform classification on colored classes.

Keywords: CIFAR-10, quantum convolutional neural networks, quantum deep learning, quantum machine learning

Procedia PDF Downloads 106
5786 Formation of Science Literations Based on Indigenous Science Mbaru Niang Manggarai

Authors: Yuliana Wahyu, Ambros Leonangung Edu

Abstract:

The learning praxis that is proposed by 2013 Curriculum (K-13) is no longer school-oriented as a supply-driven, but now a demand-driven provider. This vision is connected with Jokowi-Kalla Nawacita program to create a competitive nation in the global era. Competition is a social fact that must be faced. Therefore the curriculum will design a process to be the innovators and entrepreneurs.To get this goal, K-13 implements the character education. This aims at creating the innovators and entrepreneurs from an early age (primary school). One part of strengthening it is literacy formations (reading, numeracy, science, ICT, finance, and culture). Thus, science literacy is an integral part of character education. The above outputs are only formed through the innovative process through intra-curricular (blended learning), co-curriculer (hands-on learning) and extra-curricular (personalized learning). Unlike the curriculums before that child cram with the theories dominating the intellectual process, new breakthroughs make natural, social, and cultural phenomena as learning sources. For example, Science in primary schoolsplaceBiology as the platform. And Science places natural, social, and cultural phenomena as a learning field so that students can learn, discover, solve concrete problems, and the prospects of development and application in their everyday lives. Science education not only learns about facts collection or natural phenomena but also methods and scientific attitudes. In turn, Science will form the science literacy. Science literacy have critical, creative, logical, and initiative competences in responding to the issues of culture, science and technology. This is linked with science nature which includes hands-on and minds-on. To sustain the effectiveness of science learning, K-13 opens a new way of viewing a contextual learning model in which facts or natural phenomena are drawn closer to the child's learning environment to be studied and analyzed scientifically. Thus, the topic of elementary science discussion is the practical and contextual things that students encounter. This research is about to contextualize Science in primary schools at Manggarai, NTT, by placing local wisdom as a learning source and media to form the science literacy. Explicitly, this study discovers the concept of science and mathematics in Mbaru Niang. Mbaru Niang is a forgotten potentials of the centralistic-theoretical mainstream curriculum so far. In fact, the traditional Manggarai community stores and inherits much of the science-mathematical indigenous sciences. In the traditional house structures are full of science and mathematics knowledge. Every details have style, sound and mathematical symbols. Learning this, students are able to collaborate and synergize the content and learning resources in student learning activities. This is constructivist contextual learning that will be applied in meaningful learning. Meaningful learning allows students to learn by doing. Students then connect topics to the context, and science literacy is constructed from their factual experiences. The research location will be conducted in Manggarai through observation, interview, and literature study.

Keywords: indigenous science, Mbaru Niang, science literacy, science

Procedia PDF Downloads 195
5785 The Acceptance of E-Assessment Considering Security Perspective: Work in Progress

Authors: Kavitha Thamadharan, Nurazean Maarop

Abstract:

The implementation of e-assessment as tool to support the process of teaching and learning in university has become a popular technological means in universities. E-Assessment provides many advantages to the users especially the flexibility in teaching and learning. The e-assessment system has the capability to improve its quality of delivering education. However, there still exists a drawback in terms of security which limits the user acceptance of the online learning system. Even though there are studies providing solutions for identified security threats in e-learning usage, there is no particular model which addresses the factors that influences the acceptance of e-assessment system by lecturers from security perspective. The aim of this study is to explore security aspects of e-assessment in regard to the acceptance of the technology. As a result a conceptual model of secure acceptance of e-assessment is proposed. Both human and security factors are considered in formulation of this conceptual model. In order to increase understanding of critical issues related to the subject of this study, interpretive approach involving convergent mixed method research method is proposed to be used to execute the research. This study will be useful in providing more insightful understanding regarding the factors that influence the user acceptance of e-assessment system from security perspective.

Keywords: secure technology acceptance, e-assessment security, e-assessment, education technology

Procedia PDF Downloads 446
5784 Using Information and Communication Technologies in Teaching Translation: Students of English as a Case Study

Authors: Guessabi Fatiha

Abstract:

Nowadays, there is no sphere of human life that does not use Information and Communication Technologies (ICTs) in practice. This type of development grew widely in the last years of the 20th century and impacted many fields such as education, health, financing, job markets, communication, governments, industrial productivity, etc. Recently, in higher education, the use of ICTs has been essential and significant during the Covid19 pandemic. Thanks to technology, although the universities in Algeria were locked down during the period of covid19, learning was easily continued, and students were collaborating, communicating, socializing, and learning at a distance. Therefore, ICT tools are required in translation courses to enhance and improve translation teaching. This research explores the use of ICT in teaching and learning translation. The research comes along with a theoretical framework; the literature review is produced to highlight some essential ICT concepts and translation teaching. In order to achieve the study objective, a questionnaire is distributed to the third-year English LMD students at Tahri Mohamed University, and an interview is addressed to the translation teacher. The results and discussion obtained from this investigation confirmed the hypothesis and revealed that the use of ICT is essential in translation courses and it improves translation teaching. Hence, by using ICT in the classroom, the students become more active, and the teachers of translation become knowledge facilitators and leaders.

Keywords: COVID19, ICT, learning, students, teaching, TMU, translation

Procedia PDF Downloads 113
5783 Using Structural Equation Modeling to Analyze the Impact of Remote Work on Job Satisfaction

Authors: Florian Pfeffel, Valentin Nickolai, Christian Louis Kühner

Abstract:

Digitalization has disrupted the traditional workplace environment by allowing many employees to work from anywhere at any time. This trend of working from home was further accelerated due to the COVID-19 crisis, which forced companies to rethink their workplace models. While in many companies, this shift happened out of pure necessity; many employees were left more satisfied with their job due to the opportunity to work from home. This study focuses on employees’ job satisfaction in the service sector in dependence on the different work models, which are defined as a “work from home” model, the traditional “work in office” model, and a hybrid model. Using structural equation modeling (SEM), these three work models have been analyzed based on 13 influencing factors on job satisfaction that have been further summarized in the three groups “classic influencing factors”, “influencing factors changed by remote working”, and “new remote working influencing factors”. Based on the influencing factors on job satisfaction, a survey has been conducted with n = 684 employees in the service sector. Cronbach’s alpha of the individual constructs was shown to be suitable. Furthermore, the construct validity of the constructs was confirmed by face validity, content validity, convergent validity (AVE > 0.5: CR > 0.7), and discriminant validity. Additionally, confirmatory factor analysis (CFA) confirmed the model fit for the investigated sample (CMIN/DF: 2.567; CFI: 0.927; RMSEA: 0.048). The SEM-analysis has shown that the most significant influencing factor on job satisfaction is “identification with the work” with β = 0.540, followed by “Appreciation” (β = 0.151), “Compensation” (β = 0.124), “Work-Life-Balance” (β = 0.116), and “Communication and Exchange of Information” (β = 0.105). While the significance of each factor can vary depending on the work model, the SEM-analysis shows that the identification with the work is the most significant factor in all three work models and, in the case of the traditional office work model, it is the only significant influencing factor. The study shows that employees who work entirely remotely or have a hybrid work model are significantly more satisfied with their job, with a job satisfaction score of 5.0 respectively on a scale from 1 (very dissatisfied) to 7 (very satisfied), than employees do not have the option to work from home with a score of 4.6. This comes as a result of the lower identification with the work in the model without any remote working. Furthermore, the responses indicate that it is important to consider the individual preferences of each employee when it comes to the work model to achieve overall higher job satisfaction. Thus, it can be argued that companies can profit off of more motivation and higher productivity by considering the individual work model preferences, therefore, increasing the identification with the respective work.

Keywords: home-office, identification with work, job satisfaction, new work, remote work, structural equation modeling

Procedia PDF Downloads 69
5782 Assessing Remote and Hybrid Education Amidst the COVID-19 Pandemic: Insights and Innovations from Secondary School Educators

Authors: Azzeddine Atibi, Khadija El Kababi, Salim Ahmed, Mohamed Radid

Abstract:

The principal objective of this study is to undertake a comprehensive comparative analysis of distance learning and blended learning modalities, with a particular emphasis on evaluating their effectiveness during the confinement period mandated by the COVID-19 pandemic. This investigation is rooted in the firsthand experiences of educators at the high school and secondary levels within both private and public educational institutions. To acquire the requisite data, we meticulously designed and distributed a survey to these educators, soliciting detailed narratives of their professional experiences throughout this challenging period. The survey aims to elucidate the specific difficulties encountered by teachers, as well as to highlight the innovative pedagogical strategies they devised in response to these challenges. By synthesizing the insights garnered from this survey, our goal is to foster an exchange of experiences among educators and to generate informed recommendations that will inform future educational reforms. Ultimately, this study aspires to contribute to the ongoing discourse on optimizing educational practices in the face of unprecedented disruptions.

Keywords: distance learning, blended learning, covid 19, secondary/ high school, teachingperformance, evaluation

Procedia PDF Downloads 8
5781 Upgrading Engineering Education in Häme University of Applied Sciences: Towards Teacher Teams, Flexible Processes and Versatile Company Collaboration

Authors: Jussi Horelli, Salla Niittymäki

Abstract:

In this acceleratingly developing world, it will be crucial for our students to not only to adapt to continuous change, but to be the driving force of it. This raises the question of how can the educational processes motivate and encourage the students to learn the perhaps most important skill there for their further work career: the ability to learn and absorb more by themselves. In engineering education, the learning contents and methods have traditionally been very substance oriented and teacher-centered. In Häme University of Applied Sciences (HAMK), the pedagogical model has been completely renewed during the past few years. Terms like phenomenon or skills-based learning and collaborative teaching are things which have not very often been related to engineering education, but are now the foundation of HAMK’s pedagogical model in all disciplines, even in engineering studies. In this paper, a new flexible way of executing engineering studies will be introduced. The paper will summarize three years’ experiences and observations of a process where traditional teacher-centric mechanical engineering teaching was converted into a model where teachers work collaboratively in teams supporting the students’ learning processes.

Keywords: team teaching, collaborative learning, engineering education, new pedagogy

Procedia PDF Downloads 213
5780 A Chronological and Comparative Examination of Traditional American Post-Secondary Institutions of Higher Learning Delivery of Instruction for College Students with Autism Spectrum Disorders

Authors: Shannon Melideo

Abstract:

Post-secondary schools that provide specialized instruction for college students with special needs have been in existence for some time in the United States of America. Whether students experience learning disabilities, visual impairments, physical limitations, Autism Spectrum Disorders or any other issue that impacts their learning are able to attend universities that intentionally cater to their needs. While this selection of post-secondary education may be preferred by some students, other have sought a different experience. Over the last ten years, the number of students with Autism Spectrum Disorders (ASD) attending traditional universities in the United States of America has increased significantly. Students with ASD tend to select smaller, private institutions that appear to offer more personal attention and services. This paper will examine how traditional American universities are preparing for this relatively new group of students in their college classrooms. This paper will provide a brief historical timeline of access to university instruction for students with Autism Spectrum Disorders, and how and if students with ASD are received in colleges around the globe, and best research supported practices for success.

Keywords: autism spectrum disorders, access to learning, university instruction, accommodations

Procedia PDF Downloads 162
5779 Learning to Play in South Africa

Authors: Thelma Mort

Abstract:

Currently, in South African schools, under the fast-paced and content-heavy CAPS curriculum, the notion of play is being lost in the foundation phase. Even in Grade R, aimed at improving the quality of education, there is a focus on mathematical literacy, language, and life skills (DoE, 2001). This is largely due to the dichotomizing of play and learning. And although the play is meant to be the primary means of achieving these skills, it somehow loses its playfulness in the face of early academic pressure. Student teachers similarly have not been trained to use play in the early years of schooling. This action research study shares findings from the “Learn to Play” intervention in teacher training at one university in which student teachers were given substantial training in types of play, the ways they could use and promote play, and the changing roles of teachers in play-based learning. Using observation focus group interviews, reflections, student teacher engagement in learning communities, and Theories of Change, the study measures the changes made by the intervention in student teachers’ approaches and attitudes to play in the classroom. Key findings were that the student teachers learned new skills, had better relationships with pupils, and became more confident in their foundation phase settings.

Keywords: action research, foundation phase, South Africa, student teacher training

Procedia PDF Downloads 165
5778 Iranian EFL Learners' Attitudes towards Computer Assisted Language Learning (CALL)

Authors: Rose Shayeghi, Pejman Hosseiniun, Ghasem Ghorbanirostam

Abstract:

The present study was conducted to investigate the Iranian EFL learners’ attitudes toward the use of computer technology in language classes as a method of improving English learning. To this end, 120 male and female Iranian learners participated in the study. Instrumentation included a 20-item questionnaire. The analysis of the data revealed that the majority of learners had a positive attitude towards the application of CALL in language classes. Moreover, independent samples t-tests indicated that male participants had a significantly more positive attitude compared with that of the female participants. Finally, the results obtained through ANOVA revealed that the youngest age group had a significantly more positive attitude toward the use of technology in language classes compared to the other age groups.

Keywords: EFL learners, Iranian learners, CALL, language learning

Procedia PDF Downloads 425
5777 Blended Learning in a Mathematics Classroom: A Focus in Khan Academy

Authors: Sibawu Witness Siyepu

Abstract:

This study explores the effects of instructional design using blended learning in the learning of radian measures among Engineering students. Blended learning is an education programme that combines online digital media with traditional classroom methods. It requires the physical presence of both lecturer and student in a mathematics computer laboratory. Blended learning provides element of class control over time, place, path or pace. The focus was on the use of Khan Academy to supplement traditional classroom interactions. Khan Academy is a non-profit educational organisation created by educator Salman Khan with a goal of creating an accessible place for students to learn through watching videos in a computer assisted computer. The researcher who is an also lecturer in mathematics support programme collected data through instructing students to watch Khan Academy videos on radian measures, and by supplying students with traditional classroom activities. Classroom activities entails radian measure activities extracted from the Internet. Students were given an opportunity to engage in class discussions, social interactions and collaborations. These activities necessitated students to write formative assessments tests. The purpose of formative assessments tests was to find out about the students’ understanding of radian measures, including errors and misconceptions they displayed in their calculations. Identification of errors and misconceptions serve as pointers of students’ weaknesses and strengths in their learning of radian measures. At the end of data collection, semi-structure interviews were administered to a purposefully sampled group to explore their perceptions and feedback regarding the use of blended learning approach in teaching and learning of radian measures. The study employed Algebraic Insight Framework to analyse data collected. Algebraic Insight Framework is a subset of symbol sense which allows a student to correctly enter expressions into a computer assisted systems efficiently. This study offers students opportunities to enter topics and subtopics on radian measures into a computer through the lens of Khan Academy. Khan academy demonstrates procedures followed to reach solutions of mathematical problems. The researcher performed the task of explaining mathematical concepts and facilitated the process of reinvention of rules and formulae in the learning of radian measures. Lastly, activities that reinforce students’ understanding of radian were distributed. Results showed that this study enthused the students in their learning of radian measures. Learning through videos prompted the students to ask questions which brought about clarity and sense making to the classroom discussions. Data revealed that sense making through reinvention of rules and formulae assisted the students in enhancing their learning of radian measures. This study recommends the use of Khan Academy in blended learning to be introduced as a socialisation programme to all first year students. This will prepare students that are computer illiterate to become conversant with the use of Khan Academy as a powerful tool in the learning of mathematics. Khan Academy is a key technological tool that is pivotal for the development of students’ autonomy in the learning of mathematics and that promotes collaboration with lecturers and peers.

Keywords: algebraic insight framework, blended learning, Khan Academy, radian measures

Procedia PDF Downloads 294
5776 Exploring the Potential of Chatbots in Higher Education: A Preliminary Study

Authors: S. Studente, S. Ellis, S. F. Garivaldis

Abstract:

We report upon a study introducing a chatbot to develop learning communities at a London University, with a largely international student base. The focus of the chatbot was twofold; to ease the transition for students into their first year of university study, and to increase study engagement. Four learning communities were created using the chatbot; level 3 foundation, level 4 undergraduate, level 6 undergraduate and level 7 post-graduate. Students and programme leaders were provided with access to the chat bot via mobile app prior to their study induction and throughout the autumn term of 2019. At the end of the term, data were collected via questionnaires and focus groups with students and teaching staff to allow for identification of benefits and challenges. Findings indicated a positive correlation between study engagement and engagement with peers. Students reported that the chatbot enabled them to obtain support and connect to their programme leader. Both staff and students also made recommendation on how engagement could be further enhanced using the bot in terms of; clearly specified purpose, integration with existing university systems, leading by example and connectivity. Extending upon these recommendations, a second pilot study is planned for September 2020, for which the focus will be upon improving attendance rates, student satisfaction and module pass rates.

Keywords: chatbot, e-learning, learning communities, student engagement

Procedia PDF Downloads 109
5775 iSEA: A Mobile Based Learning Application for History and Culture Knowledge Enhancement for the ASEAN Region

Authors: Maria Visitacion N. Gumabay, Byron Joseph A. Hallar, Annjeannette Alain D. Galang

Abstract:

This study was intended to provide a more efficient and convenient way for mobile users to enhance their knowledge about ASEAN countries. The researchers evaluated the utility of the developed crossword puzzle application and assessed the general usability of its user interface for its intended purpose and audience of users. The descriptive qualitative research method for the research design and the Mobile-D methodology was employed for the development of the software application output. With a generally favorable reception from its users, the researchers concluded that the iSEA Mobile Based Learning Application can be considered ready for general deployment and use. It was also concluded that additional studies can also be done to make a more complete assessment of the knowledge gained by its users before and after using the application.

Keywords: mobile learning, eLearning, crossword, ASEAN, iSEA

Procedia PDF Downloads 294
5774 A Comparative Study of Twin Delayed Deep Deterministic Policy Gradient and Soft Actor-Critic Algorithms for Robot Exploration and Navigation in Unseen Environments

Authors: Romisaa Ali

Abstract:

This paper presents a comparison between twin-delayed Deep Deterministic Policy Gradient (TD3) and Soft Actor-Critic (SAC) reinforcement learning algorithms in the context of training robust navigation policies for Jackal robots. By leveraging an open-source framework and custom motion control environments, the study evaluates the performance, robustness, and transferability of the trained policies across a range of scenarios. The primary focus of the experiments is to assess the training process, the adaptability of the algorithms, and the robot’s ability to navigate in previously unseen environments. Moreover, the paper examines the influence of varying environmental complexities on the learning process and the generalization capabilities of the resulting policies. The results of this study aim to inform and guide the development of more efficient and practical reinforcement learning-based navigation policies for Jackal robots in real-world scenarios.

Keywords: Jackal robot environments, reinforcement learning, TD3, SAC, robust navigation, transferability, custom environment

Procedia PDF Downloads 75
5773 Escape Room Pedagogy: Using Gamification to Promote Engagement, Encourage Connections, and Facilitate Skill Development in Undergraduate Students

Authors: Scott McCutcheon, Karen Schreder

Abstract:

Higher education is facing a new reality. Student connection with coursework, instructor, and peers competes with online gaming, screen time, and instant gratification. Pedagogical methods that align student connection and critical thinking in a content-rich environment are important in supporting student learning, a sense of community, and emotional health. This mixed methods study focuses on exploring how the use of educational escape rooms (EERs) can support student learning and learning retention while fostering engagement with each other, the instructor, and the coursework. EERs are content-specific, cooperative, team-based learning activities designed to be completed within a short segment of a typical class. Data for the study was collected over three semesters and includes results from the implementation of EERs in science-based and liberal studies courses taught by different instructors. Twenty-seven students were surveyed regarding their learning experiences with this pedagogy, and interviews with four student volunteers were conducted to add depth to the survey data. A key finding from this research indicates that students felt more connected to each other and the course content after participating in the escape room activity. Additional findings point to increased engagement and comprehension of the class material. Data indicates that the use of an EER pedagogy supports student engagement, well-being, subject comprehension, and student-student and student-instructor connection.

Keywords: gamification, innovative pedagogy, student engagement, student emotional well being

Procedia PDF Downloads 44
5772 Intrinsic Motivational Factor of Students in Learning Mathematics and Science Based on Electroencephalogram Signals

Authors: Norzaliza Md. Nor, Sh-Hussain Salleh, Mahyar Hamedi, Hadrina Hussain, Wahab Abdul Rahman

Abstract:

Motivational factor is mainly the students’ desire to involve in learning process. However, it also depends on the goal towards their involvement or non-involvement in academic activity. Even though, the students’ motivation might be in the same level, but the basis of their motivation may differ. In this study, it focuses on the intrinsic motivational factor which student enjoy learning or feeling of accomplishment the activity or study for its own sake. The intrinsic motivational factor of students in learning mathematics and science has found as difficult to be achieved because it depends on students’ interest. In the Program for International Student Assessment (PISA) for mathematics and science, Malaysia is ranked as third lowest. The main problem in Malaysian educational system, students tend to have extrinsic motivation which they have to score in exam in order to achieve a good result and enrolled as university students. The use of electroencephalogram (EEG) signals has found to be scarce especially to identify the students’ intrinsic motivational factor in learning science and mathematics. In this research study, we are identifying the correlation between precursor emotion and its dynamic emotion to verify the intrinsic motivational factor of students in learning mathematics and science. The 2-D Affective Space Model (ASM) was used in this research in order to identify the relationship of precursor emotion and its dynamic emotion based on the four basic emotions, happy, calm, fear and sad. These four basic emotions are required to be used as reference stimuli. Then, in order to capture the brain waves, EEG device was used, while Mel Frequency Cepstral Coefficient (MFCC) was adopted to be used for extracting the features before it will be feed to Multilayer Perceptron (MLP) to classify the valence and arousal axes for the ASM. The results show that the precursor emotion had an influence the dynamic emotions and it identifies that most students have no interest in mathematics and science according to the negative emotion (sad and fear) appear in the EEG signals. We hope that these results can help us further relate the behavior and intrinsic motivational factor of students towards learning of mathematics and science.

Keywords: EEG, MLP, MFCC, intrinsic motivational factor

Procedia PDF Downloads 353
5771 Comparison of E-learning and Face-to-Face Learning Models Through the Early Design Stage in Architectural Design Education

Authors: Gülay Dalgıç, Gildis Tachir

Abstract:

Architectural design studios are ambiencein where architecture design is realized as a palpable product in architectural education. In the design studios that the architect candidate will use in the design processthe information, the methods of approaching the design problem, the solution proposals, etc., are set uptogetherwith the studio coordinators. The architectural design process, on the other hand, is complex and uncertain.Candidate architects work in a process that starts with abstre and ill-defined problems. This process starts with the generation of alternative solutions with the help of representation tools, continues with the selection of the appropriate/satisfactory solution from these alternatives, and then ends with the creation of an acceptable design/result product. In the studio ambience, many designs and thought relationships are evaluated, the most important step is the early design phase. In the early design phase, the first steps of converting the information are taken, and converted information is used in the constitution of the first design decisions. This phase, which positively affects the progress of the design process and constitution of the final product, is complex and fuzzy than the other phases of the design process. In this context, the aim of the study is to investigate the effects of face-to-face learning model and e-learning model on the early design phase. In the study, the early design phase was defined by literature research. The data of the defined early design phase criteria were obtained with the feedback graphics created for the architect candidates who performed e-learning in the first year of architectural education and continued their education with the face-to-face learning model. The findings of the data were analyzed with the common graphics program. It is thought that this research will contribute to the establishment of a contemporary architectural design education model by reflecting the evaluation of the data and results on architectural education.

Keywords: education modeling, architecture education, design education, design process

Procedia PDF Downloads 125
5770 Improving Online Learning Engagement through a Kid-Teach-Kid Approach for High School Students during the Pandemic

Authors: Alexander Huang

Abstract:

Online learning sessions have become an indispensable complement to in-classroom-learning sessions in the past two years due to the emergence of Covid-19. Due to social distance requirements, many courses and interaction-intensive sessions, ranging from music classes to debate camps, are online. However, online learning imposes a significant challenge for engaging students effectively during the learning sessions. To resolve this problem, Project PWR, a non-profit organization formed by high school students, developed an online kid-teach-kid learning environment to boost students' learning interests and further improve students’ engagement during online learning. Fundamentally, the kid-teach-kid learning model creates an affinity space to form learning groups, where like-minded peers can learn and teach their interests. The role of the teacher can also help a kid identify the instructional task and set the rules and procedures for the activities. The approach also structures initial discussions to reveal a range of ideas, similar experiences, thinking processes, language use, and lower student-to-teacher ratio, which become enriched online learning experiences for upcoming lessons. In such a manner, a kid can practice both the teacher role and the student role to accumulate experiences on how to convey ideas and questions over the online session more efficiently and effectively. In this research work, we conducted two case studies involving a 3D-Design course and a Speech and Debate course taught by high-school kids. Through Project PWR, a kid first needs to design the course syllabus based on a provided template to become a student-teacher. Then, the Project PWR academic committee evaluates the syllabus and offers comments and suggestions for changes. Upon the approval of a syllabus, an experienced and voluntarily adult mentor is assigned to interview the student-teacher and monitor the lectures' progress. Student-teachers construct a comprehensive final evaluation for their students, which they grade at the end of the course. Moreover, each course requires conducting midterm and final evaluations through a set of surveyed replies provided by students to assess the student-teacher’s performance. The uniqueness of Project PWR lies in its established kid-teach-kids affinity space. Our research results showed that Project PWR could create a closed-loop system where a student can help a teacher improve and vice versa, thus improving the overall students’ engagement. As a result, Project PWR’s approach can train teachers and students to become better online learners and give them a solid understanding of what to prepare for and what to expect from future online classes. The kid-teach-kid learning model can significantly improve students' engagement in the online courses through the Project PWR to effectively supplement the traditional teacher-centric model that the Covid-19 pandemic has impacted substantially. Project PWR enables kids to share their interests and bond with one another, making the online learning environment effective and promoting positive and effective personal online one-on-one interactions.

Keywords: kid-teach-kid, affinity space, online learning, engagement, student-teacher

Procedia PDF Downloads 131
5769 Consumer Preferences Concerning Food from Carob: A Survey in Crete, Greece

Authors: Georgios A. Fragkiadakis, Antonia Psaroudaki, Theodora Mouratidou, Eirini Sfakianaki

Abstract:

Research: The nutritional benefits of eating carob are many and important for the human organism, as it is a food rich in carbohydrates and low in fat and contains multiple nutrients, making it a "superfood". Within the framework of the project "Actions for the optimal utilization of the potential of carob in the Region of Crete" which is financed-supervised by the Region of Crete, a second-grade local self-government authority, with the collaboration of the University of Crete and of the Hellenic Mediterranean University, an online survey was carried out with the aim of evaluating dietary habits and views related to the consumption of carob and its products in a sample of local residents. Results and Conclusions: Of the 351 participants, 259 (73.8%) stated that they consume carob products, and 26.2% stated that they do not. Difficult access and limited availability of carob-food products (33.7%), high price (20.7%), and difficulties of use and preparation (15.2%) were cited as the main reasons for non-consumption. Other reasons, to a lesser extent, concern the taste, especially the sweet aftertaste of some products. Concerning the behavior and eating habits related to the consumption of carob products (n=259), 57.9% of the sample report that they buy carob products "sometimes"; 21.2% report "often"; 19.7% report "rarely", and a very small percentage of 1.2% report "constantly". With reference to the reasons for choosing carob products, the participants mention the main reason for their high nutritional value (51.7%), followed by 32.4% of nutritional claims and health claims, and the organoleptic characteristics (10.8%). Other positive factors are the final price of the product, the ease of use, and the respect for the local environment and producers. Some bakery products show the highest percentage of consumption among carob-food consumers, mainly in the form of rusks (86.1%) and breadsticks (70.3%). They are followed, in descending order, by bread (63.3%), toast (52.1%), and flour (50.6%). More specifically: 40.5% consume carob rusks less than once a month; 22% consume less than once a week; up to twice a week 12.4%; 6.6%, consume rusks 3 to 4 times a week, and daily 3.9%. It is worth mentioning that a high percentage of consumers of carob products recommend the consumption to their family and friends. Only a small percentage, in the range of 5%, does not recommend the consumption of carob products in their close family/social circle. The main motivating factors for the consumption of carob products are the expected effects they may have on health (74.1%) and the organoleptic characteristics with a percentage of 21.6%.

Keywords: food, consumer, preferences, carob, Crete, Greece

Procedia PDF Downloads 53
5768 Values in Higher Education: A Case Study of Higher Education Students

Authors: Bahadır Erişti

Abstract:

Values are the behavioral procedures of society based communication and interaction process that includes social and cultural backgrounds. The policy of learning and teaching in higher education is oriented towards constructing knowledge and skills, based on theorist framework of cognitive and psychomotor aspects. This approach makes people not to develop generosity, empathy, affection, solidarity, justice, equality and so on. But the sensorial gains of education system provide the integrity of society interaction. This situation carries out the necessity of values education’s in higher education. The current study aims to consider values education from the viewpoint of students in higher education. Within the framework of the current study, an open ended survey based scenario of higher education students was conducted with the students’ social, cognitive, affective and moral developments. In line with this purpose, the following situations of the higher education system were addressed based on the higher education students’ viewpoint: The views of higher education students’ regarding values that are tried to be gained at the higher education system; The higher education students’ suggestions regarding values education at the higher education system; The views of the higher education students’ regarding values that are imposed at the higher education system. In this study, descriptive qualitative research method was used. The study group of the research is composed of 20 higher education postgraduate students at Curriculum and Instruction Department of Educational Sciences at Anadolu University. An open-ended survey was applied for the purpose of collecting qualitative data. As a result of the study, value preferences, value judgments and value systems of the higher education students were constructed on prioritizes based on social, cultural and economic backgrounds and statues. Multi-dimensional process of value education in higher education need to be constructed on higher education-community-cultural background cooperation. Thus, the act of judgement upon values between higher education students based on the survey seems to be inherent in the system of education itself. The present study highlights the students’ value priorities and importance of values in higher education. If the purpose of the higher education system gains on values, it is possible to enable society to promote humanity.

Keywords: higher education, value, values education, values in higher education

Procedia PDF Downloads 318
5767 Factors that Predict Pre-Service Teachers' Decision to Integrate E-Learning: A Structural Equation Modeling (SEM) Approach

Authors: Mohd Khairezan Rahmat

Abstract:

Since the impetus of becoming a develop country by the year 2020, the Malaysian government have been proactive in strengthening the integration of ICT into the national educational system. Teacher-education programs have the responsibility to prepare the nation future teachers by instilling in them the desire, confidence, and ability to fully utilized the potential of ICT into their instruction process. In an effort to fulfill this responsibility, teacher-education program are beginning to create alternatives means for preparing cutting-edge teachers. One of the alternatives is the student’s learning portal. In line with this mission, this study investigates the Faculty of Education, University Teknologi MARA (UiTM) pre-service teachers’ perception of usefulness, attitude, and ability toward the usage of the university learning portal, known as iLearn. The study also aimed to predict factors that might hinder the pre-service teachers’ decision to used iLearn as their platform in learning. The Structural Equation Modeling (SEM), was employed in analyzed the survey data. The suggested findings informed that pre-service teacher’s successful integration of the iLearn was highly influenced by their perception of usefulness of the system. The findings also suggested that the more familiar the pre-service teacher with the iLearn, the more possibility they will use the system. In light of similar study, the present findings hope to highlight the important to understand the user’s perception toward any proposed technology.

Keywords: e-learning, prediction factors, pre-service teacher, structural equation modeling (SEM)

Procedia PDF Downloads 319
5766 Restructuring the College Classroom: Scaffolding Student Learning and Engagement in Higher Education

Authors: Claire Griffin

Abstract:

Recent years have witnessed a surge in the use of innovative teaching approaches to support student engagement and higher-order learning within higher education. This paper seeks to explore the use of collaborative, interactive teaching and learning strategies to support student engagement in a final year undergraduate Developmental Psychology module. In particular, the use of the jigsaw method, in-class presentations and online discussion fora were adopted in a ‘lectorial’ style teaching approach, aimed at scaffolding learning, fostering social interdependence and supporting various levels of student engagement in higher education. Using the ‘Student Course Engagement Questionnaire’, the impact of such teaching strategies on students’ college classroom experience was measured, with additional qualitative student feedback gathered. Results illustrate the positive impact of the teaching methodologies on students’ levels of engagement, with positive implications emerging across the four engagement factors: skills engagement, emotional engagement, participation/interaction engagement and performance engagement. Thematic analysis on students’ qualitative comments also provided greater insight into the positive impact of the ‘lectorial’ teaching approach on students’ classroom experience within higher level education. Implications of the findings are presented in terms of informing effective teaching practices within higher education. Additional avenues for future research and strategy usage will also be discussed, in light of evolving practice and cutting edge literature within the field.

Keywords: learning, higher education, scaffolding, student engagement

Procedia PDF Downloads 358
5765 Automatic Number Plate Recognition System Based on Deep Learning

Authors: T. Damak, O. Kriaa, A. Baccar, M. A. Ben Ayed, N. Masmoudi

Abstract:

In the last few years, Automatic Number Plate Recognition (ANPR) systems have become widely used in the safety, the security, and the commercial aspects. Forethought, several methods and techniques are computing to achieve the better levels in terms of accuracy and real time execution. This paper proposed a computer vision algorithm of Number Plate Localization (NPL) and Characters Segmentation (CS). In addition, it proposed an improved method in Optical Character Recognition (OCR) based on Deep Learning (DL) techniques. In order to identify the number of detected plate after NPL and CS steps, the Convolutional Neural Network (CNN) algorithm is proposed. A DL model is developed using four convolution layers, two layers of Maxpooling, and six layers of fully connected. The model was trained by number image database on the Jetson TX2 NVIDIA target. The accuracy result has achieved 95.84%.

Keywords: ANPR, CS, CNN, deep learning, NPL

Procedia PDF Downloads 289
5764 Implementation of Data Science in Field of Homologation

Authors: Shubham Bhonde, Nekzad Doctor, Shashwat Gawande

Abstract:

For the use and the import of Keys and ID Transmitter as well as Body Control Modules with radio transmission in a lot of countries, homologation is required. Final deliverables in homologation of the product are certificates. In considering the world of homologation, there are approximately 200 certificates per product, with most of the certificates in local languages. It is challenging to manually investigate each certificate and extract relevant data from the certificate, such as expiry date, approval date, etc. It is most important to get accurate data from the certificate as inaccuracy may lead to missing re-homologation of certificates that will result in an incompliance situation. There is a scope of automation in reading the certificate data in the field of homologation. We are using deep learning as a tool for automation. We have first trained a model using machine learning by providing all country's basic data. We have trained this model only once. We trained the model by feeding pdf and jpg files using the ETL process. Eventually, that trained model will give more accurate results later. As an outcome, we will get the expiry date and approval date of the certificate with a single click. This will eventually help to implement automation features on a broader level in the database where certificates are stored. This automation will help to minimize human error to almost negligible.

Keywords: homologation, re-homologation, data science, deep learning, machine learning, ETL (extract transform loading)

Procedia PDF Downloads 146
5763 The 'Saudade' Market and the Development of Tourism in the Azores: An Analysis of Travel Preferences of Azorean Emigrants

Authors: Silvia Rocha, Flavio Tiago, Maria Teresa Tiago, Sandra Faria, Joao Couto

Abstract:

The Azores have a tourist potential that has been developing, especially after an increase in promotion and the liberalization of airspace. However, there is still a gap with regard to the understanding of tourists from North America. Previous studies referred to the existence of two basic types of touristic flows: Emigrants and locals. Looking to help fill this gap, a study of travelers from North America was conducted. Using cluster analysis, it was determined the existence of three segments: nostalgic, regular and frequent. The recognition of these three segments is important to determine the necessary adjustments in tourist offerings to this market.

Keywords: tourism, diaspora, nostalgia, culture

Procedia PDF Downloads 172
5762 The Best Methods of Motivating and Encouraging the Students to Study: A Case Study

Authors: Mahmoud I. Syam, Osama K. El-Hafy

Abstract:

With lack of student motivation, there will be a little or no real learning in the class and this directly effects student achievement and test scores. Some students are naturally motivated to learn, but many students are not motivated, they do care little about learning and need their instructors to motivate them. Thus, motivating students is part of the instructor’s job. It’s a tough task to motivate students and make them have more attention and enthusiasm. As a part of this research, a questionnaire has been distributed among a sample of 155 students out of 1502 students from Foundation Program at Qatar University. The questionnaire helped us to determine some methods to motivate the students and encourage them to study such as variety of teaching activities, encouraging students to participate during the lectures, creating intense competition between the students, using instructional technology, not using grades as a threat and respecting the students and treating them in a good manner. Accordingly, some hypotheses are tested and some recommendations are presented.

Keywords: learning, motivating, student, teacher, testing hypotheses

Procedia PDF Downloads 457
5761 Validating Condition-Based Maintenance Algorithms through Simulation

Authors: Marcel Chevalier, Léo Dupont, Sylvain Marié, Frédérique Roffet, Elena Stolyarova, William Templier, Costin Vasile

Abstract:

Industrial end-users are currently facing an increasing need to reduce the risk of unexpected failures and optimize their maintenance. This calls for both short-term analysis and long-term ageing anticipation. At Schneider Electric, we tackle those two issues using both machine learning and first principles models. Machine learning models are incrementally trained from normal data to predict expected values and detect statistically significant short-term deviations. Ageing models are constructed by breaking down physical systems into sub-assemblies, then determining relevant degradation modes and associating each one to the right kinetic law. Validating such anomaly detection and maintenance models is challenging, both because actual incident and ageing data are rare and distorted by human interventions, and incremental learning depends on human feedback. To overcome these difficulties, we propose to simulate physics, systems, and humans -including asset maintenance operations- in order to validate the overall approaches in accelerated time and possibly choose between algorithmic alternatives.

Keywords: degradation models, ageing, anomaly detection, soft sensor, incremental learning

Procedia PDF Downloads 113
5760 Cells Detection and Recognition in Bone Marrow Examination with Deep Learning Method

Authors: Shiyin He, Zheng Huang

Abstract:

In this paper, deep learning methods are applied in bio-medical field to detect and count different types of cells in an automatic way instead of manual work in medical practice, specifically in bone marrow examination. The process is mainly composed of two steps, detection and recognition. Mask-Region-Convolutional Neural Networks (Mask-RCNN) was used for detection and image segmentation to extract cells and then Convolutional Neural Networks (CNN), as well as Deep Residual Network (ResNet) was used to classify. Result of cell detection network shows high efficiency to meet application requirements. For the cell recognition network, two networks are compared and the final system is fully applicable.

Keywords: cell detection, cell recognition, deep learning, Mask-RCNN, ResNet

Procedia PDF Downloads 168