Search results for: grape seed extract
1085 Egg Hatching Inhibition Activity of Volatile Oils Extracted from Some Medicinal and Aromatic Plants against Root-Knot Nematode Meloidogyne hapla
Authors: Anil F. Felek, Mehmet M. Ozcan, Faruk Akyazi
Abstract:
Volatile oils of medicinal and aromatic plants are important for managing nematological problems in agriculture. In present study, volatile oils extracted from five medicinal and aromatic plants including Origanum onites (flower+steam+leaf), Salvia officinalis (leaf), Lippia citriodora (leaf+seed), Mentha spicata (leaf) and Mentha longifolia (leaf) were tested for egg hatching inhibition activity against root-knot nematode Meloidogyne hapla under laboratory conditions. The essential oils were extracted using water distillation method with a Clevenger system. For the homogenisation process of the oils, 2% gum arabic solution was used and 4 µl oils was added into 1ml filtered gum arabic solution to prepare the last stock solution. 5 ml of stock solution and 1 ml of M. hapla egg suspension (about 100 eggs) were added into petri dishes. Gum arabic solution was used as control. Seven days after exposure to oils at room temperature (26±2 °C), the cumulative hatched and unhatched eggs were counted under 40X inverted light microscope and Abbott’s formula was used to calculate egg hatching inhibition rates. As a result, the highest inhibition rate was found as 54% for O. onites. In addition, the other inhibition rates varied as 31.4%, 21.6%, 23.8%, 25.67% for the other plants, S. officinalis, M. longifolia, M. spicata and L. citriodora, respectively. Carvacrol was found as the main component (68.8%) of O. onites followed by Thujone 27.77% for S. officinalis, I-Menthone 76.92% for M. longifolia, Carvone 27.05% for M. spicata and Citral 19.32% for L. citriodora.Keywords: egg hatching, Meloidogyne hapla, medicinal and aromatic plants, root-knot nematodes, volatile oils
Procedia PDF Downloads 2661084 In vitro Antioxidant and Antibacterial Activities of Methanol Extracts of Tamus communis L. from Algeria
Authors: F. Belkhiri, A. Baghiani, S. Boumerfeg, N. Charef, S. Khennouf, L. Arrar
Abstract:
The present study was conducted to evaluate the in vitro antioxidant and antibacterial properties of methanolic extracts from roots of Tamus communis L. (TCRE), which is a plant used in traditional medicine in Algeria. The antioxidant potential of pattern was evaluated using tow complementary techniques, inhibition of free radical DPPH and the test of β-Carotene/linoleic acid. The antioxidant test indicates that non-polar fractions of TCRE (chloroform and ethyl acetate fractions) were more active than the polar fractions. Among these fractions, the chloroform extract appear in the DPPH test an IC50 of (18.89 µg/ml) comparable to that of BHT (18.6 µg/ml). This fraction was able to inhibiting the oxidation of β-Carotene with a percentage of inhibition (89.84 %). In antibacterial test, non-polar fractions showed antibacterial activity very important compared with the polar fractions. These fractions have inhibited the growth of four from nine bacterial strains, causing zones of inhibition from 08 to 23 mm of diameter.Keywords: antioxidant activity, antibacterial activity, Tamus communis L., polar fractions
Procedia PDF Downloads 5861083 Taxonomic Classification for Living Organisms Using Convolutional Neural Networks
Authors: Saed Khawaldeh, Mohamed Elsharnouby, Alaa Eddin Alchalabi, Usama Pervaiz, Tajwar Aleef, Vu Hoang Minh
Abstract:
Taxonomic classification has a wide-range of applications such as finding out more about the evolutionary history of organisms that can be done by making a comparison between species living now and species that lived in the past. This comparison can be made using different kinds of extracted species’ data which include DNA sequences. Compared to the estimated number of the organisms that nature harbours, humanity does not have a thorough comprehension of which specific species they all belong to, in spite of the significant development of science and scientific knowledge over many years. One of the methods that can be applied to extract information out of the study of organisms in this regard is to use the DNA sequence of a living organism as a marker, thus making it available to classify it into a taxonomy. The classification of living organisms can be done in many machine learning techniques including Neural Networks (NNs). In this study, DNA sequences classification is performed using Convolutional Neural Networks (CNNs) which is a special type of NNs.Keywords: deep networks, convolutional neural networks, taxonomic classification, DNA sequences classification
Procedia PDF Downloads 4421082 A Numerical Investigation of Lamb Wave Damage Diagnosis for Composite Delamination Using Instantaneous Phase
Authors: Haode Huo, Jingjing He, Rui Kang, Xuefei Guan
Abstract:
This paper presents a study of Lamb wave damage diagnosis of composite delamination using instantaneous phase data. Numerical experiments are performed using the finite element method. Different sizes of delamination damages are modeled using finite element package ABAQUS. Lamb wave excitation and responses data are obtained using a pitch-catch configuration. Empirical mode decomposition is employed to extract the intrinsic mode functions (IMF). Hilbert–Huang Transform is applied to each of the resulting IMFs to obtain the instantaneous phase information. The baseline data for healthy plates are also generated using the same procedure. The size of delamination is correlated with the instantaneous phase change for damage diagnosis. It is observed that the unwrapped instantaneous phase of shows a consistent behavior with the increasing delamination size.Keywords: delamination, lamb wave, finite element method, EMD, instantaneous phase
Procedia PDF Downloads 3201081 A Mutually Exclusive Task Generation Method Based on Data Augmentation
Authors: Haojie Wang, Xun Li, Rui Yin
Abstract:
In order to solve the memorization overfitting in the model-agnostic meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to an exponential growth of computation, this paper also proposes a key data extraction method that only extract part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.Keywords: mutex task generation, data augmentation, meta-learning, text classification.
Procedia PDF Downloads 1431080 Protective Effect of Nigella sativa Oil and Its Neutral Lipid Fraction on Ethanol-Induced Hepatotoxicity in Rat Model
Authors: Asma Mosbah, Hanane Khither, Kamelia Mosbah, Noreddine Kacem Chaouche, Mustapha Benboubetra
Abstract:
In the present investigation, total oil (TO) and its neutral lipid fraction (NLF) extracted from the seed of the well know studied medicinal plant Nigella sativa were tested for their therapeutically effect on alcohol-induced liver injury in rat model. Male Albino rats were divided into five groups of eight animals each and fed a Lieber–DeCarli liquid diet containing 5% ethanol for experimental groups and dextran for control group, for a period of six weeks. Afterwards, rats received, orally, treatments with Nigella sativa extracts (TO, NLF) and N- acetylcysteine (NAC) as a positive control for four weeks. Activities of antioxidant enzymes; superoxide dismutase (SOD) and catalase (CAT), as well as malondialdehyde (MDA) and reduced glutathione (GSH). Biochemical parameters for kidney and liver functions, in treated and non treated rats, were evaluated throughout the time course of an experiment. Liver histological changes were taken into account. Enzymatic activities of both SOD and CAT increased significantly in rats treated with NLF and TO. While MDA level decreased in TO and NLF treated rats, GSH level increased significantly in TO and NLF treated rats. We noted equally a decrease in liver enzymes AST, ALT, and ALP. Microscopic observation of slides from the liver of ethanol treated rats showed a severe hepatotoxicity with lesions. Treatment with fractions leads to an improvement in liver lesions and a marked reduction in necrosis and infiltration. As a conclusion, both extracts of Nigella sativa seeds, TO and NLF, possess an important therapeutic protective potential against ethanol-induced hepatotoxicity in rats.Keywords: alcohol-induced hepatotoxicity, antioxidant enzymes, Nigella sativa seeds, oil fractions
Procedia PDF Downloads 1671079 Printed Thai Character Recognition Using Particle Swarm Optimization Algorithm
Authors: Phawin Sangsuvan, Chutimet Srinilta
Abstract:
This Paper presents the applications of Particle Swarm Optimization (PSO) Method for Thai optical character recognition (OCR). OCR consists of the pre-processing, character recognition and post-processing. Before enter into recognition process. The Character must be “Prepped” by pre-processing process. The PSO is an optimization method that belongs to the swarm intelligence family based on the imitation of social behavior patterns of animals. Route of each particle is determined by an individual data among neighborhood particles. The interaction of the particles with neighbors is the advantage of Particle Swarm to determine the best solution. So PSO is interested by a lot of researchers in many difficult problems including character recognition. As the previous this research used a Projection Histogram to extract printed digits features and defined the simple Fitness Function for PSO. The results reveal that PSO gives 67.73% for testing dataset. So in the future there can be explored enhancement the better performance of PSO with improve the Fitness Function.Keywords: character recognition, histogram projection, particle swarm optimization, pattern recognition techniques
Procedia PDF Downloads 4771078 Automatic Facial Skin Segmentation Using Possibilistic C-Means Algorithm for Evaluation of Facial Surgeries
Authors: Elham Alaee, Mousa Shamsi, Hossein Ahmadi, Soroosh Nazem, Mohammad Hossein Sedaaghi
Abstract:
Human face has a fundamental role in the appearance of individuals. So the importance of facial surgeries is undeniable. Thus, there is a need for the appropriate and accurate facial skin segmentation in order to extract different features. Since Fuzzy C-Means (FCM) clustering algorithm doesn’t work appropriately for noisy images and outliers, in this paper we exploit Possibilistic C-Means (PCM) algorithm in order to segment the facial skin. For this purpose, first, we convert facial images from RGB to YCbCr color space. To evaluate performance of the proposed algorithm, the database of Sahand University of Technology, Tabriz, Iran was used. In order to have a better understanding from the proposed algorithm; FCM and Expectation-Maximization (EM) algorithms are also used for facial skin segmentation. The proposed method shows better results than the other segmentation methods. Results include misclassification error (0.032) and the region’s area error (0.045) for the proposed algorithm.Keywords: facial image, segmentation, PCM, FCM, skin error, facial surgery
Procedia PDF Downloads 5861077 Analysis and Rule Extraction of Coronary Artery Disease Data Using Data Mining
Authors: Rezaei Hachesu Peyman, Oliyaee Azadeh, Salahzadeh Zahra, Alizadeh Somayyeh, Safaei Naser
Abstract:
Coronary Artery Disease (CAD) is one major cause of disability in adults and one main cause of death in developed. In this study, data mining techniques including Decision Trees, Artificial neural networks (ANNs), and Support Vector Machine (SVM) analyze CAD data. Data of 4948 patients who had suffered from heart diseases were included in the analysis. CAD is the target variable, and 24 inputs or predictor variables are used for the classification. The performance of these techniques is compared in terms of sensitivity, specificity, and accuracy. The most significant factor influencing CAD is chest pain. Elderly males (age > 53) have a high probability to be diagnosed with CAD. SVM algorithm is the most useful way for evaluation and prediction of CAD patients as compared to non-CAD ones. Application of data mining techniques in analyzing coronary artery diseases is a good method for investigating the existing relationships between variables.Keywords: classification, coronary artery disease, data-mining, knowledge discovery, extract
Procedia PDF Downloads 6571076 Electrical Decomposition of Time Series of Power Consumption
Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats
Abstract:
Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).Keywords: electrical disaggregation, DTW, general appliance modeling, event detection
Procedia PDF Downloads 781075 Population Diversity of Dalmatian Pyrethrum Based on Pyrethrin Content and Composition
Authors: Filip Varga, Nina Jeran, Martina Biosic, Zlatko Satovic, Martina Grdisa
Abstract:
Dalmatian pyrethrum (Tanacetum cinerariifolium /Trevir./ Sch. Bip.), a species endemic to the eastern Adriatic coastline, is the source of natural insecticide pyrethrin. Pyrethrin is a mixture of six compounds (pyrethrin I and II, cinerin I and II, jasmolin I and II) that exhibits high insecticidal activity with no detrimental effects to the environment. A recently optimized matrix-solid phase dispersion method (MSPD), using florisil as the sorbent, acetone-ethyl acetate (1:1, v/v) as the elution solvent, and sodium sulfate anhydrous as the drying agent was utilized to extract the pyrethrins from 10 wild populations (20 individuals per population) distributed along the Croatian coast. All six components in the extracts were qualitatively and quantitatively determined by high-performance liquid chromatography with a diode array detector (HPLC-DAD). Pearson’s correlation index was calculated between pyrethrin compounds, and differences between the populations using the analysis of variance were tested. Additionally, the correlation of each pyrethrin component with spatio-ecological variables (bioclimate, soil properties, elevation, solar radiation, and distance from the coastline) was calculated. Total pyrethrin content ranged from 0.10% to 1.35% of dry flower weight, averaging 0.58% across all individuals. Analysis of variance revealed significant differences between populations based on all six pyrethrin compounds and total pyrethrin content. On average, the lowest total pyrethrin content was found in the population from Pelješac peninsula (0.22% of dry flower weight) in which total pyrethrin content lower than 0.18% was detected in 55% of the individuals. The highest average total pyrethrin content was observed in the population from island Zlarin (0.87% of dry flower weight), in which total pyrethrin content higher than 1.00% was recorded in only 30% of the individuals. Pyrethrin I/pyrethrin II ratio as a measure of extract quality ranged from 0.21 (population from the island Čiovo) to 5.88 (population from island Mali Lošinj) with an average of 1.77 across all individuals. By far, the lowest quality of extracts was found in the population from Mt. Biokovo (pyrethrin I/II ratio lower than 0.72 in 40% of individuals) due to the high pyrethrin II content typical for this population. Pearson’s correlation index revealed a highly significant positive correlation between pyrethrin I content and total pyrethrin content and a strong negative correlation between pyrethrin I and pyrethrin II. The results of this research clearly indicate high intra- and interpopulation diversity of Dalmatian pyrethrum with regards to pyrethrin content and composition. The information obtained has potential use in plant genetic resources conservation and biodiversity monitoring. Possibly the largest potential lies in designing breeding programs aimed at increasing pyrethrin content in commercial breeding lines and reintroduction in agriculture in Croatia. Acknowledgment: This work has been fully supported by the Croatian Science Foundation under the project ‘Genetic background of Dalmatian pyrethrum (Tanacetum cinerariifolium /Trevir/ Sch. Bip.) insecticidal potential’ - (PyrDiv) (IP-06-2016-9034).Keywords: Dalmatian pyrethrum, HPLC, MSPD, pyrethrin
Procedia PDF Downloads 1421074 Protective Approach of Mentha Piperita against Cadmium Induced Renotoxicity in Albino Rats
Authors: Baby Tabassum, Priya Bajaj
Abstract:
Cadmium is the second most hazardous heavy metal occurring in both elemental as well as compound forms. It is a highly toxic metal with a very high bio-concentration factor (BCF>100). WHO permitted groundwater cadmium concentration is 0.005 mg/L only, but reality is far away from this limit. A number of natural and anthropogenic industrial activities contribute to the spread of cadmium into the environment. The present study had been designated to find out the renal changes at functional level after cadmium intoxication and protection against these changes offered by Mentha piperata. For the purpose, albino rats were selected as the model organism. Cadmium significantly increases the serum level of serum proteins and nitrogenous wastes showing reduced filtration rate of kidneys. Pretreatment with Mentha piperata leaf extract causes significant retention of these levels to normalcy. These findings conclude that Cadmium exposure affects renal functioning but Mentha could prevent it, proving its nephro-protective potential against heavy metal toxicity.Keywords: albino rat, cadmium, Mentha piperata, nephrotoxicity
Procedia PDF Downloads 3991073 Frame Camera and Event Camera in Stereo Pair for High-Resolution Sensing
Authors: Khen Cohen, Daniel Yankelevich, David Mendlovic, Dan Raviv
Abstract:
We present a 3D stereo system for high-resolution sensing in both the spatial and the temporal domains by combining a frame-based camera and an event-based camera. We establish a method to merge both devices into one unite system and introduce a calibration process, followed by a correspondence technique and interpolation algorithm for 3D reconstruction. We further provide quantitative analysis about our system in terms of depth resolution and additional parameter analysis. We show experimentally how our system performs temporal super-resolution up to effectively 1ms and can detect fast-moving objects and human micro-movements that can be used for micro-expression analysis. We also demonstrate how our method can extract colored events for an event-based camera without any degradation in the spatial resolution, compared to a colored filter array.Keywords: DVS-CIS stereo vision, micro-movements, temporal super-resolution, 3D reconstruction
Procedia PDF Downloads 2971072 Plasma-Assisted Nitrogen Fixation for the Elevation of Seed Germination and Plant Growth
Authors: Pradeep Lamichhane
Abstract:
Plasma-assisted nitrogen fixation is a process by which atomic nitrogen generated by plasma is converted into ammonia (NH₃) or related nitrogenous compounds. Nitrogen fixation is essential to plant because fixed inorganic nitrogen compounds are required to them for the biosynthesis of all nitrogen-containing organic compounds, such as amino acids and proteins, nucleoside triphosphates and nucleic acid. Most of our atmosphere is composed of nitrogen; however, the plant cannot absorb it directly from the air ambient. As a portion of the nitrogen cycle, nitrogen fixation fundamental for agriculture and the manufacture of fertilizer. In this study, plasma-assisted nitrogen fixation was performed by exposing a non-thermal atmospheric pressure nitrogen plasma generated a sinusoidal power supply (with an applied voltage of 10 kV and frequency of 33 kHz) on a water surface. Besides this, UV excitation of water molecules at the water interface was also done in order to disassociate water. Hydrogen and hydroxyl radical obtained from this UV photolysis electrochemically combine with nitrogen atom obtained from plasma. As a result of this, nitrogen fixation on plasma-activated water (PAW) significantly enhanced. The amount of nitrogen-based products like NOₓ and ammonia (NH₃) synthesized by this combined process of UV and plasma are 1.4 and 2.8 times higher than those obtained by plasma alone. In every 48 hours, 20 ml of plasma-activated water (pH≈3.15) for 10 minutes with moderate concentrations of NOₓ, NH₃ and hydrogen peroxide (H₂O₂) was irrigated on each corn plant (Zea Mays). It was found that the PAW has shown a significant impact on seeds germination rate and improved seedling growth. The result obtained from this experiment suggested that crop yield could increase in a short duration. In the future, this experiment could open boundless opportunities in plasma agriculture to mobilize nitrogen because nitrite, nitrate, and ammonia are more suitable for plant uptake.Keywords: plasma-assisted nitrogen fixation, nitrogen plasma, UV excitation of water, ammonia synthesis
Procedia PDF Downloads 1381071 Characterization Techniques for Studying Properties of Nanomaterials
Authors: Nandini Sharma
Abstract:
Monitoring the characteristics of a nanostructured material comprises measurements of structural, morphological, mechanical, optical and electronic properties of the synthesized nanopowder and different layers and coatings of nanomaterials coated on transparent conducting oxides (TCOs) substrates like fluorine doped tin oxide (FTO) or Indium doped tin oxide (ITO). This article focuses on structural and optical characterization with emphasis on measurements of the photocatalytic efficiency as a photocatalyst and their interpretation to extract relevant information about various TCOs and materials, their emitter regions, and surface passivation. It also covers a brief description of techniques based on photoluminescence that can portray high resolution pictorial graphs for application as solar energy devices. With the advancement in the scientific techniques, detailed information about the structural, morphological, and optical properties can be investigated, which is further useful for engineering and designing of an efficient device. The common principles involved in the prevalent characterization techniques aid to illustrate the range of options that can be broadened in near future for acurate device characterization and diagnosis.Keywords: characterization, structural, optical, nanomaterial
Procedia PDF Downloads 1461070 Role of Cellulose Fibers in Tuning the Microstructure and Crystallographic Phase of α-Fe₂O₃ and α-FeOOH Nanoparticles
Authors: Indu Chauhan, Bhupendra S. Butola, Paritosh Mohanty
Abstract:
It is very well known that properties of material changes as their size approach to nanoscale level due to the high surface area to volume ratio. However, in last few decades, a tenet ‘structure dictates function’ is quickly being adopted by researchers working with nanomaterials. The design and exploitation of nanoparticles with tailored shape and size has become one of the primary goals of materials science researchers to expose the properties of nanostructures. To date, various methods, including soft/hard template/surfactant assisted route hydrothermal reaction, seed mediated growth method, capping molecule-assisted synthesis, polyol process, etc. have been adopted to synthesize the nanostructures with controlled size and shape and monodispersity. However controlling the shape and size of nanoparticles is an ultimate challenge of modern material research. In particular, many efforts have been devoted to rational and skillful control of hierarchical and complex nanostructures. Thus in our research work, role of cellulose in manipulating the nanostructures has been discussed. Nanoparticles of α-Fe₂O₃ (diameter ca. 15 to 130 nm) were immobilized on the cellulose fiber surface by a single step in situ hydrothermal method. However, nanoflakes of α-FeOOH having thickness ca. ~25 nm and length ca. ~250 nm were obtained by the same method in absence of cellulose fibers. A possible nucleation and growth mechanism of the formation of nanostructures on cellulose fibers have been proposed. The covalent bond formation between the cellulose fibers and nanostructures has been discussed with supporting evidence from the spectroscopic and other analytical studies such as Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The role of cellulose in manipulating the nanostructures has been discussed.Keywords: cellulose fibers, α-Fe₂O₃, α-FeOOH, hydrothermal, nanoflakes, nanoparticles
Procedia PDF Downloads 1501069 Growth of Albizia in vitro: Endophytic Fungi as Plant Growth Promote of Albizia
Authors: Reine Suci Wulandari, Rosa Suryantini
Abstract:
Albizia (Paraserianthes falcataria) is a woody plant species that has a high economic value and multifunctional. Albizia is important timber, medicinal plants and can also be used as a plant to rehabilitate critical lands. The demand value of Albizia is increased so that the large quantities and high quality of seeds are required. In vitro propagation techniques are seed propagation that can produce more seeds and quality in a short time. In vitro cultures require growth regulators that can be obtained from biological agents such as endophytic fungi. Endophytic fungi are micro fungi that colonize live plant tissue without producing symptoms or other negative effects on host plants and increase plant growth. The purposes of this research were to isolate and identify endophytic fungi isolated from the root of Albizia and to study the effect of endophytic fungus on the growth of Albizia in vitro. The methods were root isolation, endophytic fungal identification, and inoculation of endophytic fungi to Albizia plants in vitro. Endophytic fungus isolates were grown on PDA media before being inoculated with Albizia sprouts. Incubation is done for 4 (four) weeks. The observed growth parameters were live explant percentage, percentage of explant shoot, and percentage of explant rooted. The results of the research showed that 6 (six) endophytic fungal isolates obtained from the root of Albizia, namely Aspergillus sp., Verticillium sp, Penicillium sp., Trichoderma sp., Fusarium sp., and Acremonium sp. Statistical analysis found that Trichoderma sp. and Fusarium sp. affect in vitro growth of Albizia. Endophytic fungi from the results of this research were potential as plant growth promoting. It can be applied to increase productivity either through increased plant growth and increased endurance of Albizia seedlings to pests and diseases.Keywords: Albizia, endophytic fungi, propagation, in vitro
Procedia PDF Downloads 2641068 Evaluation of Commercial Herbicides for Weed Control and Yield under Direct Dry Seeded Rice Cultivation System in Pakistan
Authors: Sanaullah Jalil, Abid Majeed, Syed Haider Abbas
Abstract:
Direct dry seeded rice cultivation system is an emerging production technology in Pakistan. Weeds are a major constraint to the success of direct dry seeded rice (DDSR). Studies were carried out for two years during 2015 and 2016 to evaluate the performance of applications of pre-emergence herbicides (Top Max @ 2.25 lit/ha, Click @1.5 lit/ha and Pendimethaline @ 1.25 lit/ha) and post-emergence herbicides (Clover @ 200 g/ha, Pyranex Gold @ 250 g/ha, Basagran @ 2.50 lit/ha, Sunstar Gold @ 50 g/ha and Wardan @ 1.25 lit/ha) at rice research field area of National Agriculture Research Center (NARC), Islamabad. The experiments were laid out in Randomized Complete Block Design (RCBD) with three replications. All evaluated herbicides reduced weed density and biomass by a significant amount. The net plot size was 2.5 x 5 m with 10 rows. Basmati-385 was used as test variety of rice. Data indicated that Top Max and Click provided best weed control efficiency but suppressed the germination of rice seed which causes the lowest grain yield production (680.6 kg/ha and 314.5 kg/ha respectively). A weedy check plot contributed 524.7 kg/ha paddy yield with highest weed density. Pyranex Gold provided better weed control efficiency and contributed to significantly higher paddy yield 5116.6 kg/ha than that of all other herbicide applications followed by the Clover which give paddy yield 4241.7 kg/ha. The results of our study suggest that pre-emergence herbicides provided best weed control but not fit for direct dry seeded rice (DDSR) cultivation system, and therefore post-emergence herbicides (Pyranex Gold and Clover) can be suggested for weed control and higher yield.Keywords: pyranex gold, clover, direct dry seeded rice (DDSR), yield
Procedia PDF Downloads 2611067 HPTLC Metabolite Fingerprinting of Artocarpus champeden Stembark from Several Different Locations in Indonesia and Correlation with Antimalarial Activity
Authors: Imam Taufik, Hilkatul Ilmi, Puryani, Mochammad Yuwono, Aty Widyawaruyanti
Abstract:
Artocarpus champeden Spreng stembark (Moraceae) in Indonesia well known as ‘cempedak’ had been traditionally used for malarial remedies. The difference of growth locations could cause the difference of metabolite profiling. As a consequence, there were difference antimalarial activities in spite of the same plants. The aim of this research was to obtain the profile of metabolites that contained in A. champeden stembark from different locations in Indonesia for authentication and quality control purpose of this extract. The profiling had been performed by HPTLC-Densitometry technique and antimalarial activity had been also determined by HRP2-ELISA technique. The correlation between metabolite fingerprinting and antimalarial activity had been analyzed by Principle Component Analysis, Hierarchical Clustering Analysis and Partial Least Square. As a result, there is correlation between the difference metabolite fingerprinting and antimalarial activity from several different growth locations.Keywords: antimalarial, artocarpus champeden spreng, metabolite fingerprinting, multivariate analysis
Procedia PDF Downloads 3111066 Video Shot Detection and Key Frame Extraction Using Faber-Shauder DWT and SVD
Authors: Assma Azeroual, Karim Afdel, Mohamed El Hajji, Hassan Douzi
Abstract:
Key frame extraction methods select the most representative frames of a video, which can be used in different areas of video processing such as video retrieval, video summary, and video indexing. In this paper we present a novel approach for extracting key frames from video sequences. The frame is characterized uniquely by his contours which are represented by the dominant blocks. These dominant blocks are located on the contours and its near textures. When the video frames have a noticeable changement, its dominant blocks changed, then we can extracte a key frame. The dominant blocks of every frame is computed, and then feature vectors are extracted from the dominant blocks image of each frame and arranged in a feature matrix. Singular Value Decomposition is used to calculate sliding windows ranks of those matrices. Finally the computed ranks are traced and then we are able to extract key frames of a video. Experimental results show that the proposed approach is robust against a large range of digital effects used during shot transition.Keywords: FSDWT, key frame extraction, shot detection, singular value decomposition
Procedia PDF Downloads 3971065 Antioxidant Activity of Germinated African Yam Bean (Sphenostylis Stenocarpa) in Alloxan Diabetic Rats
Authors: N. Uchegbu Nneka
Abstract:
This study was conducted to investigate the effect of the antioxidant activity of germinated African Yam Bean (AYB) on oxidative stress markers in alloxan-induced diabetic rat. Rats were randomized into three groups; control, diabetic and germinated AYB–treated diabetic rats. The Total phenol and flavonoid content and DPPH radical scavenging activity before and after germination were investigated. The glucose level, lipid peroxidation and reduced glutathione of the animals were also determined using the standard technique for four weeks. Germination increased the total phenol, flavonoid and antioxidant activity of AYB extract by 19.14%, 32.28%, and 57.25% respectively. The diabetic rats placed on germinated AYB diet had a significant decrease in the blood glucose and lipid peroxidation with a corresponding increase in glutathione (p<0.05). These results demonstrate that consumption of germinated AYB can be a good dietary supplement in inhibiting hyperglycemia/hyperlipidemia and the prevention of diabetic complication associated with oxidative stress.Keywords: African yam bean, antioxidant, diabetes, total phenol
Procedia PDF Downloads 3581064 Empirical Decomposition of Time Series of Power Consumption
Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats
Abstract:
Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).Keywords: general appliance model, non intrusive load monitoring, events detection, unsupervised techniques;
Procedia PDF Downloads 821063 Screening of Different Native Genotypes of Broadleaf Mustard against Different Diseases
Authors: Nisha Thapa, Ram Prasad Mainali, Prakriti Chand
Abstract:
Broadleaf mustard is a commercialized leafy vegetable of Nepal. However, its utilization is hindered in terms of production and productivity due to the high intensity of insects, pests, and diseases causing great loss. The plant protection part of the crop’s disease and damage intensity has not been studied much from research perspectives in Nepal. The research aimed to evaluate broadleaf mustard genotypes for resistance against different diseases. A total of 35 native genotypes of broadleaf mustard were screened at weekly intervals by scoring the plants for ten weeks. Five different diseases, such as Rhizoctonia root rot, Alternaria blight, black rot, turnip mosaic virus disease, and white rust, were reported from the broad leaf mustard genotypes. Out of 35 genotypes, 23 genotypes were found with very high Rhizoctonia Root Rot severity, whereas 8 genotypes showed very high Alternaria blight severity. Likewise, 3 genotypes were found with high Black rot severity, and 1 genotype was found with very high Turnip mosaic virus disease incidence. Similarly, 2 genotypes were found to have very high White rust severity. Among the disease of national importance, Rhizoctonia root rot was found to be the most severe disease with the greatest loss. Broadleaf mustard genotypes like Rato Rayo, CO 1002, and CO 11007 showed average to the high level of field resistance; therefore, these genotypes should be used, conserved, and stored in a mustard improvement program as the disease resistance quality or susceptibility of these genotypes can be helpful for seed producing farmers, companies and other stakeholders through varietal improvement and developmental works that further aids in sustainable disease management of the vegetable.Keywords: genotype, disease resistance, Rhizoctonia root rot severity, varietal improvement
Procedia PDF Downloads 801062 A Grid Synchronization Phase Locked Loop Method for Grid-Connected Inverters Systems
Authors: Naima Ikken, Abdelhadi Bouknadel, Nour-eddine Tariba Ahmed Haddou, Hafsa El Omari
Abstract:
The operation of grid-connected inverters necessity a single-phase phase locked loop (PLL) is proposed in this article to accurately and quickly estimate and detect the grid phase angle. This article presents the improvement of a method of phase-locked loop. The novelty is to generate a method (PLL) of synchronizing the grid with a Notch filter based on adaptive fuzzy logic for inverter systems connected to the grid. The performance of the proposed method was tested under normal and abnormal operating conditions (amplitude, frequency and phase shift variations). In addition, simulation results with ISPM software are developed to verify the effectiveness of the proposed method strategy. Finally, the experimental test will be used to extract the result and discuss the validity of the proposed algorithm.Keywords: phase locked loop, PLL, notch filter, fuzzy logic control, grid connected inverters
Procedia PDF Downloads 1491061 Potential of Castor Bean (Ricinus Communis L.) for Phytoremediation of Soils Contaminated with Heavy Metals
Authors: Violina Angelova, Mariana Perifanova-Nemska, Krasimir Ivanov
Abstract:
The aim of this research was to investigate the potential for the use of Ricinus communis L. (castor oil plant) to remediate metal-polluted sites. This study was performed in industrially polluted soils containing high concentrations of Zn, Pb and Cd, situated at different distances (0.3, 2.0 and 15.0 km) from the source of pollution - the Non-Ferrous Metal Works near Plovdiv, Bulgaria. On reaching commercial ripeness, the castor oil plants were gathered and the contents of heavy metals in their different parts – roots, stems, leaves and seeds, were determined after dry ashing. Physico-chemical characterization, total, DTPA extractable and water-soluble metals in rhizospheric soil samples were carried. Translocation factors (TFs) were also determined. The quantitative measurements were carried out with ICP. A soxhlet extraction was used for the extraction of the oil, using hexane as solvent. The oil was recovered by simple distillation of the solvent. The residual oil obtained was investigated for physicochemical parameters and fatty acid composition. Bioaccumulation factor and translocation factor values (BAF and TF > 1) were greater than one suggesting efficient accumulation in the shoot. The castor oil plant may be preferred as a good candidate for phytoremediation (phytoextraction). These results indicate that R. communis has good potential for removing Pb from contaminated soils attributed to its fast growth, high biomass, strong absorption and accumulation for Pb. The concentrations of heavy metals in the oil were low as seed coats accumulated the highest concentrations of Cd and Pb. In addition, the result of the fatty acid composition analysis confirms the oil to be of good quality and can be used for industrial purposes such as cosmetics, soaps and paint.Keywords: castor bean, heavy metals, phytoremediation, polluted soils
Procedia PDF Downloads 2411060 Evaluating Aquaculture Farmers Responses to Climate Change and Sustainable Practices in Kenya
Authors: Olalekan Adekola, Margaret Gatonye, Paul Orina
Abstract:
The growing demand for farmed fish by underdeveloped and developing countries as a means of contributing positively towards eradication of hunger, food insecurity, and malnutrition for their fast growing populations has implications to the environment. Likewise, climate change poses both an immediate and future threat to local fish production with capture fisheries already experiencing a global decline. This not only raises fundamental questions concerning how aquaculture practices affect the environment, but also how ready are aquaculture farmers to adapt to climate related hazards. This paper assesses existing aquaculture practices and approaches to adapting to climate hazards in Kenya, where aquaculture has grown rapidly since the year 2009. The growth has seen rise in aquaculture set ups mainly along rivers and streams, importation of seed and feed and intensification with possible environmental implications. The aquaculture value chain in the context of climate change and their implication for practice is further investigated, and the strategies necessary for an improved implementation of resilient aquaculture system in Kenya is examined. Data for the study are collected from interviews, questionnaires, two workshops and document analysis. Despite acclaimed nutritional benefit of fish consumption in Kenya, poor management of effluents enriched with nitrogen, phosphorus, organic matter, and suspended solids has implications not just on the ecosystem, goods, and services, but is also potential source of resource-use conflicts especially in downstream communities and operators in the livestock, horticulture, and industrial sectors. The study concluded that aquaculture focuses on future orientation, climate resilient infrastructure, appropriate site selection and invest on biosafety as the key sustainable strategies against climate hazards.Keywords: aquaculture, resilience, environment, strategies, Kenya
Procedia PDF Downloads 1611059 Automatic Diagnosis of Electrical Equipment Using Infrared Thermography
Authors: Y. Laib Dit Leksir, S. Bouhouche
Abstract:
Analysis and processing of data bases resulting from infrared thermal measurements made on the electrical installation requires the development of new tools in order to obtain correct and additional information to the visual inspections. Consequently, the methods based on the capture of infrared digital images show a great potential and are employed increasingly in various fields. Although, there is an enormous need for the development of effective techniques to analyse these data base in order to extract relevant information relating to the state of the equipments. Our goal consists in introducing recent techniques of modeling based on new methods, image and signal processing to develop mathematical models in this field. The aim of this work is to capture the anomalies existing in electrical equipments during an inspection of some machines using A40 Flir camera. After, we use binarisation techniques in order to select the region of interest and we make comparison between these methods of thermal images obtained to choose the best one.Keywords: infrared thermography, defect detection, troubleshooting, electrical equipment
Procedia PDF Downloads 4761058 Influence of Different Rhizome Sizes and Operational Speed on the Field Capacity and Efficiency of a Three–Row Turmeric Rhizome Planter
Authors: Muogbo Chukwudi Peter, Gbabo Agidi
Abstract:
Influence of different turmeric rhizome sizes and machine operational speed on the field capacity and efficiency of a developed prototype tractor-drawn turmeric planter was studied. This was done with a view to ascertaining how the field capacity and field efficiency were affected by the turmeric rhizome lengths and tractor operational speed. The turmeric rhizome planter consists of trapezoidal hopper, grooved cylindrical metering devise, rectangular frame, ground wheels made of mild steel, furrow opener, chain/sprocket drive system, three linkage point seed delivery tube and press wheel. The experiment was randomized in a factorial design of three levels of rhizome lengths (30, 45 and 60 mm) and operational speeds of 8, 10, and 12 kmh-1. About 3 kg cleaned turmeric rhizomes were introduced into each hopper of the planter and were planted 30 m2 of experimental plot. During the field evaluation of the planter, the effective field capacity, field efficiency, missing index, multiple index and percentage rhizome bruise were evaluated. 30.08% was recorded for maximum percentage bruise on the rhizome. The mean effective field capacity ranged between 0.63 – 0.96hah-1 at operational speeds of 8 and 12kmh-1 respectively and 45 mm rhizome length. The result also shows that the mean efficiency was obtained to be 65.8%. The percentage rhizome bruise decreases with increase in operational speed. The highest and lowest percentage turmeric rhizome miss index of 35% were recorded for turmeric rhizome length of 30 mm at a speed of 10 kmhr-1 and 8 kmhr-1, respectively. The potential implications of the experimental result is to determine the optimal machine process conditions for higher field capacity and gross reduction in mechanical injury (bruise) of planted turmeric rhizomes.Keywords: rhizome sizes, operational speed, field capacity. field efficiency, turmeric rhizome, planter
Procedia PDF Downloads 621057 Utilizing the Principal Component Analysis on Multispectral Aerial Imagery for Identification of Underlying Structures
Authors: Marcos Bosques-Perez, Walter Izquierdo, Harold Martin, Liangdon Deng, Josue Rodriguez, Thony Yan, Mercedes Cabrerizo, Armando Barreto, Naphtali Rishe, Malek Adjouadi
Abstract:
Aerial imagery is a powerful tool when it comes to analyzing temporal changes in ecosystems and extracting valuable information from the observed scene. It allows us to identify and assess various elements such as objects, structures, textures, waterways, and shadows. To extract meaningful information, multispectral cameras capture data across different wavelength bands of the electromagnetic spectrum. In this study, the collected multispectral aerial images were subjected to principal component analysis (PCA) to identify independent and uncorrelated components or features that extend beyond the visible spectrum captured in standard RGB images. The results demonstrate that these principal components contain unique characteristics specific to certain wavebands, enabling effective object identification and image segmentation.Keywords: big data, image processing, multispectral, principal component analysis
Procedia PDF Downloads 1761056 Detection Method of Federated Learning Backdoor Based on Weighted K-Medoids
Authors: Xun Li, Haojie Wang
Abstract:
Federated learning is a kind of distributed training and centralized training mode, which is of great value in the protection of user privacy. In order to solve the problem that the model is vulnerable to backdoor attacks in federated learning, a backdoor attack detection method based on a weighted k-medoids algorithm is proposed. First of all, this paper collates the update parameters of the client to construct a vector group, then uses the principal components analysis (PCA) algorithm to extract the corresponding feature information from the vector group, and finally uses the improved k-medoids clustering algorithm to identify the normal and backdoor update parameters. In this paper, the backdoor is implanted in the federation learning model through the model replacement attack method in the simulation experiment, and the update parameters from the attacker are effectively detected and removed by the defense method proposed in this paper.Keywords: federated learning, backdoor attack, PCA, k-medoids, backdoor defense
Procedia PDF Downloads 114