Search results for: deep log analyzer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2412

Search results for: deep log analyzer

732 Monocular Depth Estimation Benchmarking with Thermal Dataset

Authors: Ali Akyar, Osman Serdar Gedik

Abstract:

Depth estimation is a challenging computer vision task that involves estimating the distance between objects in a scene and the camera. It predicts how far each pixel in the 2D image is from the capturing point. There are some important Monocular Depth Estimation (MDE) studies that are based on Vision Transformers (ViT). We benchmark three major studies. The first work aims to build a simple and powerful foundation model that deals with any images under any condition. The second work proposes a method by mixing multiple datasets during training and a robust training objective. The third work combines generalization performance and state-of-the-art results on specific datasets. Although there are studies with thermal images too, we wanted to benchmark these three non-thermal, state-of-the-art studies with a hybrid image dataset which is taken by Multi-Spectral Dynamic Imaging (MSX) technology. MSX technology produces detailed thermal images by bringing together the thermal and visual spectrums. Using this technology, our dataset images are not blur and poorly detailed as the normal thermal images. On the other hand, they are not taken at the perfect light conditions as RGB images. We compared three methods under test with our thermal dataset which was not done before. Additionally, we propose an image enhancement deep learning model for thermal data. This model helps extract the features required for monocular depth estimation. The experimental results demonstrate that, after using our proposed model, the performance of these three methods under test increased significantly for thermal image depth prediction.

Keywords: monocular depth estimation, thermal dataset, benchmarking, vision transformers

Procedia PDF Downloads 32
731 Effect of Class V Cavity Configuration and Loading Situation on the Stress Concentration

Authors: Jia-Yu Wu, Chih-Han Chang, Shu-Fen Chuang, Rong-Yang Lai

Abstract:

Objective: This study was to examine the stress distribution of tooth with different class V restorations under different loading situations and geometry by 3D finite element (FE) analysis. `Methods: A series of FE models of mandibular premolars containing class V cavities were constructed using micro-CT. The class V cavities were assigned as the combinations of different cavity depths x occlusal -gingival heights: 1x2, 1x4, 2x2, and 2x4 mm. Three alveolar bone loss conditions were examined: 0, 1, and 2 mm. 200 N force was exerted on the buccal cusp tip under various directions (vertical, V; obliquely 30° angled, O; oblique and parallel the individual occlusal cavity wall, P). A 3-D FE analysis was performed and the von-Mises stress was used to summarize the data of stress distribution and maximum stress. Results: The maximal stress did not vary in different alveolar bone heights. For each geometry, the maximal stress was found at bilateral corners of the cavity. The peak stress of restorations was significantly higher under load P compared to those under loads V and O while the latter two were similar. 2x2mm cavity exhibited significantly increased (2.88 fold) stress under load P compared to that under load V, followed by 1x2mm (2.11 fold), 2x4mm (1.98 fold) and 1x4mm (1.1fold). Conclusion: Load direction causes the greatest impact on the results of stress, while the effect of alveolar bone loss is minor. Load direction parallel to the cavity wall may enhance the stress concentration especially in deep and narrow class cavities.

Keywords: class v restoration, finite element analysis, loading situation, stress

Procedia PDF Downloads 243
730 Development of a Bead Based Fully Automated Mutiplex Tool to Simultaneously Diagnose FIV, FeLV and FIP/FCoV

Authors: Andreas Latz, Daniela Heinz, Fatima Hashemi, Melek Baygül

Abstract:

Introduction: Feline leukemia virus (FeLV), feline immunodeficiency virus (FIV), and feline coronavirus (FCoV) are serious infectious diseases affecting cats worldwide. Transmission of these viruses occurs primarily through close contact with infected cats (via saliva, nasal secretions, faeces, etc.). FeLV, FIV, and FCoV infections can occur in combination and are expressed in similar clinical symptoms. Diagnosis can therefore be challenging: Symptoms are variable and often non-specific. Sick cats show very similar clinical symptoms: apathy, anorexia, fever, immunodeficiency syndrome, anemia, etc. Sample volume for small companion animals for diagnostic purposes can be challenging to collect. In addition, multiplex diagnosis of diseases can contribute to an easier, cheaper, and faster workflow in the lab as well as to the better differential diagnosis of diseases. For this reason, we wanted to develop a new diagnostic tool that utilizes less sample volume, reagents, and consumables than multiplesingleplex ELISA assays Methods: The Multiplier from Dynextechonogies (USA) has been used as platform to develop a Multiplex diagnostic tool for the detection of antibodies against FIV and FCoV/FIP and antigens for FeLV. Multiplex diagnostics. The Dynex®Multiplier®is a fully automated chemiluminescence immunoassay analyzer that significantly simplifies laboratory workflow. The Multiplier®ease-of-use reduces pre-analytical steps by combining the power of efficiently multiplexing multiple assays with the simplicity of automated microplate processing. Plastic beads have been coated with antigens for FIV and FCoV/FIP, as well as antibodies for FeLV. Feline blood samples are incubated with the beads. Read out of results is performed via chemiluminescence Results: Bead coating was optimized for each individual antigen or capture antibody and then combined in the multiplex diagnostic tool. HRP: Antibody conjugates for FIV and FCoV antibodies, as well as detection antibodies for FeLV antigen, have been adjusted and mixed. 3 individual prototyple batches of the assay have been produced. We analyzed for each disease 50 well defined positive and negative samples. Results show an excellent diagnostic performance of the simultaneous detection of antibodies or antigens against these feline diseases in a fully automated system. A 100% concordance with singleplex methods like ELISA or IFA can be observed. Intra- and Inter-Assays showed a high precision of the test with CV values below 10% for each individual bead. Accelerated stability testing indicate a shelf life of at least 1 year. Conclusion: The new tool can be used for multiplex diagnostics of the most important feline infectious diseases. Only a very small sample volume is required. Fully automation results in a very convenient and fast method for diagnosing animal diseases.With its large specimen capacity to process over 576 samples per 8-hours shift and provide up to 3,456 results, very high laboratory productivity and reagent savings can be achieved.

Keywords: Multiplex, FIV, FeLV, FCoV, FIP

Procedia PDF Downloads 104
729 Effects of Low Sleep Efficiency and Sleep Deprivation on Driver Physical Fatigue

Authors: Chen-Yu Tsai, Wen-Te Liu, Chen-Chen Lo, Kang Lo, Yin-Tzu Lin

Abstract:

Background: Driving drowsiness related to insufficient or disordered sleep accounts for a major percentage of vehicular accidents. Sleep deprivation is the primary reason related to low sleep efficiency. Nevertheless, the mechanism of sleep deprivation induces driving fatigue to remain unclear. Objective: The objective of this study is to associate the relationship between insufficient sleep efficiency and driving fatigue. Methodologies: The physical condition while driving was obtained from the questionnaires to classify the state of driving fatigue. Sleep efficiency was quantified as the polysomnography (PSG), and the sleep stages were sentenced by the reregistered Technologist during examination in a hospital in New Taipei City (Taiwan). The independent T-test was used to investigate the correlation between sleep efficiency, sleep stages ratio, and driving drowsiness. Results: There were 880 subjects recruited in this study, who had been done polysomnography for evaluating severity for obstructive sleep apnea syndrome (OSAS) as well as completed the driver condition questionnaire. Four-hundred-eighty-four subjects (55%) were classified as fatigue group, and 396 subjects (45%) were served as the control group. The ratio of stage three sleep (N3) (0.032 ± 0.056) in fatigue group were significantly lower than the control group (p < 0.01). The significantly higher value of snoring index (242.14 ± 205.51 /hours) was observed in the fatigue group (p < 0.01). Conclusion: We observe the considerable correlation between deep sleep reduce and driving drowsiness. To avoid drowsy driving, the sleep deprivation, and the snoring events during the sleeping time should be monitored and alleviated.

Keywords: driving drowsiness, sleep deprivation, stage three sleep, snoring index

Procedia PDF Downloads 146
728 A Multi-Omic Assessment of Biomass and Pigment Accumulation in Nitrogen Deplete Conditions in Scenedesmus 46B-D3

Authors: Galen Dennis, Lukas Dahlin, Michael Guarnieri, Stefanie Van Wychen, Shawn Starkenburg, Matthew Posewitz, Colin Kruse

Abstract:

Scenedesmus 46B-D3 was identified in 2021 by screening a culture collection produced by the Posewitz lab at the Colorado School of Mines. The strain was found to continue accumulating biomass in a nitrogen-depleted state, which is a rare and technologically promising trait in microalgae. As the culture grows, a shift from nitrogen-replete to depleted conditions is indicated by arrested cell division and the accumulation of lipids, polysaccharides and photoprotective pigments. The latter trait gives stationary phase cultures a deep red color due to the presence of the high-value beta-ketocarotenoids, canthaxanthin and astaxanthin. The combination of continued photosynthesis post-nitrogen depletion and the accumulation of valuable pigments makes S. 46B-D3 of interest from a fundamental and industrial perspective, respectively. This project reports the results of a multi-omic study examining changes in the proteome and transcriptome in nitrogen-replete and deplete conditions. In addition, it characterizes the pigment composition of S. 46B-D3 across its growth curve and the method of cell division within the strain. These results indicate that upon sensing nitrogen scarcity, S. 46B-D3 efficiently recycles and repurposes nitrogen away from cell division and towards energy storage through the accumulation of lipids and polysaccharides. The accumulation of photoprotective pigments also prevents damage to and serves as an additional carbon sink for the cell’s light system.

Keywords: pigments, photosynthesis, proteomics, transcriptomics

Procedia PDF Downloads 6
727 Web Page Design Optimisation Based on Segment Analytics

Authors: Varsha V. Rohini, P. R. Shreya, B. Renukadevi

Abstract:

In the web analytics the information delivery and the web usage is optimized and the analysis of data is done. The analytics is the measurement, collection and analysis of webpage data. Page statistics and user metrics are the important factor in most of the web analytics tool. This is the limitation of the existing tools. It does not provide design inputs for the optimization of information. This paper aims at providing an extension for the scope of web analytics to provide analysis and statistics of each segment of a webpage. The number of click count is calculated and the concentration of links in a web page is obtained. Its user metrics are used to help in proper design of the displayed content in a webpage by Vision Based Page Segmentation (VIPS) algorithm. When the algorithm is applied on the web page it divides the entire web page into the visual block tree. The visual block tree generated will further divide the web page into visual blocks or segments which help us to understand the usage of each segment in a page and its content. The dynamic web pages and deep web pages are used to extend the scope of web page segment analytics. Space optimization concept is used with the help of the output obtained from the Vision Based Page Segmentation (VIPS) algorithm. This technique provides us the visibility of the user interaction with the WebPages and helps us to place the important links in the appropriate segments of the webpage and effectively manage space in a page and the concentration of links.

Keywords: analytics, design optimization, visual block trees, vision based technology

Procedia PDF Downloads 266
726 Parvi̇z Jabrail's Novel 'in Foreign Language': Delimitation of Postmodernism with Modernism

Authors: Nargiz Ismayilova

Abstract:

The issue of modernism and the concept of postmodernism has been the focus of world researchers for many years, and there are very few researchers who have come to a common denominator about this term. During the independence period, the expansion of the relations of Azerbaijani literature with the world has led to the spread of many currents and tendencies formed in the West to the literary environment in our country. In this context, the works created in our environment are distinguished by their extreme richness in terms of subject matter and diversity in terms of genre. As an interesting example of contemporary postmodern prose in Azerbaijan, Parviz Jabrayil's novel "In a Foreign Language" pays attention with its more different plotline. The disagreement exists among the critics about the novel. Some are looking for high artistry in work; others are satisfied with the elements of postmodernism in work. Delimitation of the border between modernism and postmodernism can serve to carry out a deep scientific study of the novel. The novel depicts the world in the author's consciousness against the background of water shortage (thirst) in the Old City (Icharishahar). The author deconstructs today's Ichari Shahar mould. Along with modernism, elements of postmodernism occupy a large place in the work. When we look at the general tendencies of postmodernist art, we see that science and individuality are questioned, criticizing the sharp boundaries of modernism and the negativity of these restrictions, and modernism offers alternatives to artistic production by identifying its negatives and shortcomings in the areas of artistic freedom. The novel is extremely interesting in this point of view.

Keywords: concept of postmodernism, modernism, delimitation, political postmodernism, modern postmodern prose, Azerbaijani literature, novel, comparison, world literature, analysis

Procedia PDF Downloads 138
725 A Convolutional Neural Network-Based Model for Lassa fever Virus Prediction Using Patient Blood Smear Image

Authors: A. M. John-Otumu, M. M. Rahman, M. C. Onuoha, E. P. Ojonugwa

Abstract:

A Convolutional Neural Network (CNN) model for predicting Lassa fever was built using Python 3.8.0 programming language, alongside Keras 2.2.4 and TensorFlow 2.6.1 libraries as the development environment in order to reduce the current high risk of Lassa fever in West Africa, particularly in Nigeria. The study was prompted by some major flaws in existing conventional laboratory equipment for diagnosing Lassa fever (RT-PCR), as well as flaws in AI-based techniques that have been used for probing and prognosis of Lassa fever based on literature. There were 15,679 blood smear microscopic image datasets collected in total. The proposed model was trained on 70% of the dataset and tested on 30% of the microscopic images in avoid overfitting. A 3x3x3 convolution filter was also used in the proposed system to extract features from microscopic images. The proposed CNN-based model had a recall value of 96%, a precision value of 93%, an F1 score of 95%, and an accuracy of 94% in predicting and accurately classifying the images into clean or infected samples. Based on empirical evidence from the results of the literature consulted, the proposed model outperformed other existing AI-based techniques evaluated. If properly deployed, the model will assist physicians, medical laboratory scientists, and patients in making accurate diagnoses for Lassa fever cases, allowing the mortality rate due to the Lassa fever virus to be reduced through sound decision-making.

Keywords: artificial intelligence, ANN, blood smear, CNN, deep learning, Lassa fever

Procedia PDF Downloads 120
724 Tomato-Weed Classification by RetinaNet One-Step Neural Network

Authors: Dionisio Andujar, Juan lópez-Correa, Hugo Moreno, Angela Ri

Abstract:

The increased number of weeds in tomato crops highly lower yields. Weed identification with the aim of machine learning is important to carry out site-specific control. The last advances in computer vision are a powerful tool to face the problem. The analysis of RGB (Red, Green, Blue) images through Artificial Neural Networks had been rapidly developed in the past few years, providing new methods for weed classification. The development of the algorithms for crop and weed species classification looks for a real-time classification system using Object Detection algorithms based on Convolutional Neural Networks. The site study was located in commercial corn fields. The classification system has been tested. The procedure can detect and classify weed seedlings in tomato fields. The input to the Neural Network was a set of 10,000 RGB images with a natural infestation of Cyperus rotundus l., Echinochloa crus galli L., Setaria italica L., Portulaca oeracea L., and Solanum nigrum L. The validation process was done with a random selection of RGB images containing the aforementioned species. The mean average precision (mAP) was established as the metric for object detection. The results showed agreements higher than 95 %. The system will provide the input for an online spraying system. Thus, this work plays an important role in Site Specific Weed Management by reducing herbicide use in a single step.

Keywords: deep learning, object detection, cnn, tomato, weeds

Procedia PDF Downloads 103
723 Catalytic Dehydrogenation of Formic Acid into H2/CO2 Gas: A Novel Approach

Authors: Ayman Hijazi, Witold Kwapinski, J. J. Leahy

Abstract:

Finding a sustainable alternative energy to fossil fuel is an urgent need as various environmental challenges in the world arise. Therefore, formic acid (FA) decomposition has been an attractive field that lies at the center of biomass platform, comprising a potential pool of hydrogen energy that stands as a new energy vector. Liquid FA features considerable volumetric energy density of 6.4 MJ/L and a specific energy density of 5.3 MJ/Kg that qualifies it in the prime seat as an energy source for transportation infrastructure. Additionally, the increasing research interest in FA decomposition is driven by the need of in-situ H2 production, which plays a key role in the hydrogenation reactions of biomass into higher value components. It is reported elsewhere in literature that catalytic decomposition of FA is usually performed in poorly designed setup using simple glassware under magnetic stirring, thus demanding further energy investment to retain the used catalyst. it work suggests an approach that integrates designing a novel catalyst featuring magnetic property with a robust setup that minimizes experimental & measurement discrepancies. One of the most prominent active species for dehydrogenation/hydrogenation of biomass compounds is palladium. Accordingly, we investigate the potential of engrafting palladium metal onto functionalized magnetic nanoparticles as a heterogeneous catalyst to favor the production of CO-free H2 gas from FA. Using ordinary magnet to collect the spent catalyst renders core-shell magnetic nanoparticles as the backbone of the process. Catalytic experiments were performed in a jacketed batch reactor equipped with an overhead stirrer under inert medium. Through a novel approach, FA is charged into the reactor via high-pressure positive displacement pump at steady state conditions. The produced gas (H2+CO2) was measured by connecting the gas outlet to a measuring system based on the amount of the displaced water. The novelty of this work lies in designing a very responsive catalyst, pumping consistent amount of FA into a sealed reactor running at steady state mild temperatures, and continuous gas measurement, along with collecting the used catalyst without the need for centrifugation. Catalyst characterization using TEM, XRD, SEM, and CHN elemental analyzer provided us with details of catalyst preparation and facilitated new venues to alter the nanostructure of the catalyst framework. Consequently, the introduction of amine groups has led to appreciable improvements in terms of dispersion of the doped metals and eventually attaining nearly complete conversion (100%) of FA after 7 hours. The relative importance of the process parameters such as temperature (35-85°C), stirring speed (150-450rpm), catalyst loading (50-200mgr.), and Pd doping ratio (0.75-1.80wt.%) on gas yield was assessed by a Taguchi design-of-experiment based model. Experimental results showed that operating at lower temperature range (35-50°C) yielded more gas while the catalyst loading and Pd doping wt.% were found to be the most significant factors with a P-values 0.026 & 0.031, respectively.

Keywords: formic acid decomposition, green catalysis, hydrogen, mesoporous silica, process optimization, nanoparticles

Procedia PDF Downloads 52
722 Fake News Detection for Korean News Using Machine Learning Techniques

Authors: Tae-Uk Yun, Pullip Chung, Kee-Young Kwahk, Hyunchul Ahn

Abstract:

Fake news is defined as the news articles that are intentionally and verifiably false, and could mislead readers. Spread of fake news may provoke anxiety, chaos, fear, or irrational decisions of the public. Thus, detecting fake news and preventing its spread has become very important issue in our society. However, due to the huge amount of fake news produced every day, it is almost impossible to identify it by a human. Under this context, researchers have tried to develop automated fake news detection using machine learning techniques over the past years. But, there have been no prior studies proposed an automated fake news detection method for Korean news to our best knowledge. In this study, we aim to detect Korean fake news using text mining and machine learning techniques. Our proposed method consists of two steps. In the first step, the news contents to be analyzed is convert to quantified values using various text mining techniques (topic modeling, TF-IDF, and so on). After that, in step 2, classifiers are trained using the values produced in step 1. As the classifiers, machine learning techniques such as logistic regression, backpropagation network, support vector machine, and deep neural network can be applied. To validate the effectiveness of the proposed method, we collected about 200 short Korean news from Seoul National University’s FactCheck. which provides with detailed analysis reports from 20 media outlets and links to source documents for each case. Using this dataset, we will identify which text features are important as well as which classifiers are effective in detecting Korean fake news.

Keywords: fake news detection, Korean news, machine learning, text mining

Procedia PDF Downloads 275
721 Effect of Natural and Urban Environments on the Perception of Thermal Pain – Experimental Research Using Virtual Environments

Authors: Anna Mucha, Ewa Wojtyna, Anita Pollak

Abstract:

The environment in which an individual resides and observes may play a meaningful role in well-being and related constructs. Contact with nature may have a positive influence of natural environments on individuals, impacting mood and psychophysical sensations, such as pain relief. Conversely, urban settings, dominated by concrete elements, might lead to mood decline and heightened stress levels. Similarly, the situation may appear in the case of the perception of virtual environments. However, this is a topic that requires further exploration, especially in the context of relationships with pain. The aforementioned matters served as the basis for formulating and executing the outlined experimental research within the realm of environmental psychology, leveraging new technologies, notably virtual reality (VR), which is progressively gaining prominence in the domain of mental health. The primary objective was to investigate the impact of a simulated virtual environment, mirroring a natural setting abundant in greenery, on the perception of acute pain induced by thermal stimuli (high temperature) – encompassing intensity, unpleasantness, and pain tolerance. Comparative analyses were conducted between the virtual natural environment (intentionally constructed in the likeness of a therapeutic garden), virtual urban environment, and a control group devoid of virtual projections. Secondary objectives aimed to determine the mutual relationships among variables such as positive and negative emotions, preferences regarding virtual environments, sense of presence, and restorative experience in the context of the perception of presented virtual environments and induced thermal pain. The study encompassed 126 physically healthy Polish adults, distributing 42 individuals across each of the three comparative groups. Oculus Rift VR technology and the TSA-II neurosensory analyzer facilitated the experiment. Alongside demographic data, participants' subjective feelings concerning virtual reality and pain were evaluated using the Visual Analogue Scale (VAS), the original Restorative Experience in the Virtual World questionnaire (Doświadczenie Regeneracji w Wirtualnym Świecie), and an adapted Slater-Usoh-Steed (SUS) questionnaire. Results of statistical and psychometric analyses, such as Kruskal-Wallis tests, Wilcoxon tests, and contrast analyses, underscored the positive impact of the virtual natural environment on individual pain perception and mood. The virtual natural environment outperformed the virtual urban environment and the control group without virtual projection, particularly in subjective pain components like intensity and unpleasantness. Variables such as restorative experience, sense of presence and virtual environment preference also proved pivotal in pain perception and pain tolerance threshold alterations, contingent on specific conditions. This implies considerable application potential for virtual natural environments across diverse realms of psychology and related fields, among others as a supportive analgesic approach and a form of relaxation following psychotherapeutic sessions.

Keywords: environmental psychology, nature, acute pain, emotions, vitrual reality, virtual environments

Procedia PDF Downloads 63
720 A Practice of Zero Trust Architecture in Financial Transactions

Authors: Liwen Wang, Yuting Chen, Tong Wu, Shaolei Hu

Abstract:

In order to enhance the security of critical financial infrastructure, this study carries out a transformation of the architecture of a financial trading terminal to a zero trust architecture (ZTA), constructs an active defense system for cybersecurity, improves the security level of trading services in the Internet environment, enhances the ability to prevent network attacks and unknown risks, and reduces the industry and security risks brought about by cybersecurity risks. This study introduces the SDP technology of ZTA, adapts and applies it to a financial trading terminal to achieve security optimization and fine-grained business grading control. The upgraded architecture of the trading terminal moves security protection forward to the user access layer, replaces VPN to optimize remote access, and significantly improves the security protection capability of Internet transactions. The study achieves 1. deep integration with the access control architecture of the transaction system; 2. no impact on the performance of terminals and gateways, and no perception of application system upgrades; 3. customized checklist and policy configuration; 4. introduction of industry-leading security technology such as single-packet authorization (SPA) and secondary authentication. This study carries out a successful application of ZTA in the field of financial trading and provides transformation ideas for other similar systems while improving the security level of financial transaction services in the Internet environment.

Keywords: zero trust, trading terminal, architecture, network security, cybersecurity

Procedia PDF Downloads 167
719 Through Seligman’s Lenses: Creating a Culture of Well-Being in Higher-Education

Authors: Neeru Deep, Kimberly McAlister

Abstract:

Mental health issues have been increasing worldwide for many decades, but the COVID-19 pandemic has brought mental health issues into the spotlight. Within higher education, promoting the well-being of students has dramatically increased in focus. The Northwestern State University of Louisiana opened the Center for Positivity, Well-being, and Hope using the action research process of reflecting, planning, acting, and observing. The study’s purpose is two-fold: First, it highlights how to create a collaborative team to reflect, plan, and act to develop a well-being culture in higher education institutions. Second, it investigates the efficacy of the center through Seligman’s lenses. The researchers shared their experience in the first three phases of the action research process and then applied an identical concurrent mixed methods design. A purposive sample evaluated the efficacy of the center through Seligman’s lenses. The researcher administered PERMA-Profiler Measure, the PERMA-Profiler Measure overview, the CoPWH Evaluation I, and the CoPWH Evaluation II questionnaires to collect qualitative and quantitative data. The thematic analysis for qualitative and descriptive statistics for quantitative data concluded that the center creates a well-being culture and promotes well-being in college students. In conclusion, this action research shares the successful implementation of the cyclic process of research in promoting a well-being culture in higher education with the implications for promoting a well-being culture in various educational settings, workplaces, and communities.

Keywords: action research, mixed methods research design, Seligman, well-being.

Procedia PDF Downloads 130
718 Voice Liveness Detection Using Kolmogorov Arnold Networks

Authors: Arth J. Shah, Madhu R. Kamble

Abstract:

Voice biometric liveness detection is customized to certify an authentication process of the voice data presented is genuine and not a recording or synthetic voice. With the rise of deepfakes and other equivalently sophisticated spoofing generation techniques, it’s becoming challenging to ensure that the person on the other end is a live speaker or not. Voice Liveness Detection (VLD) system is a group of security measures which detect and prevent voice spoofing attacks. Motivated by the recent development of the Kolmogorov-Arnold Network (KAN) based on the Kolmogorov-Arnold theorem, we proposed KAN for the VLD task. To date, multilayer perceptron (MLP) based classifiers have been used for the classification tasks. We aim to capture not only the compositional structure of the model but also to optimize the values of univariate functions. This study explains the mathematical as well as experimental analysis of KAN for VLD tasks, thereby opening a new perspective for scientists to work on speech and signal processing-based tasks. This study emerges as a combination of traditional signal processing tasks and new deep learning models, which further proved to be a better combination for VLD tasks. The experiments are performed on the POCO and ASVSpoof 2017 V2 database. We used Constant Q-transform, Mel, and short-time Fourier transform (STFT) based front-end features and used CNN, BiLSTM, and KAN as back-end classifiers. The best accuracy is 91.26 % on the POCO database using STFT features with the KAN classifier. In the ASVSpoof 2017 V2 database, the lowest EER we obtained was 26.42 %, using CQT features and KAN as a classifier.

Keywords: Kolmogorov Arnold networks, multilayer perceptron, pop noise, voice liveness detection

Procedia PDF Downloads 41
717 Development of GIS-Based Geotechnical Guidance Maps for Prediction of Soil Bearing Capacity

Authors: Q. Toufeeq, R. Kauser, U. R. Jamil, N. Sohaib

Abstract:

Foundation design of a structure needs soil investigation to avoid failures due to settlements. This soil investigation is expensive and time-consuming. Developments of new residential societies involve huge leveling of large sites that is accompanied by heavy land filling. Poor practices of land fill for deep depths cause differential settlements and consolidations of underneath soil that sometimes result in the collapse of structures. The extent of filling remains unknown to the individual developer unless soil investigation is carried out. Soil investigation cannot be performed on each available site due to involved costs. However, fair estimate of bearing capacity can be made if such tests are already done in the surrounding areas. The geotechnical guidance maps can provide a fair assessment of soil properties. Previously, GIS-based approaches have been used to develop maps using extrapolation and interpolations techniques for bearing capacities, underground recharge, soil classification, geological hazards, landslide hazards, socio-economic, and soil liquefaction mapping. Standard penetration test (SPT) data of surrounding sites were already available. Google Earth is used for digitization of collected data. Few points were considered for data calibration and validation. Resultant Geographic information system (GIS)-based guidance maps are helpful to anticipate the bearing capacity in the real estate industry.

Keywords: bearing capacity, soil classification, geographical information system, inverse distance weighted, radial basis function

Procedia PDF Downloads 135
716 Some Factors Affecting Reproductive Traits in Nigerian Indigenous Chickens under Intensive Management System

Authors: J. Aliyu, A. O. Raji, A. A. Ibrahim

Abstract:

The study was carried out to assess the fertility, early and late embryonic mortalities as well as hatchability by strain, season and hen’s weight in Nigerian indigenous chickens reared on deep litter. Four strains (normal feathered, naked neck, frizzle and dwarf) of hens maintained at a mating ratio of 1 cock to 4 hens, fed breeders mash and water ad libitum were used in a three year experiment. The data generated were subjected to analysis of variance using the SAS package and the means, where significant, were separated using the least significant difference (LSD). There were significant effects (P < 0.05) of strain on all the traits studied. Fertility was generally high (84.29 %) in all the strains. Early embryonic mortality was significantly lowest (P < 0.01) in naked neck which had the highest late embryonic mortality (P < 0.001). Hatchability was significantly highest (P < 0.01) in normal feathered (80.23 %) and slightly depressed in frizzle (74.95 %) and dwarf (72.27 %) while naked neck had the lowest (60.80 %). Season of the year had significant effects on early embryonic mortality. Dry hot season significantly (P < 0.05) depressed fertility while early embryonic mortality was depressed in the wet season (15.33 %). Early and late embryonic mortalities significantly increased (P < 0.05) with increasing weight of hen. Dwarf, frizzle and normal feathered hens could be used to improve hatchability as well as reduce early and late embryonic mortalities in Nigerian indigenous chickens.

Keywords: chicken, fertility, hatchability, indigenous, strain

Procedia PDF Downloads 417
715 Effect of Sodium Hydroxide on Geotechnical Properties of Soft Soil in Kathmandu Valley

Authors: Bal Deep Sharma, Suresh Ray Yadav

Abstract:

Local soils are often chosen due to their widespread availability and low cost. However, these soils typically have poor durability, which can lead to significant limitations in their use for construction. To address this issue, various soil stabilization techniques have been developed and used over the years. This study investigates the viability of employing the mineral polymerization (MIP) technique to stabilize black soils, intending to enhance their suitability for construction applications. This technique involves the microstructural transformation of certain clay minerals into solid and stable compounds exhibiting characteristics similar to hydroxy sodalite, feldspathoid, or zeolite. This transformation occurs through the action of an alkaline reactant at atmospheric pressure and low temperature. The soil sample was characterized using grain size distribution, Atterberg limit test, organic content test, and pH-value tests. The unconfined compressive strength of the soil specimens, prepared with varying percentages of sodium hydroxide as an additive and sand as a filler by weight, was determined at the optimum moisture content. The unconfined compressive strength of the specimens was tested under three different conditions: dry, wet, and cycling. The maximum unconfined compressive strengths were 77.568 kg/cm², 38.85 kg/cm², and 56.3 kg/cm² for the dry, wet, and cycling specimens, respectively, while the unconfined compressive strength of the untreated soil was 7.38 kg/cm². The minimum unconfined compressive strength of the wet and cycling specimens was greater than that of the untreated soil. Based on these findings, it can be concluded that these soils can be effectively used as construction material after treatment with sodium hydroxide.

Keywords: soil stabilization technique, soft soil treatment, sodium hydroxide, unconfined compressive strength

Procedia PDF Downloads 80
714 Challenges in Translating Malay Idiomatic Expressions: A Study

Authors: Nor Ruba’Yah Binti Abd Rahim, Norsyahidah Binti Jaafar

Abstract:

Translating Malay idiomatic expressions into other languages presents unique challenges due to the deep cultural nuances and linguistic intricacies embedded within these expressions. This study examined these challenges through a two-pronged methodology: a comparative analysis using survey questionnaires and a quiz administered to 50 semester 6 students who are taking Translation 1 course, and in-depth interviews with their lecturers. The survey aimed to capture students’ experiences and difficulties in translating selected Malay idioms into English, highlighting common errors and misunderstandings. Complementing this, interviews with lecturers provided expert insights into the nuances of these expressions and effective translation strategies. The findings revealed that literal translations often fail to convey the intended meanings, underscoring the importance of cultural competence and contextual awareness. The study also identified key factors that contribute to successful translations, such as the translator’s familiarity with both source and target cultures and their ability to adapt expressions creatively. This research contributed to the field of translation studies by offering practical recommendations for improving the translation of idiomatic expressions, thereby enhancing cross-cultural communication. The insights gained from this study are valuable for translators, educators, and students, emphasizing the need for a nuanced approach that respects the cultural richness of the source language while ensuring clarity in the target language.

Keywords: idiomatic expressions, cultural competence, translation strategies, cross-cultural communication, students’ difficulties

Procedia PDF Downloads 14
713 A Review of Effective Gene Selection Methods for Cancer Classification Using Microarray Gene Expression Profile

Authors: Hala Alshamlan, Ghada Badr, Yousef Alohali

Abstract:

Cancer is one of the dreadful diseases, which causes considerable death rate in humans. DNA microarray-based gene expression profiling has been emerged as an efficient technique for cancer classification, as well as for diagnosis, prognosis, and treatment purposes. In recent years, a DNA microarray technique has gained more attraction in both scientific and in industrial fields. It is important to determine the informative genes that cause cancer to improve early cancer diagnosis and to give effective chemotherapy treatment. In order to gain deep insight into the cancer classification problem, it is necessary to take a closer look at the proposed gene selection methods. We believe that they should be an integral preprocessing step for cancer classification. Furthermore, finding an accurate gene selection method is a very significant issue in a cancer classification area because it reduces the dimensionality of microarray dataset and selects informative genes. In this paper, we classify and review the state-of-art gene selection methods. We proceed by evaluating the performance of each gene selection approach based on their classification accuracy and number of informative genes. In our evaluation, we will use four benchmark microarray datasets for the cancer diagnosis (leukemia, colon, lung, and prostate). In addition, we compare the performance of gene selection method to investigate the effective gene selection method that has the ability to identify a small set of marker genes, and ensure high cancer classification accuracy. To the best of our knowledge, this is the first attempt to compare gene selection approaches for cancer classification using microarray gene expression profile.

Keywords: gene selection, feature selection, cancer classification, microarray, gene expression profile

Procedia PDF Downloads 454
712 Fatty Acid Composition of Muscle Lipids of Cyprinus carpio L. Living in Different Dam Lake, Turkey

Authors: O. B. Citil, V. Sariyel, M. Akoz

Abstract:

In this study, total fatty acid composition of muscle lipids of Cyprinus carpio L. living in Suğla Dam Lake, Altinapa Dam Lake, Eğirdir Lake and Burdur Lake were determined using GC. During this study, for the summer season of July was taken from each region of the land and they were stored in deep-freeze set to -20 degrees until the analysis date. At the end of the analyses, 30 different fatty acids were found in the composition of Cyprinus carpio L. which lives in different lakes. Cyprinus carpio Suğla Dam Lake of polyunsaturated fatty acids (PUFAs), were higher than other lakes. Cyprinus carpio L. was the highest in the major SFA palmitic acid. Polyunsaturated fatty acids (PUFA) of carp, the most abundant fish species in all lakes, were found to be higher than those of saturated fatty acids (SFA) in all lakes. Palmitic acid was the major SFA in all lakes. Oleic acid was identified as the major MUFA. Docosahexaenoic acid (DHA) was the most abundant in all lakes. ω3 fatty acid composition was higher than the percentage of the percentage ω6 fatty acids in all lake. ω3/ω6 rates of Cyprinus carpio L. Suğla Dam Lake, Altinapa Dam Lake, Eğirdir Lake and Burdur Lake, 2.12, 1.19, 2.15, 2.87, and 2.82, respectively. Docosahexaenoic acid (DHA) was the major PUFA in Eğirdir and Burdur lakes, whereas linoleic acid (LA) was the major PUFA in Altinapa and Suğla Dam Lakes. It was shown that the fatty acid composition in the muscle of carp was significantly influenced by different lakes.

Keywords: Cyprinus carpio L., fatty acid, composition, gas chromatography

Procedia PDF Downloads 570
711 On the convergence of the Mixed Integer Randomized Pattern Search Algorithm

Authors: Ebert Brea

Abstract:

We propose a novel direct search algorithm for identifying at least a local minimum of mixed integer nonlinear unconstrained optimization problems. The Mixed Integer Randomized Pattern Search Algorithm (MIRPSA), so-called by the author, is based on a randomized pattern search, which is modified by the MIRPSA for finding at least a local minimum of our problem. The MIRPSA has two main operations over the randomized pattern search: moving operation and shrinking operation. Each operation is carried out by the algorithm when a set of conditions is held. The convergence properties of the MIRPSA is analyzed using a Markov chain approach, which is represented by an infinite countable set of state space λ, where each state d(q) is defined by a measure of the qth randomized pattern search Hq, for all q in N. According to the algorithm, when a moving operation is carried out on the qth randomized pattern search Hq, the MIRPSA holds its state. Meanwhile, if the MIRPSA carries out a shrinking operation over the qth randomized pattern search Hq, the algorithm will visit the next state, this is, a shrinking operation at the qth state causes a changing of the qth state into (q+1)th state. It is worthwhile pointing out that the MIRPSA never goes back to any visited states because the MIRPSA only visits any qth by shrinking operations. In this article, we describe the MIRPSA for mixed integer nonlinear unconstrained optimization problems for doing a deep study of its convergence properties using Markov chain viewpoint. We herein include a low dimension case for showing more details of the MIRPSA, when the algorithm is used for identifying the minimum of a mixed integer quadratic function. Besides, numerical examples are also shown in order to measure the performance of the MIRPSA.

Keywords: direct search, mixed integer optimization, random search, convergence, Markov chain

Procedia PDF Downloads 470
710 Convolutional Neural Networks versus Radiomic Analysis for Classification of Breast Mammogram

Authors: Mehwish Asghar

Abstract:

Breast Cancer (BC) is a common type of cancer among women. Its screening is usually performed using different imaging modalities such as magnetic resonance imaging, mammogram, X-ray, CT, etc. Among these modalities’ mammogram is considered a powerful tool for diagnosis and screening of breast cancer. Sophisticated machine learning approaches have shown promising results in complementing human diagnosis. Generally, machine learning methods can be divided into two major classes: one is Radiomics analysis (RA), where image features are extracted manually; and the other one is the concept of convolutional neural networks (CNN), in which the computer learns to recognize image features on its own. This research aims to improve the incidence of early detection, thus reducing the mortality rate caused by breast cancer through the latest advancements in computer science, in general, and machine learning, in particular. It has also been aimed to ease the burden of doctors by improving and automating the process of breast cancer detection. This research is related to a relative analysis of different techniques for the implementation of different models for detecting and classifying breast cancer. The main goal of this research is to provide a detailed view of results and performances between different techniques. The purpose of this paper is to explore the potential of a convolutional neural network (CNN) w.r.t feature extractor and as a classifier. Also, in this research, it has been aimed to add the module of Radiomics for comparison of its results with deep learning techniques.

Keywords: breast cancer (BC), machine learning (ML), convolutional neural network (CNN), radionics, magnetic resonance imaging, artificial intelligence

Procedia PDF Downloads 225
709 Blood Chemo-Profiling in Workers Exposed to Occupational Pyrethroid Pesticides to Identify Associated Diseases

Authors: O. O. Sufyani, M. E. Oraiby, S. A. Qumaiy, A. I. Alaamri, Z. M. Eisa, A. M. Hakami, M. A. Attafi, O. M. Alhassan, W. M. Elsideeg, E. M. Noureldin, Y. A. Hobani, Y. Q. Majrabi, I. A. Khardali, A. B. Maashi, A. A. Al Mane, A. H. Hakami, I. M. Alkhyat, A. A. Sahly, I. M. Attafi

Abstract:

According to the Food and Agriculture Organization (FAO) Pesticides Use Database, pesticide use in agriculture in Saudi Arabia has more than doubled from 4539 tons in 2009 to 10496 tons in 2019. Among pesticides, pyrethroids is commonly used in Saudi Arabia. Pesticides may increase susceptibility to a variety of diseases, particularly among pesticide workers, due to their extensive use, indiscriminate use, and long-term exposure. Therefore, analyzing blood chemo-profiles and evaluating the detected substances as biomarkers for pyrethroid pesticide exposure may assist to identify and predicting adverse effects of exposure, which may be used for both preventative and risk assessment purposes. The purpose of this study was to (a) analyze chemo-profiling by Gas Chromatography-Mass Spectrometry (GC-MS) analysis, (b) identify the most commonly detected chemicals in a time-exposure-dependent manner using a Venn diagram, and (c) identify their associated disease among pesticide workers using analyzer tools on the Comparative Toxicogenomics Database (CTD) website, (250 healthy male volunteers (20-60 years old) who deal with pesticides in the Jazan region of Saudi Arabia (exposure intervals: 1-2, 4-6, 6-8, more than 8 years) were included in the study. A questionnaire was used to collect demographic information, the duration of pesticide exposure, and the existence of chronic conditions. Blood samples were collected for biochemistry analysis and extracted by solid-phase extraction for gas chromatography-mass spectrometry (GC-MS) analysis. Biochemistry analysis reveals no significant changes in response to the exposure period; however, an inverse association between the albumin level and the exposure interval was observed. The blood chemo-profiling was differentially expressed in an exposure time-dependent manner. This analysis identified the common chemical set associated with each group and their associated significant occupational diseases. While some of these chemicals are associated with a variety of diseases, the distinguishing feature of these chemically associated disorders is their applicability for prevention measures. The most interesting finding was the identification of several chemicals; erucic acid, pelargonic acid, alpha-linolenic acid, dibutyl phthalate, diisobutyl phthalate, dodecanol, myristic Acid, pyrene, and 8,11,14-eicosatrienoic acid, associated with pneumoconiosis, asbestosis, asthma, silicosis and berylliosis. Chemical-disease association study also found that cancer, digestive system disease, nervous system disease, and metabolic disease were the most often recognized disease categories in the common chemical set. The hierarchical clustering approach was used to compare the expression patterns and exposure intervals of the chemicals found commonly. More study is needed to validate these chemicals as early markers of pyrethroid insecticide-related occupational disease, which might assist evaluate and reducing risk. The current study contributes valuable data and recommendations to public health.

Keywords: occupational, toxicology, chemo-profiling, pesticide, pyrethroid, GC-MS

Procedia PDF Downloads 102
708 Reconstructing the Trace of Mesozoic Subduction and Its Implication on Stratigraphy Correlation between Deep Marine Sediment and Granite: Case Study of Garba Complex, South Sumatera

Authors: Fadlan Atmaja Nursiwan, Ugi Kurnia Gusti

Abstract:

Garba Hill, located in Tekana Village, South Sumatera Province is comprised to South Sumatra Basin and classified as back arc basin. This area is entered as an active margin of Sundaland which experiences subduction several times since Mesozoic to recent time. The traces of Mesozoic subduction in the southern part of Sumatra island are exposed in Garba Hill area. The aim of this investigation is to study the tectonic changes in the first phase in Mesozoic era at the active margin of Sundaland which causes the rocks assemblage in Garba hill consist of continental and oceanic plate rocks which the correlation between those rocks show indistinct relation. This investigation is conducted by field observation in Tekana village and Lubar Village, Muara Dua, South Sumatra along with laboratory analysis included fossil and geochemistry analysis of radiolarian chert, petrography analysis of granite and basalt, and structural modelling. Fossil and geochemistry analysis of radiolarian chert and geochemistry of granite rocks shown the relation between the two rocks and Mesozoic subduction of Woyla terrane on western margin of Sundaland. Petrography analysis from granite and basalt depict the tectonic affinity of rocks. Moreover, structural analysis showed the changes of lineation direction from N-S to WNW-ESE.

Keywords: granite, mesozoic, radiolarian, subduction traces

Procedia PDF Downloads 338
707 Comprehensive Feature Extraction for Optimized Condition Assessment of Fuel Pumps

Authors: Ugochukwu Ejike Akpudo, Jank-Wook Hur

Abstract:

The increasing demand for improved productivity, maintainability, and reliability has prompted rapidly increasing research studies on the emerging condition-based maintenance concept- Prognostics and health management (PHM). Varieties of fuel pumps serve critical functions in several hydraulic systems; hence, their failure can have daunting effects on productivity, safety, etc. The need for condition monitoring and assessment of these pumps cannot be overemphasized, and this has led to the uproar in research studies on standard feature extraction techniques for optimized condition assessment of fuel pumps. By extracting time-based, frequency-based and the more robust time-frequency based features from these vibrational signals, a more comprehensive feature assessment (and selection) can be achieved for a more accurate and reliable condition assessment of these pumps. With the aid of emerging deep classification and regression algorithms like the locally linear embedding (LLE), we propose a method for comprehensive condition assessment of electromagnetic fuel pumps (EMFPs). Results show that the LLE as a comprehensive feature extraction technique yields better feature fusion/dimensionality reduction results for condition assessment of EMFPs against the use of single features. Also, unlike other feature fusion techniques, its capabilities as a fault classification technique were explored, and the results show an acceptable accuracy level using standard performance metrics for evaluation.

Keywords: electromagnetic fuel pumps, comprehensive feature extraction, condition assessment, locally linear embedding, feature fusion

Procedia PDF Downloads 117
706 Computer Countenanced Diagnosis of Skin Nodule Detection and Histogram Augmentation: Extracting System for Skin Cancer

Authors: S. Zith Dey Babu, S. Kour, S. Verma, C. Verma, V. Pathania, A. Agrawal, V. Chaudhary, A. Manoj Puthur, R. Goyal, A. Pal, T. Danti Dey, A. Kumar, K. Wadhwa, O. Ved

Abstract:

Background: Skin cancer is now is the buzzing button in the field of medical science. The cyst's pandemic is drastically calibrating the body and well-being of the global village. Methods: The extracted image of the skin tumor cannot be used in one way for diagnosis. The stored image contains anarchies like the center. This approach will locate the forepart of an extracted appearance of skin. Partitioning image models has been presented to sort out the disturbance in the picture. Results: After completing partitioning, feature extraction has been formed by using genetic algorithm and finally, classification can be performed between the trained and test data to evaluate a large scale of an image that helps the doctors for the right prediction. To bring the improvisation of the existing system, we have set our objectives with an analysis. The efficiency of the natural selection process and the enriching histogram is essential in that respect. To reduce the false-positive rate or output, GA is performed with its accuracy. Conclusions: The objective of this task is to bring improvisation of effectiveness. GA is accomplishing its task with perfection to bring down the invalid-positive rate or outcome. The paper's mergeable portion conflicts with the composition of deep learning and medical image processing, which provides superior accuracy. Proportional types of handling create the reusability without any errors.

Keywords: computer-aided system, detection, image segmentation, morphology

Procedia PDF Downloads 150
705 Text Localization in Fixed-Layout Documents Using Convolutional Networks in a Coarse-to-Fine Manner

Authors: Beier Zhu, Rui Zhang, Qi Song

Abstract:

Text contained within fixed-layout documents can be of great semantic value and so requires a high localization accuracy, such as ID cards, invoices, cheques, and passports. Recently, algorithms based on deep convolutional networks achieve high performance on text detection tasks. However, for text localization in fixed-layout documents, such algorithms detect word bounding boxes individually, which ignores the layout information. This paper presents a novel architecture built on convolutional neural networks (CNNs). A global text localization network and a regional bounding-box regression network are introduced to tackle the problem in a coarse-to-fine manner. The text localization network simultaneously locates word bounding points, which takes the layout information into account. The bounding-box regression network inputs the features pooled from arbitrarily sized RoIs and refine the localizations. These two networks share their convolutional features and are trained jointly. A typical type of fixed-layout documents: ID cards, is selected to evaluate the effectiveness of the proposed system. These networks are trained on data cropped from nature scene images, and synthetic data produced by a synthetic text generation engine. Experiments show that our approach locates high accuracy word bounding boxes and achieves state-of-the-art performance.

Keywords: bounding box regression, convolutional networks, fixed-layout documents, text localization

Procedia PDF Downloads 194
704 Catalytic Decomposition of Formic Acid into H₂/CO₂ Gas: A Distinct Approach

Authors: Ayman Hijazi, Witold Kwapinski, J. J. Leahy

Abstract:

Finding a sustainable alternative energy to fossil fuel is an urgent need as various environmental challenges in the world arise. Therefore, formic acid (FA) decomposition has been an attractive field that lies at the center of the biomass platform, comprising a potential pool of hydrogen energy that stands as a distinct energy vector. Liquid FA features considerable volumetric energy density of 6.4 MJ/L and a specific energy density of 5.3 MJ/Kg that qualifies it in the prime seat as an energy source for transportation infrastructure. Additionally, the increasing research interest in FA decomposition is driven by the need for in-situ H₂ production, which plays a key role in the hydrogenation reactions of biomass into higher-value components. It is reported elsewhere in the literature that catalytic decomposition of FA is usually performed in poorly designed setups using simple glassware under magnetic stirring, thus demanding further energy investment to retain the used catalyst. Our work suggests an approach that integrates designing a distinct catalyst featuring magnetic properties with a robust setup that minimizes experimental & measurement discrepancies. One of the most prominent active species for the dehydrogenation/hydrogenation of biomass compounds is palladium. Accordingly, we investigate the potential of engrafting palladium metal onto functionalized magnetic nanoparticles as a heterogeneous catalyst to favor the production of CO-free H₂ gas from FA. Using an ordinary magnet to collect the spent catalyst renders core-shell magnetic nanoparticles as the backbone of the process. Catalytic experiments were performed in a jacketed batch reactor equipped with an overhead stirrer under an inert medium. Through a distinct approach, FA is charged into the reactor via a high-pressure positive displacement pump at steady-state conditions. The produced gas (H₂+CO₂) was measured by connecting the gas outlet to a measuring system based on the amount of the displaced water. The uniqueness of this work lies in designing a very responsive catalyst, pumping a consistent amount of FA into a sealed reactor running at steady-state mild temperatures, and continuous gas measurement, along with collecting the used catalyst without the need for centrifugation. Catalyst characterization using TEM, XRD, SEM, and CHN elemental analyzer provided us with details of catalyst preparation and facilitated new venues to alter the nanostructure of the catalyst framework. Consequently, the introduction of amine groups has led to appreciable improvements in terms of dispersion of the doped metals and eventually attaining nearly complete conversion (100%) of FA after 7 hours. The relative importance of the process parameters such as temperature (35-85°C), stirring speed (150-450rpm), catalyst loading (50-200mgr.), and Pd doping ratio (0.75-1.80wt.%) on gas yield was assessed by a Taguchi design-of-experiment based model. Experimental results showed that operating at a lower temperature range (35-50°C) yielded more gas, while the catalyst loading and Pd doping wt.% were found to be the most significant factors with P-values 0.026 & 0.031, respectively.

Keywords: formic acid decomposition, green catalysis, hydrogen, mesoporous silica, process optimization, nanoparticles

Procedia PDF Downloads 56
703 Hanna Arendt and Al-Farabi’s Non-Naturalistic Political Philosophy

Authors: Mohammad Hossein Badamchi

Abstract:

As Leo Strauss demonstrates in his works, Political Philosophy in the western tradition is an epistemic-naturalistic tradition insofar Hanna Arendt mentioning the deep conflict between philosophy and politics, opposed to be named “political philosopher” prefer the title “political thinker” for herself. In fact, the Western political philosophy’s tendency to derive politics from natural law and epistemic argumentations makes a paradox between the actual “the political” and the theoretical “natural politics” in the western tradition. In this paper, we want to show that Hanna Arendt, in her exploration to find a new realm of the non-naturalistic way of thinking about the political is walking on a completely different tradition of political philosophy which was first established by Al-Farabi, the founder of Islamic political philosophy around thousand years after Greek Philosophy. Despite Aristotelian Polis which is a Natural community based on true natural rationality to reach the natural purposes of mankind, Al-Farabi’s Madine (his reconstructed concept of Aristotelian Polis) is completely constructed against natural cities, which are formulated by necessity logic of natural arguments and natural deception of humanity. In fact, Farabi considers the natural understanding of politics as Ignorant ideologies used by governments to suppress people. Madine in Farabi’s work is not a natural institution but is a collaborative constitution founded by citizens. So despite Aristotelian thinking, here we don’t have just A Polis that is the one true polis, but we have various multiple Madines among one, is virtuous not by definition but by real action of citizens and civil relations. Al-Farabi’s political philosophy is not a Naturalistic-epistemic Political Philosophy but is a Phronetic Political Philosophy which Hanna Arendt wants to establish outside of western contemplative anti-active political philosophy tradition.

Keywords: al-farabi, hanna arendt, natural politics, the political, political philosophy

Procedia PDF Downloads 295