Search results for: Weibull model
55 Digital Mapping of First-Order Drainages and Springs of the Guajiru River, Northeast of Brazil, Based on Satellite and Drone Images
Authors: Sebastião Milton Pinheiro da Silva, Michele Barbosa da Rocha, Ana Lúcia Fernandes Campos, Miquéias Rildo de Souza Silva
Abstract:
Water is an essential natural resource for life on Earth. Rivers, lakes, lagoons and dams are the main sources of water storage for human consumption. The costs of extracting and using these water sources are lower than those of exploiting groundwater on transition zones to semi-arid terrains. However, the volume of surface water has decreased over time, with the depletion of first-order drainage and the disappearance of springs, phenomena which are easily observed in the field. Climate change worsens water scarcity, compromising supply and hydric security for rural populations. To minimize the expected impacts, producing and storing water through watershed management planning requires detailed cartographic information on the relief and topography, and updated data on the stage and intensity of catchment basin environmental degradation problems. The cartography available of the Brazilian northeastern territory dates to the 70s, with topographic maps, printed, at a scale of 1:100,000 which does not meet the requirements to execute this project. Exceptionally, there are topographic maps at scales of 1:50,000 and 1:25,000 of some coastal regions in northeastern Brazil. Still, due to scale limitations and outdatedness, they are products of little utility for mapping low-order watersheds drainage and springs. Remote sensing data and geographic information systems can contribute to guiding the process of mapping and environmental recovery by integrating detailed relief and topographic data besides social and other environmental information in the Guajiru River Basin, located on the east coast of Rio Grande do Norte, on the Northeast region of Brazil. This study aimed to recognize and map catchment basin, springs and low-order drainage features along estimating morphometric parameters. Alos PALSAR and Copernicus DEM digital elevation models were evaluated and provided regional drainage features and the watersheds limits extracted with Terraview/Terrahidro 5.0 software. CBERS 4A satellite images with 2 m spatial resolution, processed with ESA SNAP Toolbox, allowed generating land use land cover map of Guajiru River. A Mappir Survey 3 multiespectral camera onboard of a DJI Phantom 4, a Mavic 2 Pro PPK Drone and an X91 GNSS receiver to collect the precised position of selected points were employed to detail mapping. Satellite images enabled a first knowledge approach of watershed areas on a more regional scale, yet very current, and drone images were essential in mapping details of catchment basins. The drone multispectral image mosaics, the digital elevation model, the contour lines and geomorphometric parameters were generated using OpenDroneMap/ODM and QGis softwares. The drone images generated facilitated the location, understanding and mapping of watersheds, recharge areas and first-order ephemeral watercourses on an adequate scale and will be used in the following project’s phases: watershed management planning, recovery and environmental protection of Rio's springs Guajiru. Environmental degradation is being analyzed from the perspective of the availability and quality of surface water supply.Keywords: imaging, relief, UAV, water
Procedia PDF Downloads 3154 Marketing and Business Intelligence and Their Impact on Products and Services Through Understanding Based on Experiential Knowledge of Customers in Telecommunications Companies
Authors: Ali R. Alshawawreh, Francisco Liébana-Cabanillas, Francisco J. Blanco-Encomienda
Abstract:
Collaboration between marketing and business intelligence (BI) is crucial in today's ever-evolving business landscape. These two domains play pivotal roles in molding customers' experiential knowledge. Marketing insights offer valuable information regarding customer needs, preferences, and behaviors. Conversely, BI facilitates data-driven decision-making, leading to heightened operational efficiency, product quality, and customer satisfaction. Customer experiential knowledge (CEK) encompasses customers' implicit comprehension of consumption experiences influenced by diverse factors, including social and cultural influences. This study primarily focuses on telecommunications companies in Jordan, scrutinizing how experiential customer knowledge mediates the relationship between marketing intelligence and business intelligence. Drawing on theoretical frameworks such as the resource-based view (RBV) and service-dominant logic (SDL), the research aims to comprehend how organizations utilize their resources, particularly knowledge, to foster Evolution. Employing a quantitative research approach, the study collected and analyzed primary data to explore hypotheses. Structural equation modeling (SEM) facilitated by Smart PLS software evaluated the relationships between the constructs, followed by mediation analysis to assess the indirect associations in the model. The study findings offer insights into the intricate dynamics of organizational Creation, uncovering the interconnected relationships between business intelligence, customer experiential knowledge-based innovation (CEK-DI), marketing intelligence (MI), and product and service innovation (PSI), underscoring the pivotal role of advanced intelligence capabilities in developing innovative practices rooted in a profound understanding of customer experiences. Furthermore, the positive impact of BI on PSI reaffirms the significance of data-driven decision-making in shaping the innovation landscape. The significant impact of CEK-DI on PSI highlights the critical role of customer experiences in driving an organization. Companies that actively integrate customer insights into their opportunity creation processes are more likely to create offerings that match customer expectations, which drives higher levels of product and service sophistication. Additionally, the positive and significant impact of MI on CEK-DI underscores the critical role of market insights in shaping evolutionary strategies. While the relationship between MI and PSI is positive, the slightly weaker significance level indicates a subtle association, suggesting that while MI contributes to the development of ideas, In conclusion, the study emphasizes the fundamental role of intelligence capabilities, especially artificial intelligence, emphasizing the need for organizations to leverage market and customer intelligence to achieve effective and competitive innovation practices. Collaborative efforts between marketing and business intelligence serve as pivotal drivers of development, influencing customer experiential knowledge and shaping organizational strategies and practices. Future research could adopt longitudinal designs and gather data from various sectors to offer broader insights. Additionally, the study focuses on the effects of marketing intelligence, business intelligence, customer experiential knowledge, and innovation, but other unexamined variables may also influence innovation processes. Future studies could investigate additional factors, mediators, or moderators, including the role of emerging technologies like AI and machine learning in driving innovation.Keywords: marketing intelligence, business intelligence, product, customer experiential knowledge-driven innovation
Procedia PDF Downloads 3253 A Model for Analysing Argumentative Structures and Online Deliberation in User-Generated Comments to the Website of a South African Newspaper
Authors: Marthinus Conradie
Abstract:
The conversational dynamics of democratically orientated deliberation continue to stimulate critical scholarship for its potential to bolster robust engagement between different sections of pluralist societies. Several axes of deliberation that have attracted academic attention include face-to-face vs. online interaction, and citizen-to-citizen communication vs. engagement between citizens and political elites. In all these areas, numerous researchers have explored deliberative procedures aimed at achieving instrumental goals such a securing consensus on policy issues, against procedures that prioritise expressive outcomes such as broadening the range of argumentative repertoires that discursively construct and mediate specific political issues. The study that informs this paper, works in the latter stream. Drawing its data from the reader-comments section of a South African broadsheet newspaper, the study investigates online, citizen-to-citizen deliberation by analysing the discursive practices through which competing understandings of social problems are articulated and contested. To advance this agenda, the paper deals specifically with user-generated comments posted in response to news stories on questions of race and racism in South Africa. The analysis works to discern and interpret the various sets of discourse practices that shape how citizens deliberate contentious political issues, especially racism. Since the website in question is designed to encourage the critical comparison of divergent interpretations of news events, without feeding directly into national policymaking, the study adopts an analytic framework that traces how citizens articulate arguments, rather than the instrumental effects that citizen deliberations might exert on policy. The paper starts from the argument that such expressive interactions are particularly crucial to current trends in South African politics, given that the precise nature of race and racism remain contested and uncertain. Centred on a sample of 2358 conversational moves in 814 posts to 18 news stories emanating from issues of race and racism, the analysis proceeds in a two-step fashion. The first stage conducts a qualitative content analysis that offers insights into the levels of reciprocity among commenters (do readers engage with each other or simply post isolated opinions?), as well as the structures of argumentation (do readers support opinions by citing evidence?). The second stage involves a more fine-grained discourse analysis, based on a theorisation of argumentation that delineates it into three components: opinions/conclusions, evidence/data to support opinions/conclusions and warrants that explicate precisely how evidence/data buttress opinions/conclusions. By tracing the manifestation and frequency of specific argumentative practices, this study contributes to the archive of research currently aggregating around the practices that characterise South Africans’ engagement with provocative political questions, especially racism and racial inequity. Additionally, the study also contributes to recent scholarship on the affordances of Web 2.0 software by eschewing a simplistic bifurcation between cyber-optimist vs. pessimism, in favour of a more nuanced and context-specific analysis of the patterns that structure online deliberation.Keywords: online deliberation, discourse analysis, qualitative content analysis, racism
Procedia PDF Downloads 17752 Auditory Rehabilitation via an VR Serious Game for Children with Cochlear Implants: Bio-Behavioral Outcomes
Authors: Areti Okalidou, Paul D. Hatzigiannakoglou, Aikaterini Vatou, George Kyriafinis
Abstract:
Young children are nowadays adept at using technology. Hence, computer-based auditory training programs (CBATPs) have become increasingly popular in aural rehabilitation for children with hearing loss and/or with cochlear implants (CI). Yet, their clinical utility for prognostic, diagnostic, and monitoring purposes has not been explored. The purposes of the study were: a) to develop an updated version of the auditory rehabilitation tool for Greek-speaking children with cochlear implants, b) to develop a database for behavioral responses, and c) to compare accuracy rates and reaction times in children differing in hearing status and other medical and demographic characteristics, in order to assess the tool’s clinical utility in prognosis, diagnosis, and progress monitoring. The updated version of the auditory rehabilitation tool was developed on a tablet, retaining the User-Centered Design approach and the elements of the Virtual Reality (VR) serious game. The visual stimuli were farm animals acting in simple game scenarios designed to trigger children’s responses to animal sounds, names, and relevant sentences. Based on an extended version of Erber’s auditory development model, the VR game consisted of six stages, i.e., sound detection, sound discrimination, word discrimination, identification, comprehension of words in a carrier phrase, and comprehension of sentences. A familiarization stage (learning) was set prior to the game. Children’s tactile responses were recorded as correct, false, or impulsive, following a child-dependent set up of a valid delay time after stimulus offset for valid responses. Reaction times were also recorded, and the database was in Εxcel format. The tablet version of the auditory rehabilitation tool was piloted in 22 preschool children with Νormal Ηearing (ΝΗ), which led to improvements. The study took place in clinical settings or at children’s homes. Fifteen children with CI, aged 5;7-12;3 years with post-implantation 0;11-5;1 years used the auditory rehabilitation tool. Eight children with CI were monolingual, two were bilingual and five had additional disabilities. The control groups consisted of 13 children with ΝΗ, aged 2;6-9;11 years. A comparison of both accuracy rates, as percent correct, and reaction times (in sec) was made at each stage, across hearing status, age, and also, within the CI group, based on presence of additional disability and bilingualism. Both monolingual Greek-speaking children with CI with no additional disabilities and hearing peers showed high accuracy rates at all stages, with performances falling above the 3rd quartile. However, children with normal hearing scored higher than the children with CI, especially in the detection and word discrimination tasks. The reaction time differences between the two groups decreased in language-based tasks. Results for children with CI with additional disability or bilingualism varied. Finally, older children scored higher than younger ones in both groups (CI, NH), but larger differences occurred in children with CI. The interactions between familiarization of the software, age, hearing status and demographic characteristics are discussed. Overall, the VR game is a promising tool for tracking the development of auditory skills, as it provides multi-level longitudinal empirical data. Acknowledgment: This work is part of a project that has received funding from the Research Committee of the University of Macedonia under the Basic Research 2020-21 funding programme.Keywords: VR serious games, auditory rehabilitation, auditory training, children with cochlear implants
Procedia PDF Downloads 8951 Utilizing Extended Reality in Disaster Risk Reduction Education: A Scoping Review
Authors: Stefano Scippo, Damiana Luzzi, Stefano Cuomo, Maria Ranieri
Abstract:
Background: In response to the rise in natural disasters linked to climate change, numerous studies on Disaster Risk Reduction Education (DRRE) have emerged since the '90s, mainly using a didactic transmission-based approach. Effective DRRE should align with an interactive, experiential, and participatory educational model, which can be costly and risky. A potential solution is using simulations facilitated by eXtended Reality (XR). Research Question: This study aims to conduct a scoping review to explore educational methodologies that use XR to enhance knowledge among teachers, students, and citizens about environmental risks, natural disasters (including climate-related ones), and their management. Method: A search string of 66 keywords was formulated, spanning three domains: 1) education and target audience, 2) environment and natural hazards, and 3) technologies. On June 21st, 2023, the search string was used across five databases: EBSCOhost, IEEE Xplore, PubMed, Scopus, and Web of Science. After deduplication and removing papers without abstracts, 2,152 abstracts (published between 2013 and 2023) were analyzed and 2,062 papers were excluded, followed by the exclusion of 56 papers after full-text scrutiny. Excluded studies focused on unrelated technologies, non-environmental risks, and lacked educational outcomes or accessible texts. Main Results: The 34 reviewed papers were analyzed for context, risk type, research methodology, learning objectives, XR technology use, outcomes, and educational affordances of XR. Notably, since 2016, there has been a rise in scientific publications, focusing mainly on seismic events (12 studies) and floods (9), with a significant contribution from Asia (18 publications), particularly Japan (7 studies). Methodologically, the studies were categorized into empirical (26) and non-empirical (8). Empirical studies involved user or expert validation of XR tools, while non-empirical studies included systematic reviews and theoretical proposals without experimental validation. Empirical studies were further classified into quantitative, qualitative, or mixed-method approaches. Six qualitative studies involved small groups of users or experts, while 20 quantitative or mixed-method studies used seven different research designs, with most (17) employing a quasi-experimental, one-group post-test design, focusing on XR technology usability over educational effectiveness. Non-experimental studies had methodological limitations, making their results hypothetical and in need of further empirical validation. Educationally, the learning objectives centered on knowledge and skills for surviving natural disaster emergencies. All studies recommended XR technologies for simulations or serious games but did not develop comprehensive educational frameworks around these tools. XR-based tools showed potential superiority over traditional methods in teaching risk and emergency management skills. However, conclusions were more valid in studies with experimental designs; otherwise, they remained hypothetical without empirical evidence. The educational affordances of XR, mainly user engagement, were confirmed by the studies. Authors’ Conclusions: The analyzed literature lacks specific educational frameworks for XR in DRRE, focusing mainly on survival knowledge and skills. There is a need to expand educational approaches to include uncertainty education, developing competencies that encompass knowledge, skills, and attitudes like risk perception.Keywords: disaster risk reduction education, educational technologies, scoping review, XR technologies
Procedia PDF Downloads 2450 Biodegradation of Chlorophenol Derivatives Using Macroporous Material
Authors: Dmitriy Berillo, Areej K. A. Al-Jwaid, Jonathan L. Caplin, Andrew Cundy, Irina Savina
Abstract:
Chlorophenols (CPs) are used as a precursor in the production of higher CPs and dyestuffs, and as a preservative. Contamination by CPs of the ground water is located in the range from 0.15-100mg/L. The EU has set maximum concentration limits for pesticides and their degradation products of 0.1μg/L and 0.5μg/L, respectively. People working in industries which produce textiles, leather products, domestic preservatives, and petrochemicals are most heavily exposed to CPs. The International Agency for Research on Cancers categorized CPs as potential human carcinogens. Existing multistep water purification processes for CPs such as hydrogenation, ion exchange, liquid-liquid extraction, adsorption by activated carbon, forward and inverse osmosis, electrolysis, sonochemistry, UV irradiation, and chemical oxidation are not always cost effective and can cause the formation of even more toxic or mutagenic derivatives. Bioremediation of CPs derivatives utilizing microorganisms results in 60 to 100% decontamination efficiency and the process is more environmentally-friendly compared with existing physico-chemical methods. Microorganisms immobilized onto a substrate show many advantages over free bacteria systems, such as higher biomass density, higher metabolic activity, and resistance to toxic chemicals. They also enable continuous operation, avoiding the requirement for biomass-liquid separation. The immobilized bacteria can be reused several times, which opens the opportunity for developing cost-effective processes for wastewater treatment. In this study, we develop a bioremediation system for CPs based on macroporous materials, which can be efficiently used for wastewater treatment. Conditions for the preparation of the macroporous material from specific bacterial strains (Pseudomonas mendocina and Rhodococus koreensis) were optimized. The concentration of bacterial cells was kept constant; the difference was only the type of cross-linking agents used e.g. glutaraldehyde, novel polymers, which were utilized at concentrations of 0.5 to 1.5%. SEM images and rheology analysis of the material indicated a monolithic macroporous structure. Phenol was chosen as a model system to optimize the function of the cryogel material and to estimate its enzymatic activity, since it is relatively less toxic and harmful compared to CPs. Several types of macroporous systems comprising live bacteria were prepared. The viability of the cross-linked bacteria was checked using Live/Dead BacLight kit and Laser Scanning Confocal Microscopy, which revealed the presence of viable bacteria with the novel cross-linkers, whereas the control material cross-linked with glutaraldehyde(GA), contained mostly dead cells. The bioreactors based on bacteria were used for phenol degradation in batch mode at an initial concentration of 50mg/L, pH 7.5 and a temperature of 30°C. Bacterial strains cross-linked with GA showed insignificant ability to degrade phenol and for one week only, but a combination of cross-linking agents illustrated higher stability, viability and the possibility to be reused for at least five weeks. Furthermore, conditions for CPs degradation will be optimized, and the chlorophenol degradation rates will be compared to those for phenol. This is a cutting-edge bioremediation approach, which allows the purification of waste water from sustainable compounds without a separation step to remove free planktonic bacteria. Acknowledgments: Dr. Berillo D. A. is very grateful to Individual Fellowship Marie Curie Program for funding of the research.Keywords: bioremediation, cross-linking agents, cross-linked microbial cell, chlorophenol degradation
Procedia PDF Downloads 21349 Rationally Designed Dual PARP-HDAC Inhibitor Elicits Striking Anti-leukemic Effects
Authors: Amandeep Thakur, Yi-Hsuan Chu, Chun-Hsu Pan, Kunal Nepali
Abstract:
The transfer of ADP-ribose residues onto target substrates from nicotinamide adenine dinucleotide (NAD) (PARylation) is catalyzed by Poly (ADP-ribose) polymerases (PARPs). Amongst the PARP family members, the DNA damage response in cancer is majorly regulated by PARP1 and PARP2. The blockade of DNA repair by PARP inhibitors leads to the progression of DNA single-strand breaks (induced by some triggering factors) to double-strand breaks. Notably, PARP inhibitors are remarkably effective in cancers with defective homologous recombination repair (HRR). In particular, cancer cells with BRCA mutations are responsive to therapy with PARP inhibitors. The aforementioned requirement for PARP inhibitors to be effective confers a narrow activity spectrum to PARP inhibitors, which hinders their clinical applicability. Thus, the quest to expand the application horizons of PARP inhibitors beyond BRCA mutations is the need of the hour. Literature precedents reveal that HDAC inhibition induces BRCAness in cancer cells and can broaden the therapeutic scope of PARP inhibitors. Driven by such disclosures, dual inhibitors targeting both PARP and HDAC enzymes were designed by our research group to extend the efficacy of PARP inhibitors beyond BRCA-mutated cancers to cancers with induced BRCAness. The design strategy involved the installation of Veliparib, an investigational PARP inhibitor, as a surface recognition part in the HDAC inhibitor pharmacophore model. The chemical architecture of veliparib was deemed appropriate as a starting point for the generation of dual inhibitors by virtue of its size and structural flexibility. A validatory docking study was conducted at the outset to predict the binding mode of the designed dual modulatory chemical architectures. Subsequently, the designed chemical architectures were synthesized via a multistep synthetic route and evaluated for antitumor efficacy. Delightfully, one compound manifested impressive anti-leukemic effects (HL-60 cell lines) mediated via dual inhibition of PARP and class I HDACs. The outcome of the western blot analysis revealed that the compound could downregulate the expression levels of PARP1 and PARP2 and the HDAC isoforms (HDAC1, 2, and 3). Also, the dual PARP-HDAC inhibitor upregulated the protein expression of the acetyl histone H3, confirming its abrogation potential for class I HDACs. In addition, the dual modulator could arrest the cell cycle at the G0/G1 phase and induce autophagy. Further, polymer-based nanoformulation of the dual inhibitor was furnished to afford targeted delivery of the dual inhibitor at the cancer site. Transmission electron microscopy (TEM) results indicate that the nanoparticles were monodispersed and spherical. Moreover, the polymeric nanoformulation exhibited an appropriate particle size. Delightfully, pH-sensitive behavior was manifested by the polymeric nanoformulation that led to selective antitumor effects towards the HL-60 cell lines. In light of the magnificent anti-leukemic profile of the identified dual PARP-HDAC inhibitor, in-vivo studies (pharmacokinetics and pharmacodynamics) are currently being conducted. Notably, the optimistic findings of the aforementioned study have spurred our research group to initiate several medicinal chemistry campaigns to create bifunctional small molecule inhibitors addressing PARP as the primary target.Keywords: PARP inhibitors, HDAC inhibitors, BRCA mutations, leukemia
Procedia PDF Downloads 2348 Magnetic Single-Walled Carbon Nanotubes (SWCNTs) as Novel Theranostic Nanocarriers: Enhanced Targeting and Noninvasive MRI Tracking
Authors: Achraf Al Faraj, Asma Sultana Shaik, Baraa Al Sayed
Abstract:
Specific and effective targeting of drug delivery systems (DDS) to cancerous sites remains a major challenge for a better diagnostic and therapy. Recently, SWCNTs with their unique physicochemical properties and the ability to cross the cell membrane show promising in the biomedical field. The purpose of this study was first to develop a biocompatible iron oxide tagged SWCNTs as diagnostic nanoprobes to allow their noninvasive detection using MRI and their preferential targeting in a breast cancer murine model by placing an optimized flexible magnet over the tumor site. Magnetic targeting was associated to specific antibody-conjugated SWCNTs active targeting. The therapeutic efficacy of doxorubicin-conjugated SWCNTs was assessed, and the superiority of diffusion-weighted (DW-) MRI as sensitive imaging biomarker was investigated. Short Polyvinylpyrrolidone (PVP) stabilized water soluble SWCNTs were first developed, tagged with iron oxide nanoparticles and conjugated with Endoglin/CD105 monoclonal antibodies. They were then conjugated with doxorubicin drugs. SWCNTs conjugates were extensively characterized using TEM, UV-Vis spectrophotometer, dynamic light scattering (DLS) zeta potential analysis and electron spin resonance (ESR) spectroscopy. Their MR relaxivities (i.e. r1 and r2*) were measured at 4.7T and their iron content and metal impurities quantified using ICP-MS. SWCNTs biocompatibility and drug efficacy were then evaluated both in vitro and in vivo using a set of immunological assays. Luciferase enhanced bioluminescence 4T1 mouse mammary tumor cells (4T1-Luc2) were injected into the right inguinal mammary fat pad of Balb/c mice. Tumor bearing mice received either free doxorubicin (DOX) drug or SWCNTs with or without either DOX or iron oxide nanoparticles. A multi-pole 10x10mm high-energy flexible magnet was maintained over the tumor site during 2 hours post-injections and their properties and polarity were optimized to allow enhanced magnetic targeting of SWCNTs toward the primary tumor site. Tumor volume was quantified during the follow-up investigation study using a fast spin echo MRI sequence. In order to detect the homing of SWCNTs to the main tumor site, susceptibility-weighted multi-gradient echo (MGE) sequence was used to generate T2* maps. Apparent diffusion coefficient (ADC) measurements were also performed as a sensitive imaging biomarker providing early and better assessment of disease treatment. At several times post-SWCNT injection, histological analysis were performed on tumor extracts and iron-loaded SWCNT were quantified using ICP-MS in tumor sites, liver, spleen, kidneys, and lung. The optimized multi-poles magnet revealed an enhanced targeting of magnetic SWCNTs to the primary tumor site, which was found to be much higher than the active targeting achieved using antibody-conjugated SWCNTs. Iron-loading allowed their sensitive noninvasive tracking after intravenous administration using MRI. The active targeting of doxorubicin through magnetic antibody-conjugated SWCNTs nanoprobes was found to considerably decrease the primary tumor site and may have inhibited the development of metastasis in the tumor-bearing mice lung. ADC measurements in DW-MRI were found to significantly increase in a time-dependent manner after the injection of DOX-conjugated SWCNTs complexes.Keywords: single-walled carbon nanotubes, nanomedicine, magnetic resonance imaging, cancer diagnosis and therapy
Procedia PDF Downloads 32947 Identification of a Panel of Epigenetic Biomarkers for Early Detection of Hepatocellular Carcinoma in Blood of Individuals with Liver Cirrhosis
Authors: Katarzyna Lubecka, Kirsty Flower, Megan Beetch, Lucinda Kurzava, Hannah Buvala, Samer Gawrieh, Suthat Liangpunsakul, Tracy Gonzalez, George McCabe, Naga Chalasani, James M. Flanagan, Barbara Stefanska
Abstract:
Hepatocellular carcinoma (HCC), the most prevalent type of primary liver cancer, is the second leading cause of cancer death worldwide. Late onset of clinical symptoms in HCC results in late diagnosis and poor disease outcome. Approximately 85% of individuals with HCC have underlying liver cirrhosis. However, not all cirrhotic patients develop cancer. Reliable early detection biomarkers that can distinguish cirrhotic patients who will develop cancer from those who will not are urgently needed and could increase the cure rate from 5% to 80%. We used Illumina-450K microarray to test whether blood DNA, an easily accessible source of DNA, bear site-specific changes in DNA methylation in response to HCC before diagnosis with conventional tools (pre-diagnostic). Top 11 differentially methylated sites were selected for validation by pyrosequencing. The diagnostic potential of the 11 pyrosequenced probes was tested in blood samples from a prospective cohort of cirrhotic patients. We identified 971 differentially methylated CpG sites in pre-diagnostic HCC cases as compared with healthy controls (P < 0.05, paired Wilcoxon test, ICC ≥ 0.5). Nearly 76% of differentially methylated CpG sites showed lower levels of methylation in cases vs. controls (P = 2.973E-11, Wilcoxon test). Classification of the CpG sites according to their location relative to CpG islands and transcription start site revealed that those hypomethylated loci are located in regulatory regions important for gene transcription such as CpG island shores, promoters, and 5’UTR at higher frequency than hypermethylated sites. Among 735 CpG sites hypomethylated in cases vs. controls, 482 sites were assigned to gene coding regions whereas 236 hypermethylated sites corresponded to 160 genes. Bioinformatics analysis using GO, KEGG and DAVID knowledgebase indicate that differentially methylated CpG sites are located in genes associated with functions that are essential for gene transcription, cell adhesion, cell migration, and regulation of signal transduction pathways. Taking into account the magnitude of the difference, statistical significance, location, and consistency across the majority of matched pairs case-control, we selected 11 CpG loci corresponding to 10 genes for further validation by pyrosequencing. We established that methylation of CpG sites within 5 out of those 10 genes distinguish cirrhotic patients who subsequently developed HCC from those who stayed cancer free (cirrhotic controls), demonstrating potential as biomarkers of early detection in populations at risk. The best predictive value was detected for CpGs located within BARD1 (AUC=0.70, asymptotic significance ˂0.01). Using an additive logistic regression model, we further showed that 9 CpG loci within those 5 genes, that were covered in pyrosequenced probes, constitute a panel with high diagnostic accuracy (AUC=0.887; 95% CI:0.80-0.98). The panel was able to distinguish pre-diagnostic cases from cirrhotic controls free of cancer with 88% sensitivity at 70% specificity. Using blood as a minimally invasive material and pyrosequencing as a straightforward quantitative method, the established biomarker panel has high potential to be developed into a routine clinical test after validation in larger cohorts. This study was supported by Showalter Trust, American Cancer Society (IRG#14-190-56), and Purdue Center for Cancer Research (P30 CA023168) granted to BS.Keywords: biomarker, DNA methylation, early detection, hepatocellular carcinoma
Procedia PDF Downloads 30446 Successful Public-Private Partnership Through the Impact of Environmental Education: A Case Study on Transforming Community Confrict into Harmony in the Dongpian Community
Authors: Men An Pan, Ho Hsiung Huang, Jui Chuan Lin, Tsui Hsun Wu, Hsing Yuan Yen
Abstract:
Pingtung County, located in the southernmost region of Taiwan, has the largest number of pig farms in the country. In the past, livestock operators in Dongpian Village discharged their wastewater into the nearby water bodies, causing water pollution in the local rivers and polluting the air with the stench of the pig excrement. These resulted in many complaints from the local residents. In response to a long time fighting back of the community against the livestock farms due to the confrict, the County Government's Environmental Protection Bureau (PTEPB) examined potential wayouts in addition to heavy fines to the perpetrators. Through helping the livestock farms to upgrade their pollution prevention equipment, promoting the reuse of biogas residue and slurry from the pig excrement, and environmental education, the confrict was successfully resolved. The properly treated wastewater from the livestock farms has been freely provided to the neighboring farmlands via pipelines and tankers. Thus, extensive cultivation of bananas, papaya, red dragon fruit, Inca nut, and cocoa has resulted in 34% resource utilization of biogas residue as a fertilizer. This has encouraged farmers to reduce chemical fertilizers and use microbial materials like photosynthetic bacteria after banning herbicides while lowering the cost of wastewater treatment in livestock farms and alleviating environmental pollution simultaneously. That is, the livestock farms fully demonstrate the determination to fulfill their corporate social responsibility (CSR). Due to the success, Eight farms jointly established a social enterprise - "Dongpian Gemstone Village Co., Ltd." to promote organic farming through a "shared farm." The company appropriates 5% of its total revenue back to the community through caregiving services for the elderly and a fund for young local farmers. The community adopted the Satoyama Initiative in accordance with the Conference of the CBD COP10. Through the positive impact of environmental education, the community seeks to realize the coexistence between society and nature while maintaining and developing socio-economic activities (including agriculture) with respect for nature and building a harmonic relationship between humans and nature. By way of sustainable management of resources and ensuring biodiversity, the community is transforming into a socio-ecological production landscape. Apart from nature conservation and watercourse ecology, preserving local culture is also a key focus of the environmental education. To mitigate the impact of global warming and climate change, the community and the government have worked together to develop a disaster prevention and relief system, strive to establish a low-carbon emitting homeland, and become a model for resilient communities. By the power of environmental education, this community has turned its residents’ hearts and minds into concrete action, fulfilled social responsibility, and moved towards realizing the UN SDGs. Even though it is not the only community to integrate government agencies, research institutions, and NGOs for environmental education, it is a prime example of a low-carbon sustainable community that achieves more than 9 SDGs, including responsible consumption and production, climate change action, and diverse partnerships. The community is also leveraging environmental education to become a net-zero carbon community targeted by COP26.Keywords: environmental education, biogas residue, biogas slurry, CSR, SDGs, climate change, net-zero carbon emissions
Procedia PDF Downloads 14345 Observing Teaching Practices Through the Lenses of Self-Regulated Learning: A Study Within the String Instrument Individual Context
Authors: Marija Mihajlovic Pereira
Abstract:
Teaching and learning a musical instrument is challenging for both teachers and students. Teachers generally use diverse strategies to resolve students' particular issues in a one-to-one context. Considering individual sessions as a supportive educational context, the teacher can play a decisive role in stimulating and promoting self-regulated learning strategies, especially with beginning learners. The teachers who promote self-controlling behaviors, strategic monitoring, and regulation of actions toward goals could expect their students to practice more qualitatively and consciously. When encouraged to adopt self-regulation habits, students' could benefit from greater productivity on a longer path. Founded on Bary Zimmerman's cyclical model that comprehends three phases - forethought, performance, and self-reflection, this work aims to articulate self-regulated and music learning. Self-regulated learning appeals to the individual's attitude in planning, controlling, and reflecting on their performance. Furthermore, this study aimed to present an observation grid for perceiving teaching instructions that encourage students' controlling cognitive behaviors in light of the belief that conscious promotion of self-regulation may motivate strategic actions toward goals in musical performance. The participants, two teachers, and two students have been involved in the social inclusion project in Lisbon (Portugal). The author and one independent inter-observer analyzed six video-recorded string instrument lessons. The data correspond to three sessions per teacher lectured to one (different) student. Violin (f) and violoncello (m) teachers hold a Master's degree in music education and approximately five years of experience. In their second year of learning an instrument, students have acquired reasonable skills in musical reading, posture, and sound quality until then. The students also manifest positive learning behaviors, interest in learning a musical instrument, although their study habits are still inconsistent. According to the grid's four categories (parent codes), in-class rehearsal frames were coded using MaxQda software, version 20, according to the grid's four categories (parent codes): self-regulated learning, teaching verbalizations, teaching strategies, and students' in-class performance. As a result, selected rehearsal frames qualitatively describe teaching instructions that might promote students' body and hearing awareness, such as "close the eyes while playing" or "sing to internalize the pitch." Another analysis type, coding the short video events according to the observation grid's subcategories (child codes), made it possible to perceive the time teachers dedicate to specific verbal or non-verbal strategies. Furthermore, a coding overlay analysis indicated that teachers tend to stimulate. (i) Forethought – explain tasks, offer feedback and ensure that students identify a goal, (ii) Performance – teach study strategies and encourage students to sing and use vocal abilities to ensure inner audition, (iii) Self-reflection – frequent inquiring and encouraging the student to verbalize their perception of performance. Although developed in the context of individual string instrument lessons, this classroom observation grid brings together essential variables in a one-to-one lesson. It may find utility in a broader context of music education due to the possibility to organize, observe and evaluate teaching practices. Besides that, this study contributes to cognitive development by suggesting a practical approach to fostering self-regulated learning.Keywords: music education, observation grid, self-regulated learning, string instruments, teaching practices
Procedia PDF Downloads 9844 Implementation of Green Deal Policies and Targets in Energy System Optimization Models: The TEMOA-Europe Case
Authors: Daniele Lerede, Gianvito Colucci, Matteo Nicoli, Laura Savoldi
Abstract:
The European Green Deal is the first internationally agreed set of measures to contrast climate change and environmental degradation. Besides the main target of reducing emissions by at least 55% by 2030, it sets the target of accompanying European countries through an energy transition to make the European Union into a modern, resource-efficient, and competitive net-zero emissions economy by 2050, decoupling growth from the use of resources and ensuring a fair adaptation of all social categories to the transformation process. While the general purpose to allow the realization of the purposes of the Green Deal already dates back to 2019, strategies and policies keep being developed coping with recent circumstances and achievements. However, general long-term measures like the Circular Economy Action Plan, the proposals to shift from fossil natural gas to renewable and low-carbon gases, in particular biomethane and hydrogen, and to end the sale of gasoline and diesel cars by 2035, will all have significant effects on energy supply and demand evolution across the next decades. The interactions between energy supply and demand over long-term time frames are usually assessed via energy system models to derive useful insights for policymaking and to address technological choices and research and development. TEMOA-Europe is a newly developed energy system optimization model instance based on the minimization of the total cost of the system under analysis, adopting a technologically integrated, detailed, and explicit formulation and considering the evolution of the system in partial equilibrium in competitive markets with perfect foresight. TEMOA-Europe is developed on the TEMOA platform, an open-source modeling framework totally implemented in Python, therefore ensuring third-party verification even on large and complex models. TEMOA-Europe is based on a single-region representation of the European Union and EFTA countries on a time scale between 2005 and 2100, relying on a set of assumptions for socio-economic developments based on projections by the International Energy Outlook and a large technological dataset including 7 sectors: the upstream and power sectors for the production of all energy commodities and the end-use sectors, including industry, transport, residential, commercial and agriculture. TEMOA-Europe also includes an updated hydrogen module considering its production, storage, transportation, and utilization. Besides, it can rely on a wide set of innovative technologies, ranging from nuclear fusion and electricity plants equipped with CCS in the power sector to electrolysis-based steel production processes and steel in the industrial sector – with a techno-economic characterization based on public literature – to produce insightful energy scenarios and especially to cope with the very long analyzed time scale. The aim of this work is to examine in detail the scheme of measures and policies for the realization of the purposes of the Green Deal and to transform them into a set of constraints and new socio-economic development pathways. Based on them, TEMOA-Europe will be used to produce and comparatively analyze scenarios to assess the consequences of Green Deal-related measures on the future evolution of the energy mix over the whole energy system in an economic optimization environment.Keywords: European Green Deal, energy system optimization modeling, scenario analysis, TEMOA-Europe
Procedia PDF Downloads 10543 DH-Students Promoting Underage Asylum Seekers' Oral Health in Finland
Authors: Eeva Wallenius-Nareneva, Tuula Toivanen-Labiad
Abstract:
Background: Oral health promotion event was organised for forty Afghanistan, Iraqi and Bangladeshi underage asylum seekers in Finland. The invitation to arrange this coaching occasion was accepted in the Degree Programme in Oral Hygiene in Metropolia. The personnel in the reception center found the need to improve oral health among the youngsters. The purpose was to strengthen the health literacy of the boys in their oral self-care and to reduce dental fears. The Finnish studies, especially the terminology of oral health was integrated to coaching with the help of interpreters. Cooperative learning was applied. Methods: Oral health was interactively discussed in four study group sessions: 1. The importance of healthy eating habits; - Good and bad diets, - Regular meals, - Acid attack o Xylitol. 2. Oral diseases − connection to general health; - Aetiology of gingivitis, periodontitis and caries, - Harmfulness of smoking 3. Tools and techniques for oral self-care; - Brushing and inter dental cleaning. 4. Sharing earlier dental care experiences; - Cultural differences, - Dental fear, - Regular check-ups. Results: During coaching deficiencies appeared in brushing and inter dental cleaning techniques. Some boys were used to wash their mouth with salt justifying it by salt’s antiseptic properties. Many brushed their teeth by vertical movements. The boys took feedback positively when a demonstration with model jaws revealed the inefficiency of the technique. The advantages of fluoride tooth paste were advised. Dental care procedures were new and frightening for many boys. Finnish dental care system was clarified. The safety and indolence of the treatments and informed consent were highlighted. Video presentations and the dialog lowered substantially the threshold to visit dental clinic. The occasion gave the students means for meeting patients from different cultural and language backgrounds. The information hidden behind the oral health problems of the asylum seekers was valuable. Conclusions: Learning dental care practices used in different cultures is essential for dental professionals. The project was a good start towards multicultural oral health care. More experiences are needed before graduation. Health education themes should be held simple regardless of the target group. The heterogeneity of the group does not pose a problem. Open discussion with questions leading to the theme works well in clarifying the target group’s knowledge level. Sharing own experiences strengthens the sense of equality among the participants and encourages them to express own opinions. Motivational interview method turned out to be successful. In the future coaching occasions must confirm active participation of everyone. This could be realized by dividing the participants to even smaller groups. The different languages impose challenges but they can be solved by using more interpreters. Their presence ensures that everyone understands the issues properly although the use of plain and sign languages are helpful. In further development, it would be crucial to arrange a rehearsal occasion to the same participants in two/three months’ time. This would strengthen the adaption of self-care practices and give the youngsters opportunity to pose more open questions. The students would gain valuable feedback regarding the effectiveness of their work.Keywords: cooperative learning, interactive methods, motivational interviewing, oral health promotion, underage asylum seekers
Procedia PDF Downloads 29042 Geospatial and Statistical Evidences of Non-Engineered Landfill Leachate Effects on Groundwater Quality in a Highly Urbanised Area of Nigeria
Authors: David A. Olasehinde, Peter I. Olasehinde, Segun M. A. Adelana, Dapo O. Olasehinde
Abstract:
An investigation was carried out on underground water system dynamics within Ilorin metropolis to monitor the subsurface flow and its corresponding pollution. Africa population growth rate is the highest among the regions of the world, especially in urban areas. A corresponding increase in waste generation and a change in waste composition from predominantly organic to non-organic waste has also been observed. Percolation of leachate from non-engineered landfills, the chief means of waste disposal in many of its cities, constitutes a threat to the underground water bodies. Ilorin city, a transboundary town in southwestern Nigeria, is a ready microcosm of Africa’s unique challenge. In spite of the fact that groundwater is naturally protected from common contaminants such as bacteria as the subsurface provides natural attenuation process, groundwater samples have been noted to however possesses relatively higher dissolved chemical contaminants such as bicarbonate, sodium, and chloride which poses a great threat to environmental receptors and human consumption. The Geographic Information System (GIS) was used as a tool to illustrate, subsurface dynamics and the corresponding pollutant indicators. Forty-four sampling points were selected around known groundwater pollutant, major old dumpsites without landfill liners. The results of the groundwater flow directions and the corresponding contaminant transport were presented using expert geospatial software. The experimental results were subjected to four descriptive statistical analyses, namely: principal component analysis, Pearson correlation analysis, scree plot analysis, and Ward cluster analysis. Regression model was also developed aimed at finding functional relationships that can adequately relate or describe the behaviour of water qualities and the hypothetical factors landfill characteristics that may influence them namely; distance of source of water body from dumpsites, static water level of groundwater, subsurface permeability (inferred from hydraulic gradient), and soil infiltration. The regression equations developed were validated using the graphical approach. Underground water seems to flow from the northern portion of Ilorin metropolis down southwards transporting contaminants. Pollution pattern in the study area generally assumed a bimodal pattern with the major concentration of the chemical pollutants in the underground watershed and the recharge. The correlation between contaminant concentrations and the spread of pollution indicates that areas of lower subsurface permeability display a higher concentration of dissolved chemical content. The principal component analysis showed that conductivity, suspended solids, calcium hardness, total dissolved solids, total coliforms, and coliforms were the chief contaminant indicators in the underground water system in the study area. Pearson correlation revealed a high correlation of electrical conductivity for many parameters analyzed. In the same vein, the regression models suggest that the heavier the molecular weight of a chemical contaminant of a pollutant from a point source, the greater the pollution of the underground water system at a short distance. The study concludes that the associative properties of landfill have a significant effect on groundwater quality in the study area.Keywords: dumpsite, leachate, groundwater pollution, linear regression, principal component
Procedia PDF Downloads 11741 Evaluating Forecasting Strategies for Day-Ahead Electricity Prices: Insights From the Russia-Ukraine Crisis
Authors: Alexandra Papagianni, George Filis, Panagiotis Papadopoulos
Abstract:
The liberalization of the energy market and the increasing penetration of fluctuating renewables (e.g., wind and solar power) have heightened the importance of the spot market for ensuring efficient electricity supply. This is further emphasized by the EU’s goal of achieving net-zero emissions by 2050. The day-ahead market (DAM) plays a key role in European energy trading, accounting for 80-90% of spot transactions and providing critical insights for next-day pricing. Therefore, short-term electricity price forecasting (EPF) within the DAM is crucial for market participants to make informed decisions and improve their market positioning. Existing literature highlights out-of-sample performance as a key factor in assessing EPF accuracy, with influencing factors such as predictors, forecast horizon, model selection, and strategy. Several studies indicate that electricity demand is a primary price determinant, while renewable energy sources (RES) like wind and solar significantly impact price dynamics, often lowering prices. Additionally, incorporating data from neighboring countries, due to market coupling, further improves forecast accuracy. Most studies predict up to 24 steps ahead using hourly data, while some extend forecasts using higher-frequency data (e.g., half-hourly or quarter-hourly). Short-term EPF methods fall into two main categories: statistical and computational intelligence (CI) methods, with hybrid models combining both. While many studies use advanced statistical methods, particularly through different versions of traditional AR-type models, others apply computational techniques such as artificial neural networks (ANNs) and support vector machines (SVMs). Recent research combines multiple methods to enhance forecasting performance. Despite extensive research on EPF accuracy, a gap remains in understanding how forecasting strategy affects prediction outcomes. While iterated strategies are commonly used, they are often chosen without justification. This paper contributes by examining whether the choice of forecasting strategy impacts the quality of day-ahead price predictions, especially for multi-step forecasts. We evaluate both iterated and direct methods, exploring alternative ways of conducting iterated forecasts on benchmark and state-of-the-art forecasting frameworks. The goal is to assess whether these factors should be considered by end-users to improve forecast quality. We focus on the Greek DAM using data from July 1, 2021, to March 31, 2022. This period is chosen due to significant price volatility in Greece, driven by its dependence on natural gas and limited interconnection capacity with larger European grids. The analysis covers two phases: pre-conflict (January 1, 2022, to February 23, 2022) and post-conflict (February 24, 2022, to March 31, 2022), following the Russian-Ukraine conflict that initiated an energy crisis. We use the mean absolute percentage error (MAPE) and symmetric mean absolute percentage error (sMAPE) for evaluation, as well as the Direction of Change (DoC) measure to assess the accuracy of price movement predictions. Our findings suggest that forecasters need to apply all strategies across different horizons and models. Different strategies may be required for different horizons to optimize both accuracy and directional predictions, ensuring more reliable forecasts.Keywords: short-term electricity price forecast, forecast strategies, forecast horizons, recursive strategy, direct strategy
Procedia PDF Downloads 840 Enhancing Plant Throughput in Mineral Processing Through Multimodal Artificial Intelligence
Authors: Muhammad Bilal Shaikh
Abstract:
Mineral processing plants play a pivotal role in extracting valuable minerals from raw ores, contributing significantly to various industries. However, the optimization of plant throughput remains a complex challenge, necessitating innovative approaches for increased efficiency and productivity. This research paper investigates the application of Multimodal Artificial Intelligence (MAI) techniques to address this challenge, aiming to improve overall plant throughput in mineral processing operations. The integration of multimodal AI leverages a combination of diverse data sources, including sensor data, images, and textual information, to provide a holistic understanding of the complex processes involved in mineral extraction. The paper explores the synergies between various AI modalities, such as machine learning, computer vision, and natural language processing, to create a comprehensive and adaptive system for optimizing mineral processing plants. The primary focus of the research is on developing advanced predictive models that can accurately forecast various parameters affecting plant throughput. Utilizing historical process data, machine learning algorithms are trained to identify patterns, correlations, and dependencies within the intricate network of mineral processing operations. This enables real-time decision-making and process optimization, ultimately leading to enhanced plant throughput. Incorporating computer vision into the multimodal AI framework allows for the analysis of visual data from sensors and cameras positioned throughout the plant. This visual input aids in monitoring equipment conditions, identifying anomalies, and optimizing the flow of raw materials. The combination of machine learning and computer vision enables the creation of predictive maintenance strategies, reducing downtime and improving the overall reliability of mineral processing plants. Furthermore, the integration of natural language processing facilitates the extraction of valuable insights from unstructured textual data, such as maintenance logs, research papers, and operator reports. By understanding and analyzing this textual information, the multimodal AI system can identify trends, potential bottlenecks, and areas for improvement in plant operations. This comprehensive approach enables a more nuanced understanding of the factors influencing throughput and allows for targeted interventions. The research also explores the challenges associated with implementing multimodal AI in mineral processing plants, including data integration, model interpretability, and scalability. Addressing these challenges is crucial for the successful deployment of AI solutions in real-world industrial settings. To validate the effectiveness of the proposed multimodal AI framework, the research conducts case studies in collaboration with mineral processing plants. The results demonstrate tangible improvements in plant throughput, efficiency, and cost-effectiveness. The paper concludes with insights into the broader implications of implementing multimodal AI in mineral processing and its potential to revolutionize the industry by providing a robust, adaptive, and data-driven approach to optimizing plant operations. In summary, this research contributes to the evolving field of mineral processing by showcasing the transformative potential of multimodal artificial intelligence in enhancing plant throughput. The proposed framework offers a holistic solution that integrates machine learning, computer vision, and natural language processing to address the intricacies of mineral extraction processes, paving the way for a more efficient and sustainable future in the mineral processing industry.Keywords: multimodal AI, computer vision, NLP, mineral processing, mining
Procedia PDF Downloads 6839 The Systematic Impact of Climatic Disasters on the Maternal Health in Pakistan
Authors: Yiqi Zhu, Jean Francois Trani, Rameez Ulhassan
Abstract:
Extreme weather phenomena increased by 46% between 2007 and 2017 and have become more intense with the rise in global average temperatures. This increased intensity of climate variations often induces humanitarian crises and particularly affects vulnerable populations in low- and middle-income countries (LMICs). Expectant and lactating mothers are among the most vulnerable groups. Pakistan ranks 10th among the most affected countries by climate disasters. In 2022, monsoon floods submerged a third of the country, causing the loss of 1,500 lives. Approximately 650,000 expectant and lactating mothers faced systematic stress from climatic disasters. Our study used participatory methods to investigate the systematic impact of climatic disasters on maternal health. In March 2023, we conducted six Group Model Building (GMB) workshops with healthcare workers, fathers, and mothers separately in two of the most affected areas in Pakistan. This study was approved by the Islamic Relief Research Review Board. GMB workshops consist of three sessions. In the first session, participants discussed the factors that impact maternal health. After identifying the factors, they discussed the connections among them and explored the system structures that collectively impact maternal health. Based on the discussion, a causal loop diagram (CLD) was created. Finally, participants discussed action ideas that could improve the system to enhance maternal health. Based on our discussions and the causal loop diagram, we identified interconnected factors at the family, community, and policy levels. Mothers and children are directly impacted by three interrelated factors: food insecurity, unstable housing, and lack of income. These factors create a reinforcing cycle that negatively affects both mothers and newborns. After the flood, many mothers were unable to produce sufficient breastmilk due to their health status. Without breastmilk and sufficient food for complementary feeding, babies tend to get sick in damp and unhygienic environments resulting from temporary or unstable housing. When parents take care of sick children, they miss out on income-generating opportunities. At the community level, the lack of access to clean water and sanitation (WASH) and maternal healthcare further worsens the situation. Structural failures such as a lack of safety nets and programs associated with flood preparedness make families increasingly vulnerable with each disaster. Several families reported that they had not fully recovered from a flood that occurred ten years ago, and this latest disaster destroyed their lives again. Although over twenty non-profit organizations are working in these villages, few of them provide sustainable support. Therefore, participants called for systemic changes in response to the increasing frequency of climate disasters. The study reveals the systematic vulnerabilities of mothers and children after climatic disasters. The most vulnerable populations are often affected the most by climate change. Collaborative efforts are required to improve water and forest management, strengthen public infrastructure, increase access to WASH, and gradually build climate-resilient communities. Governments, non-governmental organizations, and the community should work together to develop and implement effective strategies to prevent, mitigate, and adapt to climate change and its impacts.Keywords: climatic disasters, maternal health, Pakistan, systematic impact, flood, disaster relief.
Procedia PDF Downloads 7738 Revolutionizing Oil Palm Replanting: Geospatial Terrace Design for High-precision Ground Implementation Compared to Conventional Methods
Authors: Nursuhaili Najwa Masrol, Nur Hafizah Mohammed, Nur Nadhirah Rusyda Rosnan, Vijaya Subramaniam, Sim Choon Cheak
Abstract:
Replanting in oil palm cultivation is vital to enable the introduction of planting materials and provides an opportunity to improve the road, drainage, terrace design, and planting density. Oil palm replanting is fundamentally necessary every 25 years. The adoption of the digital replanting blueprint is imperative as it can assist the Malaysia Oil Palm industry in addressing challenges such as labour shortages and limited expertise related to replanting tasks. Effective replanting planning should commence at least 6 months prior to the actual replanting process. Therefore, this study will help to plan and design the replanting blueprint with high-precision translation on the ground. With the advancement of geospatial technology, it is now feasible to engage in thoroughly researched planning, which can help maximize the potential yield. A blueprint designed before replanting is to enhance management’s ability to optimize the planting program, address manpower issues, or even increase productivity. In terrace planting blueprints, geographic tools have been utilized to design the roads, drainages, terraces, and planting points based on the ARM standards. These designs are mapped with location information and undergo statistical analysis. The geospatial approach is essential in precision agriculture and ensuring an accurate translation of design to the ground by implementing high-accuracy technologies. In this study, geospatial and remote sensing technologies played a vital role. LiDAR data was employed to determine the Digital Elevation Model (DEM), enabling the precise selection of terraces, while ortho imagery was used for validation purposes. Throughout the designing process, Geographical Information System (GIS) tools were extensively utilized. To assess the design’s reliability on the ground compared with the current conventional method, high-precision GPS instruments like EOS Arrow Gold and HIPER VR GNSS were used, with both offering accuracy levels between 0.3 cm and 0.5cm. Nearest Distance Analysis was generated to compare the design with actual planting on the ground. The analysis revealed that it could not be applied to the roads due to discrepancies between actual roads and the blueprint design, which resulted in minimal variance. In contrast, the terraces closely adhered to the GPS markings, with the most variance distance being less than 0.5 meters compared to actual terraces constructed. Considering the required slope degrees for terrace planting, which must be greater than 6 degrees, the study found that approximately 65% of the terracing was constructed at a 12-degree slope, while over 50% of the terracing was constructed at slopes exceeding the minimum degrees. Utilizing blueprint replanting promising strategies for optimizing land utilization in agriculture. This approach harnesses technology and meticulous planning to yield advantages, including increased efficiency, enhanced sustainability, and cost reduction. From this study, practical implementation of this technique can lead to tangible and significant improvements in agricultural sectors. In boosting further efficiencies, future initiatives will require more sophisticated techniques and the incorporation of precision GPS devices for upcoming blueprint replanting projects besides strategic progression aims to guarantee the precision of both blueprint design stages and its subsequent implementation on the field. Looking ahead, automating digital blueprints are necessary to reduce time, workforce, and costs in commercial production.Keywords: replanting, geospatial, precision agriculture, blueprint
Procedia PDF Downloads 8337 The Impact of Supporting Productive Struggle in Learning Mathematics: A Quasi-Experimental Study in High School Algebra Classes
Authors: Sumeyra Karatas, Veysel Karatas, Reyhan Safak, Gamze Bulut-Ozturk, Ozgul Kartal
Abstract:
Productive struggle entails a student's cognitive exertion to comprehend mathematical concepts and uncover solutions not immediately apparent. The significance of productive struggle in learning mathematics is accentuated by influential educational theorists, emphasizing its necessity for learning mathematics with understanding. Consequently, supporting productive struggle in learning mathematics is recognized as a high-leverage and effective mathematics teaching practice. In this study, the investigation into the role of productive struggle in learning mathematics led to the development of a comprehensive rubric for productive struggle pedagogy through an exhaustive literature review. The rubric consists of eight primary criteria and 37 sub-criteria, providing a detailed description of teacher actions and pedagogical choices that foster students' productive struggles. These criteria encompass various pedagogical aspects, including task design, tool implementation, allowing time for struggle, posing questions, scaffolding, handling mistakes, acknowledging efforts, and facilitating discussion/feedback. Utilizing this rubric, a team of researchers and teachers designed eight 90-minute lesson plans, employing a productive struggle pedagogy, for a two-week unit on solving systems of linear equations. Simultaneously, another set of eight lesson plans on the same topic, featuring identical content and problems but employing a traditional lecture-and-practice model, was designed by the same team. The objective was to assess the impact of supporting productive struggle on students' mathematics learning, defined by the strands of mathematical proficiency. This quasi-experimental study compares the control group, which received traditional lecture- and practice instruction, with the treatment group, which experienced a productive struggle in pedagogy. Sixty-six 10th and 11th-grade students from two algebra classes, taught by the same teacher at a high school, underwent either the productive struggle pedagogy or lecture-and-practice approach over two-week eight 90-minute class sessions. To measure students' learning, an assessment was created and validated by a team of researchers and teachers. It comprised seven open-response problems assessing the strands of mathematical proficiency: procedural and conceptual understanding, strategic competence, and adaptive reasoning on the topic. The test was administered at the beginning and end of the two weeks as pre-and post-test. Students' solutions underwent scoring using an established rubric, subjected to expert validation and an inter-rater reliability process involving multiple criteria for each problem based on their steps and procedures. An analysis of covariance (ANCOVA) was conducted to examine the differences between the control group, which received traditional pedagogy, and the treatment group, exposed to the productive struggle pedagogy, on the post-test scores while controlling for the pre-test. The results indicated a significant effect of treatment on post-test scores for procedural understanding (F(2, 63) = 10.47, p < .001), strategic competence (F(2, 63) = 9.92, p < .001), adaptive reasoning (F(2, 63) = 10.69, p < .001), and conceptual understanding (F(2, 63) = 10.06, p < .001), controlling for pre-test scores. This demonstrates the positive impact of supporting productive struggle in learning mathematics. In conclusion, the results revealed the significance of the role of productive struggle in learning mathematics. The study further explored the practical application of productive struggle through the development of a comprehensive rubric describing the pedagogy of supporting productive struggle.Keywords: effective mathematics teaching practice, high school algebra, learning mathematics, productive struggle
Procedia PDF Downloads 5236 Analysis of Composite Health Risk Indicators Built at a Regional Scale and Fine Resolution to Detect Hotspot Areas
Authors: Julien Caudeville, Muriel Ismert
Abstract:
Analyzing the relationship between environment and health has become a major preoccupation for public health as evidenced by the emergence of the French national plans for health and environment. These plans have identified the following two priorities: (1) to identify and manage geographic areas, where hotspot exposures are suspected to generate a potential hazard to human health; (2) to reduce exposure inequalities. At a regional scale and fine resolution of exposure outcome prerequisite, environmental monitoring networks are not sufficient to characterize the multidimensionality of the exposure concept. In an attempt to increase representativeness of spatial exposure assessment approaches, risk composite indicators could be built using additional available databases and theoretical framework approaches to combine factor risks. To achieve those objectives, combining data process and transfer modeling with a spatial approach is a fundamental prerequisite that implies the need to first overcome different scientific limitations: to define interest variables and indicators that could be built to associate and describe the global source-effect chain; to link and process data from different sources and different spatial supports; to develop adapted methods in order to improve spatial data representativeness and resolution. A GIS-based modeling platform for quantifying human exposure to chemical substances (PLAINE: environmental inequalities analysis platform) was used to build health risk indicators within the Lorraine region (France). Those indicators combined chemical substances (in soil, air and water) and noise risk factors. Tools have been developed using modeling, spatial analysis and geostatistic methods to build and discretize interest variables from different supports and resolutions on a 1 km2 regular grid within the Lorraine region. By example, surface soil concentrations have been estimated by developing a Kriging method able to integrate surface and point spatial supports. Then, an exposure model developed by INERIS was used to assess the transfer from soil to individual exposure through ingestion pathways. We used distance from polluted soil site to build a proxy for contaminated site. Air indicator combined modeled concentrations and estimated emissions to take in account 30 polluants in the analysis. For water, drinking water concentrations were compared to drinking water standards to build a score spatialized using a distribution unit serve map. The Lden (day-evening-night) indicator was used to map noise around road infrastructures. Aggregation of the different factor risks was made using different methodologies to discuss weighting and aggregation procedures impact on the effectiveness of risk maps to take decisions for safeguarding citizen health. Results permit to identify pollutant sources, determinants of exposure, and potential hotspots areas. A diagnostic tool was developed for stakeholders to visualize and analyze the composite indicators in an operational and accurate manner. The designed support system will be used in many applications and contexts: (1) mapping environmental disparities throughout the Lorraine region; (2) identifying vulnerable population and determinants of exposure to set priorities and target for pollution prevention, regulation and remediation; (3) providing exposure database to quantify relationships between environmental indicators and cancer mortality data provided by French Regional Health Observatories.Keywords: health risk, environment, composite indicator, hotspot areas
Procedia PDF Downloads 24735 The Impact of Right to Repair Initiatives on Environmental and Financial Performance in European Consumer Electronics Firms: An Econometric Analysis
Authors: Daniel Stabler, Anne-Laure Mention, Henri Hakala, Ahmad Alaassar
Abstract:
In Europe, 2.2 billion tons of waste annually generate severe environmental damage and economic burdens, and negatively impact human health. A stark illustration of the problem is found within the consumer electronics industry, which reflects one of the most complex global waste streams. Of the 5.3 billion globally discarded mobile phones in 2022, only 17% were properly recycled. To address these pressing issues, Europe has made significant strides in developing waste management strategies, Circular Economy initiatives, and Right to Repair policies. These endeavors aim to make product repair and maintenance more accessible, extend product lifespans, reduce waste, and promote sustainable resource use. European countries have introduced Right to Repair policies, often in conjunction with extended producer responsibility legislation, repair subsidies, and consumer repair indices, to varying degrees of regulatory rigor. Changing societal trends emphasizing sustainability and environmental responsibility have driven consumer demand for more sustainable and repairable products, benefiting repair-focused consumer electronics businesses. In academic research, much of the literature in Management studies has examined the European Circular Economy and the Right to Repair from firm-level perspectives. These studies frequently employ a business-model lens, emphasizing innovation and strategy frameworks. However, this study takes an institutional perspective, aiming to understand the adoption of Circular Economy and repair-focused business models within the European consumer electronics market. The concepts of the Circular Economy and the Right to Repair align with institutionalism as they reflect evolving societal norms favoring sustainability and consumer empowerment. Regulatory institutions play a pivotal role in shaping and enforcing these concepts through legislation, influencing the behavior of businesses and individuals. Compliance and enforcement mechanisms are essential for their success, compelling actors to adopt sustainable practices and consider product life extension. Over time, these mechanisms create a path for more sustainable choices, underscoring the influence of institutions and societal values on behavior and decision-making. Institutionalism, particularly 'neo-institutionalism,' provides valuable insights into the factors driving the adoption of Circular and repair-focused business models. Neo-institutional pressures can manifest through coercive regulatory initiatives or normative standards shaped by socio-cultural trends. The Right to Repair movement has emerged as a prominent and influential idea within academic discourse and sustainable development initiatives. Therefore, understanding how macro-level societal shifts toward the Circular Economy and the Right to Repair trigger firm-level responses is imperative. This study aims to answer a crucial question about the impact of European Right to Repair initiatives had on the financial and environmental performance of European consumer electronics companies at the firm level. A quantitative and statistical research design will be employed. The study will encompass an extensive sample of consumer electronics firms in Northern and Western Europe, analyzing their financial and environmental performance in relation to the implementation of Right to Repair mechanisms. The study's findings are expected to provide valuable insights into the broader implications of the Right to Repair and Circular Economy initiatives on the European consumer electronics industry.Keywords: circular economy, right to repair, institutionalism, environmental management, european union
Procedia PDF Downloads 8234 Mobi-DiQ: A Pervasive Sensing System for Delirium Risk Assessment in Intensive Care Unit
Authors: Subhash Nerella, Ziyuan Guan, Azra Bihorac, Parisa Rashidi
Abstract:
Intensive care units (ICUs) provide care to critically ill patients in severe and life-threatening conditions. However, patient monitoring in the ICU is limited by the time and resource constraints imposed on healthcare providers. Many critical care indices such as mobility are still manually assessed, which can be subjective, prone to human errors, and lack granularity. Other important aspects, such as environmental factors, are not monitored at all. For example, critically ill patients often experience circadian disruptions due to the absence of effective environmental “timekeepers” such as the light/dark cycle and the systemic effect of acute illness on chronobiologic markers. Although the occurrence of delirium is associated with circadian disruption risk factors, these factors are not routinely monitored in the ICU. Hence, there is a critical unmet need to develop systems for precise and real-time assessment through novel enabling technologies. We have developed the mobility and circadian disruption quantification system (Mobi-DiQ) by augmenting biomarker and clinical data with pervasive sensing data to generate mobility and circadian cues related to mobility, nightly disruptions, and light and noise exposure. We hypothesize that Mobi-DiQ can provide accurate mobility and circadian cues that correlate with bedside clinical mobility assessments and circadian biomarkers, ultimately important for delirium risk assessment and prevention. The collected multimodal dataset consists of depth images, Electromyography (EMG) data, patient extremity movement captured by accelerometers, ambient light levels, Sound Pressure Level (SPL), and indoor air quality measured by volatile organic compounds, and the equivalent CO₂ concentration. For delirium risk assessment, the system recognizes mobility cues (axial body movement features and body key points) and circadian cues, including nightly disruptions, ambient SPL, and light intensity, as well as other environmental factors such as indoor air quality. The Mobi-DiQ system consists of three major components: the pervasive sensing system, a data storage and analysis server, and a data annotation system. For data collection, six local pervasive sensing systems were deployed, including a local computer and sensors. A video recording tool with graphical user interface (GUI) developed in python was used to capture depth image frames for analyzing patient mobility. All sensor data is encrypted, then automatically uploaded to the Mobi-DiQ server through a secured VPN connection. Several data pipelines are developed to automate the data transfer, curation, and data preparation for annotation and model training. The data curation and post-processing are performed on the server. A custom secure annotation tool with GUI was developed to annotate depth activity data. The annotation tool is linked to the MongoDB database to record the data annotation and to provide summarization. Docker containers are also utilized to manage services and pipelines running on the server in an isolated manner. The processed clinical data and annotations are used to train and develop real-time pervasive sensing systems to augment clinical decision-making and promote targeted interventions. In the future, we intend to evaluate our system as a clinical implementation trial, as well as to refine and validate it by using other data sources, including neurological data obtained through continuous electroencephalography (EEG).Keywords: deep learning, delirium, healthcare, pervasive sensing
Procedia PDF Downloads 9333 Analyzing Perceptions of Leadership Capacities After a Year-Long Leadership Development Training: An Exploratory Study of School Leaders in South Africa
Authors: Norma Kok, Diemo Masuko, Thandokazi Dlongwana, Komala Pillay
Abstract:
CONTEXT: While many school principals have been outstanding teachers and have inherent leadership potential, many have not had access to the quality of leadership development or support that empowers them to produce high-quality education outcomes in extremely challenging circumstances. Further, school leaders in under-served communities face formidable challenges arising from insufficient infrastructure, overcrowded classrooms, socio-economic challenges within the community, and insufficient parental involvement, all of which put a strain on principals’ ability to lead their schools effectively. In addition few school leaders have access to other supportive networks, and many do not know how to build and leverage social capital to create opportunities for their schools and learners. Moreover, we know that fostering parental involvement in their children’s learning improves a child’s morale, attitude, and academic achievement across all subject areas, and promotes better behaviour and social adjustment. Citizen Leader Lab facilitates the Partners for Possibility (PfP) programme to provide leadership development and support to school leaders serving under-resourced communities in South Africa to create effective environments of learning. This is done by creating partnerships between school leaders and private-sector business leaders over a 12-month period. (185) OBJECTIVES: To explore school leaders’ perceptions of their leadership capacities and changes at their schools after being exposed to a year-long leadership development training programme. METHODS: School leaders gained new leadership capacities e.g. resilience, improved confidence, communication and conflict resolution skills - catalysing into improved cultures of collaborative decision-making and environments for enhanced teaching and learningprogramme based on the 70:20:10 model whereby: 10% of learning comes from workshops, 20% of learning takes place through peer learning and 70% of learning occurs through experiential learning as partnerships work together to identify and tackle challenges in targeted schools. Participants completed a post-programme questionnaire consisting of structured and unstructured questions and semi-structured interviews were conducted with them and their business leader. The interviews were audio-recorded, transcribed and thematic content analysis was undertaken. The analysis was inductive and emerging themes were identified. A code list was generated after coding was undertaken using computer software (Dedoose). Quantitative data gathered from surveys was aggregated and analysed. RESULTS: School leadership found the programme interesting and rewarding. They gained new leadership capacities such as resilience, improved confidence, communication and conflict resolution skills - catalyzing into improved cultures of collaborative decision-making and environments for enhanced teaching and learning. New networks resulted in tangible outcomes such as upgrades to school infrastructure, water and sanitation, vegetable gardens at schools resulting in nutrition for learners and/or intangible outcomes such as skills for members of school management teams (SMTs). Collaborative leadership led to SMTs being more aligned, efficient, and cohesive; and teachers being more engaged and motivated. Notable positive changes at the school inspired parents and community members to become more actively involved in the school and in their children’s education. CONCLUSION: The PfP programme leads to improved leadership capacities and improved school culture which leads to improved teaching and learning and new resources for schools.Keywords: collaborative decision-making, collaborative leadership, community involvement, confidence
Procedia PDF Downloads 9132 Speeding Up Lenia: A Comparative Study Between Existing Implementations and CUDA C++ with OpenGL Interop
Authors: L. Diogo, A. Legrand, J. Nguyen-Cao, J. Rogeau, S. Bornhofen
Abstract:
Lenia is a system of cellular automata with continuous states, space and time, which surprises not only with the emergence of interesting life-like structures but also with its beauty. This paper reports ongoing research on a GPU implementation of Lenia using CUDA C++ and OpenGL Interoperability. We demonstrate how CUDA as a low-level GPU programming paradigm allows optimizing performance and memory usage of the Lenia algorithm. A comparative analysis through experimental runs with existing implementations shows that the CUDA implementation outperforms the others by one order of magnitude or more. Cellular automata hold significant interest due to their ability to model complex phenomena in systems with simple rules and structures. They allow exploring emergent behavior such as self-organization and adaptation, and find applications in various fields, including computer science, physics, biology, and sociology. Unlike classic cellular automata which rely on discrete cells and values, Lenia generalizes the concept of cellular automata to continuous space, time and states, thus providing additional fluidity and richness in emerging phenomena. In the current literature, there are many implementations of Lenia utilizing various programming languages and visualization libraries. However, each implementation also presents certain drawbacks, which serve as motivation for further research and development. In particular, speed is a critical factor when studying Lenia, for several reasons. Rapid simulation allows researchers to observe the emergence of patterns and behaviors in more configurations, on bigger grids and over longer periods without annoying waiting times. Thereby, they enable the exploration and discovery of new species within the Lenia ecosystem more efficiently. Moreover, faster simulations are beneficial when we include additional time-consuming algorithms such as computer vision or machine learning to evolve and optimize specific Lenia configurations. We developed a Lenia implementation for GPU using the C++ and CUDA programming languages, and CUDA/OpenGL Interoperability for immediate rendering. The goal of our experiment is to benchmark this implementation compared to the existing ones in terms of speed, memory usage, configurability and scalability. In our comparison we focus on the most important Lenia implementations, selected for their prominence, accessibility and widespread use in the scientific community. The implementations include MATLAB, JavaScript, ShaderToy GLSL, Jupyter, Rust and R. The list is not exhaustive but provides a broad view of the principal current approaches and their respective strengths and weaknesses. Our comparison primarily considers computational performance and memory efficiency, as these factors are critical for large-scale simulations, but we also investigate the ease of use and configurability. The experimental runs conducted so far demonstrate that the CUDA C++ implementation outperforms the other implementations by one order of magnitude or more. The benefits of using the GPU become apparent especially with larger grids and convolution kernels. However, our research is still ongoing. We are currently exploring the impact of several software design choices and optimization techniques, such as convolution with Fast Fourier Transforms (FFT), various GPU memory management scenarios, and the trade-off between speed and accuracy using single versus double precision floating point arithmetic. The results will give valuable insights into the practice of parallel programming of the Lenia algorithm, and all conclusions will be thoroughly presented in the conference paper. The final version of our CUDA C++ implementation will be published on github and made freely accessible to the Alife community for further development.Keywords: artificial life, cellular automaton, GPU optimization, Lenia, comparative analysis.
Procedia PDF Downloads 4131 Leveraging Digital Transformation Initiatives and Artificial Intelligence to Optimize Readiness and Simulate Mission Performance across the Fleet
Authors: Justin Woulfe
Abstract:
Siloed logistics and supply chain management systems throughout the Department of Defense (DOD) has led to disparate approaches to modeling and simulation (M&S), a lack of understanding of how one system impacts the whole, and issues with “optimal” solutions that are good for one organization but have dramatic negative impacts on another. Many different systems have evolved to try to understand and account for uncertainty and try to reduce the consequences of the unknown. As the DoD undertakes expansive digital transformation initiatives, there is an opportunity to fuse and leverage traditionally disparate data into a centrally hosted source of truth. With a streamlined process incorporating machine learning (ML) and artificial intelligence (AI), advanced M&S will enable informed decisions guiding program success via optimized operational readiness and improved mission success. One of the current challenges is to leverage the terabytes of data generated by monitored systems to provide actionable information for all levels of users. The implementation of a cloud-based application analyzing data transactions, learning and predicting future states from current and past states in real-time, and communicating those anticipated states is an appropriate solution for the purposes of reduced latency and improved confidence in decisions. Decisions made from an ML and AI application combined with advanced optimization algorithms will improve the mission success and performance of systems, which will improve the overall cost and effectiveness of any program. The Systecon team constructs and employs model-based simulations, cutting across traditional silos of data, aggregating maintenance, and supply data, incorporating sensor information, and applying optimization and simulation methods to an as-maintained digital twin with the ability to aggregate results across a system’s lifecycle and across logical and operational groupings of systems. This coupling of data throughout the enterprise enables tactical, operational, and strategic decision support, detachable and deployable logistics services, and configuration-based automated distribution of digital technical and product data to enhance supply and logistics operations. As a complete solution, this approach significantly reduces program risk by allowing flexible configuration of data, data relationships, business process workflows, and early test and evaluation, especially budget trade-off analyses. A true capability to tie resources (dollars) to weapon system readiness in alignment with the real-world scenarios a warfighter may experience has been an objective yet to be realized to date. By developing and solidifying an organic capability to directly relate dollars to readiness and to inform the digital twin, the decision-maker is now empowered through valuable insight and traceability. This type of educated decision-making provides an advantage over the adversaries who struggle with maintaining system readiness at an affordable cost. The M&S capability developed allows program managers to independently evaluate system design and support decisions by quantifying their impact on operational availability and operations and support cost resulting in the ability to simultaneously optimize readiness and cost. This will allow the stakeholders to make data-driven decisions when trading cost and readiness throughout the life of the program. Finally, sponsors are available to validate product deliverables with efficiency and much higher accuracy than in previous years.Keywords: artificial intelligence, digital transformation, machine learning, predictive analytics
Procedia PDF Downloads 16030 Addressing Primary Care Clinician Burnout in a Value Based Care Setting During the COVID-19 Pandemic
Authors: Robert E. Kenney, Efrain Antunez, Samuel Nodal, Ameer Malik, Richard B. Aguilar
Abstract:
Physician burnout has gained much attention during the COVID pandemic. After-hours workload, HCC coding, HEDIS metrics, and clinical documentation negatively impact career satisfaction. These and other influences have increased the rate of physicians leaving the workforce. In addition, roughly 1% of the entire physician workforce will be retiring earlier than expected based on pre-pandemic trends. The two Medical Specialties with the highest rates of burnout are Family Medicine and Primary Care. With a predicted shortage of primary care physicians looming, the need to address physician burnout is crucial. Commonly reported issues leading to clinician burnout are clerical documentation requirements, increased time working on Electronic Health Records (EHR) after hours, and a decrease in work-life balance. Clinicians experiencing burnout with physical and emotional exhaustion are at an increased likelihood of providing lower quality and less efficient patient care. This may include a lack of suitable clinical documentation, medication reconciliation, clinical assessment, and treatment plans. While the annual baseline turnover rates of physicians hover around 6-7%, the COVID pandemic profoundly disrupted the delivery of healthcare. A report found that 43% of physicians switched jobs during the initial two years of the COVID pandemic (2020 and 2021), tripling the expected average annual rate to 21.5 %/yr. During this same time, an average of 4% and 1.5% of physicians retired or left the workforce for a non-clinical career, respectively. The report notes that 35.2% made career changes for a better work-life balance and another 35% reported the reason as being unhappy with their administration’s response to the pandemic. A physician-led primary care-focused health organization, Cano Health (CH), based out of Florida, sought to preemptively address this problem by implementing several supportive measures. Working with >120 clinics and >280 PCPs from Miami to Tampa and Orlando, managing nearly 120,000 Medicare Advantage lives, CH implemented a number of changes to assist with the clinician’s workload. Supportive services such as after hour and home visits by APRNs, in-clinic care managers, and patient educators were implemented. In 2021, assistive Artificial Intelligence Software (AIS) was integrated into the EHR platform. This AIS converts free text within PDF files into a usable (copy-paste) format facilitating documentation. The software also systematically and chronologically organizes clinical data, including labs, medical records, consultations, diagnostic images, medications, etc., into an easy-to-use organ system or chronic disease state format. This reduced the excess time and documentation burden required to meet payor and CMS guidelines. A clinician Documentation Support team was employed to improve the billing/coding performance. The effects of these newly designed workflow interventions were measured via analysis of clinician turnover from CH’s hiring and termination reporting software. CH’s annualized average clinician turnover rate in 2020 and 2021 were 17.7% and 12.6%, respectively. This represents a 30% relative reduction in turnover rate compared to the reported national average of 21.5%. Retirement rates during both years were 0.1%, demonstrating a relative reduction of >95% compared to the national average (4%). This model successfully promoted the retention of clinicians in a Value-Based Care setting.Keywords: clinician burnout, COVID-19, value-based care, burnout, clinician retirement
Procedia PDF Downloads 8229 Synthetic Method of Contextual Knowledge Extraction
Authors: Olga Kononova, Sergey Lyapin
Abstract:
Global information society requirements are transparency and reliability of data, as well as ability to manage information resources independently; particularly to search, to analyze, to evaluate information, thereby obtaining new expertise. Moreover, it is satisfying the society information needs that increases the efficiency of the enterprise management and public administration. The study of structurally organized thematic and semantic contexts of different types, automatically extracted from unstructured data, is one of the important tasks for the application of information technologies in education, science, culture, governance and business. The objectives of this study are the contextual knowledge typologization, selection or creation of effective tools for extracting and analyzing contextual knowledge. Explication of various kinds and forms of the contextual knowledge involves the development and use full-text search information systems. For the implementation purposes, the authors use an e-library 'Humanitariana' services such as the contextual search, different types of queries (paragraph-oriented query, frequency-ranked query), automatic extraction of knowledge from the scientific texts. The multifunctional e-library «Humanitariana» is realized in the Internet-architecture in WWS-configuration (Web-browser / Web-server / SQL-server). Advantage of use 'Humanitariana' is in the possibility of combining the resources of several organizations. Scholars and research groups may work in a local network mode and in distributed IT environments with ability to appeal to resources of any participating organizations servers. Paper discusses some specific cases of the contextual knowledge explication with the use of the e-library services and focuses on possibilities of new types of the contextual knowledge. Experimental research base are science texts about 'e-government' and 'computer games'. An analysis of the subject-themed texts trends allowed to propose the content analysis methodology, that combines a full-text search with automatic construction of 'terminogramma' and expert analysis of the selected contexts. 'Terminogramma' is made out as a table that contains a column with a frequency-ranked list of words (nouns), as well as columns with an indication of the absolute frequency (number) and the relative frequency of occurrence of the word (in %% ppm). The analysis of 'e-government' materials showed, that the state takes a dominant position in the processes of the electronic interaction between the authorities and society in modern Russia. The media credited the main role in these processes to the government, which provided public services through specialized portals. Factor analysis revealed two factors statistically describing the used terms: human interaction (the user) and the state (government, processes organizer); interaction management (public officer, processes performer) and technology (infrastructure). Isolation of these factors will lead to changes in the model of electronic interaction between government and society. In this study, the dominant social problems and the prevalence of different categories of subjects of computer gaming in science papers from 2005 to 2015 were identified. Therefore, there is an evident identification of several types of contextual knowledge: micro context; macro context; dynamic context; thematic collection of queries (interactive contextual knowledge expanding a composition of e-library information resources); multimodal context (functional integration of iconographic and full-text resources through hybrid quasi-semantic algorithm of search). Further studies can be pursued both in terms of expanding the resource base on which they are held, and in terms of the development of appropriate tools.Keywords: contextual knowledge, contextual search, e-library services, frequency-ranked query, paragraph-oriented query, technologies of the contextual knowledge extraction
Procedia PDF Downloads 35928 White-Rot Fungi Phellinus as a Source of Antioxidant and Antitumor Agents
Authors: Yogesh Dalvi, Ruby Varghese, Nibu Varghese, C. K. Krishnan Nair
Abstract:
Introduction: The Genus Phellinus, locally known as Phansomba is a well-known traditional folk medicine. Especially, in Western Ghats of India, many tribes use several species of Phellinus for various ailments related to teeth, throat, tongue, stomach and even wound healing. It is one of the few mushrooms which play a pivotal role in Ayurvedic Dravyaguna. Aim: The present study focuses on to investigate phytochemical analysis, antioxidant, and antitumor (in vitro and in vivo) potential of Phellinus robinae from South India, Kerala Material and Methods: The present study explores the following: 1. Phellinus samples were collected from Ranni, Pathanamthitta district of Kerala state, India from Artocarpus heterophyllus Lam. and species were identified using rDNA region. 2. The fruiting body was shadow dried, powdered and extracted with 50% alcohol using water bath at 60°C which was further condensed by rotary evaporator and lyophilized at minus 40°C temperature. 3. Secondary metabolites were analyzed by using various phytochemical screening assay (Hager’s Test, Wagner’s Test, Sodium hydroxide Test, Lead acetate Test, Ferric chloride Test, Folin-ciocalteu Test, Foaming Test, Benedict’s test, Fehling’s Test and Lowry’s Test). 4. Antioxidant and free radical scavenging activity were analyzed by DPPH, FRAP and Iron chelating assay. 5. The antitumor potential of Water alcohol extract of Phellinus (PAWE) is evaluated through In vitro condition by Trypan blue dye exclusion method in DLA cell line and In vivo by murine model. Result and Discussion: Preliminary phytochemical screening by various biochemical tests revealed presence of a variety of active secondary molecules like alkaloids, flavanoids, saponins, carbohydrate, protein and phenol. In DPPH and FRAP assay PAWE showed significantly higher antioxidant activity as compared to standard Ascorbic acid. While, in Iron chelating assay, PAWE exhibits similar antioxidant activity that of Butylated Hydroxytoluene (BHT) as standard. Further, in the in vitro study, PAWE showed significant inhibition on DLA cell proliferation in dose dependent manner and showed no toxicity on mice splenocytes, when compared to standard chemotherapy drug doxorubicin. In vivo study, oral administration of PAWE showed dose dependent tumor regression in mice and also raised the immunogenicity by restoring levels of antioxidant enzymes in liver and kidney tissue. In both in vitro and in vivo gene expression studies PAWE up-regulates pro-apoptotic genes (Bax, Caspases 3, 8 and 9) and down- regulates anti-apoptotic genes (Bcl2). PAWE also down regulates inflammatory gene (Cox-2) and angiogenic gene (VEGF). Conclusion: Preliminary phytochemical screening revealed that PAWE contains various secondary metabolites which contribute to its antioxidant and free radical scavenging property as evaluated by DPPH, FRAP and Iron chelating assay. PAWE exhibits anti-proliferative activity by the induction of apoptosis through a signaling cascade of death receptor-mediated extrinsic (Caspase8 and Tnf-α), as well as mitochondria-mediated intrinsic (caspase9) and caspase pathways (Caspase3, 8 and 9) and also by regressing angiogenic factor (VEGF) without any inflammation or adverse side effects. Hence, PAWE serve as a potential antioxidant and antitumor agent.Keywords: antioxidant, antitumor, Dalton lymphoma ascites (DLA), fungi, Phellinus robinae
Procedia PDF Downloads 30427 Synthesis of Chitosan/Silver Nanocomposites: Antibacterial Properties and Tissue Regeneration for Thermal Burn Injury
Authors: B.L. España-Sánchez, E. Luna-Hernández, R.A. Mauricio-Sánchez, M.E. Cruz-Soto, F. Padilla-Vaca, R. Muñoz, L. Granados-López, L.R. Ovalle-Flores, J.L. Menchaca-Arredondo, G. Luna-Bárcenas
Abstract:
Treatment of burn injured has been considered an important clinical problem due to the fluid control and the presence of microorganisms during the healing process. Conventional treatment includes antiseptic techniques, topical medication and surgical removal of damaged skin, to avoid bacterial growth. In order to accelerate this process, different alternatives for tissue regeneration have been explored, including artificial skin, polymers, hydrogels and hybrid materials. Some requirements consider a nonreactive organic polymer with high biocompatibility and skin adherence, avoiding bacterial infections. Chitin-derivative biopolymer such as chitosan (CS) has been used in skin regeneration following third-degree burns. The biological interest of CS is associated with the improvement of tissue cell stimulation, biocompatibility and antibacterial properties. In particular, antimicrobial properties of CS can be significantly increased when is blended with nanostructured materials. Silver-based nanocomposites have gained attention in medicine due to their high antibacterial properties against pathogens, related to their high surface area/volume ratio at nanomolar concentrations. Silver nanocomposites can be blended or synthesized with chitin-derivative biopolymers in order to obtain a biodegradable/antimicrobial hybrid with improved physic-mechanical properties. In this study, nanocomposites based on chitosan/silver nanoparticles (CS/nAg) were synthesized by the in situ chemical reduction method, improving their antibacterial properties against pathogenic bacteria and enhancing the healing process in thermal burn injuries produced in an animal model. CS/nAg was prepared in solution by the chemical reduction method, using AgNO₃ as precursor. CS was dissolved in acetic acid and mixed with different molar concentrations of AgNO₃: 0.01, 0.025, 0.05 and 0.1 M. Solutions were stirred at 95°C during 20 hours, in order to promote the nAg formation. CS/nAg solutions were placed in Petri dishes and dried, to obtain films. Structural analyses confirm the synthesis of silver nanoparticles (nAg) by means of UV-Vis and TEM, with an average size of 7.5 nm and spherical morphology. FTIR analyses showed the complex formation by the interaction of hydroxyl and amine groups with metallic nanoparticles, and surface chemical analysis (XPS) shows low concentration of Ag⁰/Ag⁺ species. Topography surface analyses by means of AFM shown that hydrated CS form a mesh with an average diameter of 10 µm. Antibacterial activity against S. aureus and P. aeruginosa was improved in all evaluated conditions, such as nAg loading and interaction time. CS/nAg nanocomposites films did not show Ag⁰/Ag⁺ release in saline buffer and rat serum after exposition during 7 days. Healing process was significantly enhanced by the presence of CS/nAg nanocomposites, inducing the production of myofibloblasts, collagen remodelation, blood vessels neoformation and epidermis regeneration after 7 days of injury treatment, by means of histological and immunohistochemistry assays. The present work suggests that hydrated CS/nAg nanocomposites can be formed a mesh, improving the bacterial penetration and the contact with embedded nAg, producing complete growth inhibition after 1.5 hours. Furthermore, CS/nAg nanocomposites improve the cell tissue regeneration in thermal burn injuries induced in rats. Synthesis of antibacterial, non-toxic, and biocompatible nanocomposites can be an important issue in tissue engineering and health care applications.Keywords: antibacterial, chitosan, healing process, nanocomposites, silver
Procedia PDF Downloads 28726 Designing and Simulation of the Rotor and Hub of the Unmanned Helicopter
Authors: Zbigniew Czyz, Ksenia Siadkowska, Krzysztof Skiba, Karol Scislowski
Abstract:
Today’s progress in the rotorcraft is mostly associated with an optimization of aircraft performance achieved by active and passive modifications of main rotor assemblies and a tail propeller. The key task is to improve their performance, improve the hover quality factor for rotors but not change in specific fuel consumption. One of the tasks to improve the helicopter is an active optimization of the main rotor providing for flight stages, i.e., an ascend, flight, a descend. An active interference with the airflow around the rotor blade section can significantly change characteristics of the aerodynamic airfoil. The efficiency of actuator systems modifying aerodynamic coefficients in the current solutions is relatively high and significantly affects the increase in strength. The solution to actively change aerodynamic characteristics assumes a periodic change of geometric features of blades depending on flight stages. Changing geometric parameters of blade warping enables an optimization of main rotor performance depending on helicopter flight stages. Structurally, an adaptation of shape memory alloys does not significantly affect rotor blade fatigue strength, which contributes to reduce costs associated with an adaptation of the system to the existing blades, and gains from a better performance can easily amortize such a modification and improve profitability of such a structure. In order to obtain quantitative and qualitative data to solve this research problem, a number of numerical analyses have been necessary. The main problem is a selection of design parameters of the main rotor and a preliminary optimization of its performance to improve the hover quality factor for rotors. This design concept assumes a three-bladed main rotor with a chord of 0.07 m and radius R = 1 m. The value of rotor speed is a calculated parameter of an optimization function. To specify the initial distribution of geometric warping, a special software has been created that uses a numerical method of a blade element which respects dynamic design features such as fluctuations of a blade in its joints. A number of performance analyses as a function of rotor speed, forward speed, and altitude have been performed. The calculations were carried out for the full model assembly. This approach makes it possible to observe the behavior of components and their mutual interaction resulting from the forces. The key element of each rotor is the shaft, hub and pins holding the joints and blade yokes. These components are exposed to the highest loads. As a result of the analysis, the safety factor was determined at the level of k > 1.5, which gives grounds to obtain certification for the strength of the structure. The construction of the joint rotor has numerous moving elements in its structure. Despite the high safety factor, the places with the highest stresses, where the signs of wear and tear may appear, have been indicated. The numerical analysis carried out showed that the most loaded element is the pin connecting the modular bearing of the blade yoke with the element of the horizontal oscillation joint. The stresses in this element result in a safety factor of k=1.7. The other analysed rotor components have a safety factor of more than 2 and in the case of the shaft, this factor is more than 3. However, it must be remembered that the structure is as strong as the weakest cell is. Designed rotor for unmanned aerial vehicles adapted to work with blades with intelligent materials in its structure meets the requirements for certification testing. Acknowledgement: This work has been financed by the Polish National Centre for Research and Development under the LIDER program, Grant Agreement No. LIDER/45/0177/L-9/17/NCBR/2018.Keywords: main rotor, rotorcraft aerodynamics, shape memory alloy, materials, unmanned helicopter
Procedia PDF Downloads 158