Search results for: supervised learning algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10371

Search results for: supervised learning algorithm

8721 Measuring Self-Regulation and Self-Direction in Flipped Classroom Learning

Authors: S. A. N. Danushka, T. A. Weerasinghe

Abstract:

The diverse necessities of instruction could be addressed effectively with the support of new dimensions of ICT integrated learning such as blended learning –which is a combination of face-to-face and online instruction which ensures greater flexibility in student learning and congruity of course delivery. As blended learning has been the ‘new normality' in education, many experimental and quasi-experimental research studies provide ample of evidence on its successful implementation in many fields of studies, but it is hard to justify whether blended learning could work similarly in the delivery of technology-teacher development programmes (TTDPs). The present study is bound with the particular research uncertainty, and having considered existing research approaches, the study methodology was set to decide the efficient instructional strategies for flipped classroom learning in TTDPs. In a quasi-experimental pre-test and post-test design with a mix-method research approach, the major study objective was tested with two heterogeneous samples (N=135) identified in a virtual learning environment in a Sri Lankan university. Non-randomized informal ‘before-and-after without control group’ design was employed, and two data collection methods, identical pre-test and post-test and Likert-scale questionnaires were used in the study. Selected two instructional strategies, self-directed learning (SDL) and self-regulated learning (SRL), were tested in an appropriate instructional framework with two heterogeneous samples (pre-service and in-service teachers). Data were statistically analyzed, and an efficient instructional strategy was decided via t-test, ANOVA, ANCOVA. The effectiveness of the two instructional strategy implementation models was decided via multiple linear regression analysis. ANOVA (p < 0.05) shows that age, prior-educational qualifications, gender, and work-experiences do not impact on learning achievements of the two diverse groups of learners through the instructional strategy is changed. ANCOVA (p < 0.05) analysis shows that SDL is efficient for two diverse groups of technology-teachers than SRL. Multiple linear regression (p < 0.05) analysis shows that the staged self-directed learning (SSDL) model and four-phased model of motivated self-regulated learning (COPES Model) are efficient in the delivery of course content in flipped classroom learning.

Keywords: COPES model, flipped classroom learning, self-directed learning, self-regulated learning, SSDL model

Procedia PDF Downloads 200
8720 Adaptive Online Object Tracking via Positive and Negative Models Matching

Authors: Shaomei Li, Yawen Wang, Chao Gao

Abstract:

To improve tracking drift which often occurs in adaptive tracking, an algorithm based on the fusion of tracking and detection is proposed in this paper. Firstly, object tracking is posed as a binary classification problem and is modeled by partial least squares (PLS) analysis. Secondly, tracking object frame by frame via particle filtering. Thirdly, validating the tracking reliability based on both positive and negative models matching. Finally, relocating the object based on SIFT features matching and voting when drift occurs. Object appearance model is updated at the same time. The algorithm cannot only sense tracking drift but also relocate the object whenever needed. Experimental results demonstrate that this algorithm outperforms state-of-the-art algorithms on many challenging sequences.

Keywords: object tracking, tracking drift, partial least squares analysis, positive and negative models matching

Procedia PDF Downloads 532
8719 Interrogating Student-Teachers’ Transformative Learning Role, Resources and Journey Considering Pedagogical Reform in Teacher Education Continuums

Authors: Nji Clement Bang, Rosemary Shafack M., Kum Henry Asei, Yaro Loveline Y

Abstract:

Scholars perceive learner-centered teaching-learning reform as roles and resources in teacher education (TE) and professional outcome with transformative learning (TL) continuum dimensions. But, teaching-learning reform is fast proliferating amidst debilitating stakeholder systemic dichotomies, resources, commitment, resistance and poor quality outcome that necessitate stronger TE and professional continuums. Scholars keep seeking greater understanding of themes in teaching-learning reform, TE and professional outcome as continuums and how policymakers, student-teachers, teacher trainers and local communities concerned with initial TE can promote continuous holistic quality performance. To sustain the debate continuum and answer the overarching question, we use mixed-methods research-design with diverse literature and 409 sample-data. Onset text, interview and questionnaire analyses reveal debilitating teaching-learning reform in TE continuums that need TL revival. Follow-up focus group discussion and teaching considering TL insights reinforce holistic teaching-learning in TE. Therefore, significant increase in diverse prior-experience articulation1; critical reflection-discourse engagement2; teaching-practice interaction3; complex-activity constrain control4 and formative outcome- reintegration5 reinforce teaching-learning in learning-to-teach role-resource pathways and outcomes. Themes reiterate complex teaching-learning in TE programs that suits TL journeys and student-teachers and students cum teachers, workers/citizens become akin, transformative-learners who evolve personal and collective roles-resources towards holistic-lifelong-learning outcomes. The article could assist debate about quality teaching-learning reform through TL dimensions as TE and professional role-resource continuums.

Keywords: transformative learning perspectives, teacher education, initial teacher education, learner-centered pedagogical reform, life-long learning

Procedia PDF Downloads 76
8718 The Use of Social Networking Sites in eLearning

Authors: Clifford De Raffaele, Luana Bugeja, Serengul Smith

Abstract:

The adaptation of social networking sites within higher education has garnered significant interest in the recent years with numerous researches considering it as a possible shift from the traditional classroom based learning paradigm. Notwithstanding this increase in research and conducted studies however, the adaption of SNS based modules have failed to proliferate within Universities. This paper, commences its contribution by analyzing the various models and theories proposed in literature and amalgamates together various effective aspects for the inclusion of social technology within e-Learning. A three phased framework is further proposed which details the necessary considerations for the successful adaptation of SNS in enhancing the students learning experience. This proposal outlines the theoretical foundations which will be analyzed in practical implementation across international university campuses.

Keywords: eLearning, higher education, social network sites, student learning

Procedia PDF Downloads 340
8717 The Use of Modern Technology to Enhance English Language Teaching and Learning: An Analysis

Authors: Fazilet Alachaher (Benzerdjeb)

Abstract:

From the chalkboard to the abacus and beyond, technology has always played an important role in education. Educational technology refers to any teaching tool that helps supports learning, and given the rapid advancements in Information Technology and multimedia applications, the potential to support the teaching of foreign languages in our universities is ever greater. In language teaching and learning, we have a lot of to choose from the world of technology: TV, CDs, DVDs, Computers, the Internet, Email, and Blogs. The use of modern technologies can enrich the experience of learning a foreign language because they provide features that are not present in traditional technology. They can offer a wide range of multimedia resources, opportunities for intensive one-to-one learning in language labs and resources for authentic materials, which can be motivating to both students and teachers. The advent of Information and Communication Technology (ICT) and online interaction can also open up new range of self-access and distance learning opportunities The two last decades have witnessed a revolution due to the onset of technology, and has changed the dynamics of various industries, and has also influenced the way people live and work in society. That is why using the multimedia to create a certain context to teach English has its unique advantages. This paper tries then to analyse the necessity of multimedia technology to language teaching and brings out the problems faced by using these technologies. It also aims at making English teachers aware of the strategies to use it in an effective manner.

Keywords: strategies English teaching, multimedia technology, advantages, disadvantages, English learning

Procedia PDF Downloads 464
8716 An Improved K-Means Algorithm for Gene Expression Data Clustering

Authors: Billel Kenidra, Mohamed Benmohammed

Abstract:

Data mining technique used in the field of clustering is a subject of active research and assists in biological pattern recognition and extraction of new knowledge from raw data. Clustering means the act of partitioning an unlabeled dataset into groups of similar objects. Each group, called a cluster, consists of objects that are similar between themselves and dissimilar to objects of other groups. Several clustering methods are based on partitional clustering. This category attempts to directly decompose the dataset into a set of disjoint clusters leading to an integer number of clusters that optimizes a given criterion function. The criterion function may emphasize a local or a global structure of the data, and its optimization is an iterative relocation procedure. The K-Means algorithm is one of the most widely used partitional clustering techniques. Since K-Means is extremely sensitive to the initial choice of centers and a poor choice of centers may lead to a local optimum that is quite inferior to the global optimum, we propose a strategy to initiate K-Means centers. The improved K-Means algorithm is compared with the original K-Means, and the results prove how the efficiency has been significantly improved.

Keywords: microarray data mining, biological pattern recognition, partitional clustering, k-means algorithm, centroid initialization

Procedia PDF Downloads 190
8715 Artificial Intelligence Applications in Kahoot!

Authors: Jana, Walah, Salma, Dareen

Abstract:

This study looks at how the game-based learning platform Kahoot! has changed education, with a particular emphasis on how it incorporates artificial intelligence (AI). From humanly made questions to AI-driven features that improve the learning process, Kahoot! has changed since its 2013 introduction. The software successfully engages educators and students by delivering adaptive learning paths, regulating content, and offering individualized tests. This study also highlights the AI features of Kahoot! by contrasting it with comparable platforms like Quizizz, Socrative, Gimkit, and Nearpod. User satisfaction with Kahoot!'s "PDF to Story" and "Story Text Enhancer" functions ranges from moderate to high, according to a review of user input; yet, there are still issues with consistent accuracy and usability. The results demonstrate how AI can improve learning's effectiveness, adaptability, and interactivity while offering useful insights for educators and developers seeking to optimize educational tools.

Keywords: PDF to story feature, story text enhancer, AI-driven learning, interactive content creation

Procedia PDF Downloads 7
8714 The Algorithm of Semi-Automatic Thai Spoonerism Words for Bi-Syllable

Authors: Nutthapat Kaewrattanapat, Wannarat Bunchongkien

Abstract:

The purposes of this research are to study and develop the algorithm of Thai spoonerism words by semi-automatic computer programs, that is to say, in part of data input, syllables are already separated and in part of spoonerism, the developed algorithm is utilized, which can establish rules and mechanisms in Thai spoonerism words for bi-syllables by utilizing analysis in elements of the syllables, namely cluster consonant, vowel, intonation mark and final consonant. From the study, it is found that bi-syllable Thai spoonerism has 1 case of spoonerism mechanism, namely transposition in value of vowel, intonation mark and consonant of both 2 syllables but keeping consonant value and cluster word (if any). From the study, the rules and mechanisms in Thai spoonerism word were applied to develop as Thai spoonerism word software, utilizing PHP program. the software was brought to conduct a performance test on software execution; it is found that the program performs bi-syllable Thai spoonerism correctly or 99% of all words used in the test and found faults on the program at 1% as the words obtained from spoonerism may not be spelling in conformity with Thai grammar and the answer in Thai spoonerism could be more than 1 answer.

Keywords: algorithm, spoonerism, computational linguistics, Thai spoonerism

Procedia PDF Downloads 237
8713 Application of Neuroscience in Aligning Instructional Design to Student Learning Style

Authors: Jayati Bhattacharjee

Abstract:

Teaching is a very dynamic profession. Teaching Science is as much challenging as Learning the subject if not more. For instance teaching of Chemistry. From the introductory concepts of subatomic particles to atoms of elements and their symbols and further presenting the chemical equation and so forth is a challenge on both side of the equation Teaching Learning. This paper combines the Neuroscience of Learning and memory with the knowledge of Learning style (VAK) and presents an effective tool for the teacher to authenticate Learning. The model of ‘Working Memory’, the Visio-spatial sketchpad, the central executive and the phonological loop that transforms short-term memory to long term memory actually supports the psychological theory of Learning style i.e. Visual –Auditory-Kinesthetic. A closer examination of David Kolbe’s learning model suggests that learning requires abilities that are polar opposites, and that the learner must continually choose which set of learning abilities he or she will use in a specific learning situation. In grasping experience some of us perceive new information through experiencing the concrete, tangible, felt qualities of the world, relying on our senses and immersing ourselves in concrete reality. Others tend to perceive, grasp, or take hold of new information through symbolic representation or abstract conceptualization – thinking about, analyzing, or systematically planning, rather than using sensation as a guide. Similarly, in transforming or processing experience some of us tend to carefully watch others who are involved in the experience and reflect on what happens, while others choose to jump right in and start doing things. The watchers favor reflective observation, while the doers favor active experimentation. Any lesson plan based on the model of Prescriptive design: C+O=M (C: Instructional condition; O: Instructional Outcome; M: Instructional method). The desired outcome and conditions are independent variables whereas the instructional method is dependent hence can be planned and suited to maximize the learning outcome. The assessment for learning rather than of learning can encourage, build confidence and hope amongst the learners and go a long way to replace the anxiety and hopelessness that a student experiences while learning Science with a human touch in it. Application of this model has been tried in teaching chemistry to high school students as well as in workshops with teachers. The response received has proven the desirable results.

Keywords: working memory model, learning style, prescriptive design, assessment for learning

Procedia PDF Downloads 352
8712 Predicting Relative Performance of Sector Exchange Traded Funds Using Machine Learning

Authors: Jun Wang, Ge Zhang

Abstract:

Machine learning has been used in many areas today. It thrives at reviewing large volumes of data and identifying patterns and trends that might not be apparent to a human. Given the huge potential benefit and the amount of data available in the financial market, it is not surprising to see machine learning applied to various financial products. While future prices of financial securities are extremely difficult to forecast, we study them from a different angle. Instead of trying to forecast future prices, we apply machine learning algorithms to predict the direction of future price movement, in particular, whether a sector Exchange Traded Fund (ETF) would outperform or underperform the market in the next week or in the next month. We apply several machine learning algorithms for this prediction. The algorithms are Linear Discriminant Analysis (LDA), k-Nearest Neighbors (KNN), Decision Tree (DT), Gaussian Naive Bayes (GNB), and Neural Networks (NN). We show that these machine learning algorithms, most notably GNB and NN, have some predictive power in forecasting out-performance and under-performance out of sample. We also try to explore whether it is possible to utilize the predictions from these algorithms to outperform the buy-and-hold strategy of the S&P 500 index. The trading strategy to explore out-performance predictions does not perform very well, but the trading strategy to explore under-performance predictions can earn higher returns than simply holding the S&P 500 index out of sample.

Keywords: machine learning, ETF prediction, dynamic trading, asset allocation

Procedia PDF Downloads 100
8711 Inference for Compound Truncated Poisson Lognormal Model with Application to Maximum Precipitation Data

Authors: M. Z. Raqab, Debasis Kundu, M. A. Meraou

Abstract:

In this paper, we have analyzed maximum precipitation data during a particular period of time obtained from different stations in the Global Historical Climatological Network of the USA. One important point to mention is that some stations are shut down on certain days for some reason or the other. Hence, the maximum values are recorded by excluding those readings. It is assumed that the number of stations that operate follows zero-truncated Poisson random variables, and the daily precipitation follows a lognormal random variable. We call this model a compound truncated Poisson lognormal model. The proposed model has three unknown parameters, and it can take a variety of shapes. The maximum likelihood estimators can be obtained quite conveniently using Expectation-Maximization (EM) algorithm. Approximate maximum likelihood estimators are also derived. The associated confidence intervals also can be obtained from the observed Fisher information matrix. Simulation results have been performed to check the performance of the EM algorithm, and it is observed that the EM algorithm works quite well in this case. When we analyze the precipitation data set using the proposed model, it is observed that the proposed model provides a better fit than some of the existing models.

Keywords: compound Poisson lognormal distribution, EM algorithm, maximum likelihood estimation, approximate maximum likelihood estimation, Fisher information, skew distribution

Procedia PDF Downloads 110
8710 Digital Learning Repositories for Vocational Teaching and Knowledge Sharing

Authors: Prachyanun Nilsook, Panita Wannapiroon

Abstract:

The purpose of this research is to study a Digital Learning Repository System (DLRS) on vocational teachers and teaching in Thailand. The innobpcd.net is a DLRS being utilized by the Office of Vocational Education Commission and operationalized by the Bureau of Personnel Competency Development for vocational education teachers. The aim of the system is to support and enhance the process of vocational teaching and to improve staff development by providing teachers with a variety of network connections and information. The system provides centralized hosting and access to content, and the ability to share digital objects or files, to set permissions and controls for access to content that can be used vocational education teachers for their teaching and for their own development. The elements of DLRS include; Digital learning system, Media Library, Knowledge-based system and Mobile Application. The system aims to link vocational teachers to the most effective emerging technologies available for learning, so they are better resourced to support their vocational students. The initial results from this evaluation indicate that there is a range of services provided by the system being used by vocational teachers and this paper indicates which facilities have the greatest usage and impact on vocational teaching in Thailand.

Keywords: digital learning repositories, vocational education, knowledge sharing, learning objects

Procedia PDF Downloads 467
8709 Missing Link Data Estimation with Recurrent Neural Network: An Application Using Speed Data of Daegu Metropolitan Area

Authors: JaeHwan Yang, Da-Woon Jeong, Seung-Young Kho, Dong-Kyu Kim

Abstract:

In terms of ITS, information on link characteristic is an essential factor for plan or operation. But in practical cases, not every link has installed sensors on it. The link that does not have data on it is called “Missing Link”. The purpose of this study is to impute data of these missing links. To get these data, this study applies the machine learning method. With the machine learning process, especially for the deep learning process, missing link data can be estimated from present link data. For deep learning process, this study uses “Recurrent Neural Network” to take time-series data of road. As input data, Dedicated Short-range Communications (DSRC) data of Dalgubul-daero of Daegu Metropolitan Area had been fed into the learning process. Neural Network structure has 17 links with present data as input, 2 hidden layers, for 1 missing link data. As a result, forecasted data of target link show about 94% of accuracy compared with actual data.

Keywords: data estimation, link data, machine learning, road network

Procedia PDF Downloads 510
8708 Visualizing the Consequences of Smoking Using Augmented Reality

Authors: B. Remya Mohan, Kamal Bijlani, R. Jayakrishnan

Abstract:

Visualization in an educational context provides the learner with visual means of information. Conceptualizing certain circumstances such as consequences of smoking can be done more effectively with the help of the technology, Augmented Reality (AR). It is a new methodology for effective learning. This paper proposes an approach on how AR based on Marker Technology simulates the harmful effects of smoking and its consequences using Unity 3D game engine. The study also illustrates the impact of AR technology on students for better learning. AR technology can be used as a method to improve learning.

Keywords: augmented reality, marker technology, multi-platform, virtual buttons

Procedia PDF Downloads 578
8707 Automatic Early Breast Cancer Segmentation Enhancement by Image Analysis and Hough Transform

Authors: David Jurado, Carlos Ávila

Abstract:

Detection of early signs of breast cancer development is crucial to quickly diagnose the disease and to define adequate treatment to increase the survival probability of the patient. Computer Aided Detection systems (CADs), along with modern data techniques such as Machine Learning (ML) and Neural Networks (NN), have shown an overall improvement in digital mammography cancer diagnosis, reducing the false positive and false negative rates becoming important tools for the diagnostic evaluations performed by specialized radiologists. However, ML and NN-based algorithms rely on datasets that might bring issues to the segmentation tasks. In the present work, an automatic segmentation and detection algorithm is described. This algorithm uses image processing techniques along with the Hough transform to automatically identify microcalcifications that are highly correlated with breast cancer development in the early stages. Along with image processing, automatic segmentation of high-contrast objects is done using edge extraction and circle Hough transform. This provides the geometrical features needed for an automatic mask design which extracts statistical features of the regions of interest. The results shown in this study prove the potential of this tool for further diagnostics and classification of mammographic images due to the low sensitivity to noisy images and low contrast mammographies.

Keywords: breast cancer, segmentation, X-ray imaging, hough transform, image analysis

Procedia PDF Downloads 84
8706 Class Control Management Issues and Solutions in Interactive Learning Theories’ Efficiency and the Application Case Study: 3rd Year Primary School

Authors: Mohammed Belalia Douma

Abstract:

Interactive learning is considered as the most effective strategy of learning, it is an educational philosophy based on the learner's contribution and involvement mainly in classroom and how he interacts toward his small society “classroom”, and the level of his collaboration into challenge, discovering, games, participation, all these can be provided through the interactive learning, which aims to activate the learner's role in the operation of learning, which focuses on research and experimentation, and the learner's self-reliance in obtaining information, acquiring skills, and forming values and attitudes. Whereas not based on memorization only, but rather on developing thinking and the ability to solve problems, on teamwork and collaborative learning. With the exchange or roles - teacher to student- , when the student will be more active and performing operations more than the student under the interactive learning method; we might face a several issues dealing with class controlling management, noise, and stability of learning… etc. This research paper is observing the application of the interactive learning on reality “classroom” and answers several assumptions and analyzes the issues coming up of these strategies mainly: noise, class control…etc The research sample was about 150 student of the 3rd year primary school in “Chlef” district, Algeria, level: beginners in the range of age 08 to 10 years old . We provided a questionnaire of confidential fifteen questions and also analyzing the attitudes of learners during three months. it have witnessed as teachers a variety of strategies dealing with applying the interactive learning but with a different issues; time management, noise, uncontrolled classes, overcrowded classes. Finally, it summed up that although the active education is an inevitably effective method of teaching, however, there are drawbacks to this, in addition to the fact that not all theoretical strategies can be applied and we conclude with solutions of this case study.

Keywords: interactive learning, student, learners, strategies.

Procedia PDF Downloads 60
8705 To Gamify Learning English Academic Vocabulary Through Interactive Web-Based E-Books: International Students

Authors: Rabea Alfahad

Abstract:

Learning English academic vocabulary poses a challenge on learning English.In this study, we harnessed interactive web-based e-books, and usedgamification and collaborative responsive writingto teach English academic vocabulary. We recruited 50 international students to investigate the impact of gamification on the participants’ learning gains. In so doing, the participants were randomly assigned to two groups: one group learned English academic vocabulary with gamification, and the second group learnedthem with traditional instructional methods. We used a pre/posttest to gauge the students’ cognitive attainment. We then administered independent samples t-test to find out the impact of gamification on learning academic vocabulary. We also employed an IMMS to collect data regarding the motivational level of the students. We administered a MANOVA test to measure the motivational level of the students in both groups. The results of this study suggested that …

Keywords: english language learners, technologhy integration, teaching, gamification

Procedia PDF Downloads 125
8704 Recursive Parametric Identification of a Doubly Fed Induction Generator-Based Wind Turbine

Authors: A. El Kachani, E. Chakir, A. Ait Laachir, A. Niaaniaa, J. Zerouaoui

Abstract:

This document presents an adaptive controller based on recursive parametric identification applied to a wind turbine based on the doubly-fed induction machine (DFIG), to compensate the faults and guarantee efficient of the DFIG. The proposed adaptive controller is based on the recursive least square algorithm which considers that the best estimator for the vector parameter is the vector x minimizing a quadratic criterion. Furthermore, this method can improve the rapidity and precision of the controller based on a model. The proposed controller is validated via simulation on a 5.5 kW DFIG-based wind turbine. The results obtained seem to be good. In addition, they show the advantages of an adaptive controller based on recursive least square algorithm.

Keywords: adaptive controller, recursive least squares algorithm, wind turbine, doubly fed induction generator

Procedia PDF Downloads 292
8703 The Impact of E-Learning on Medication Administration of Nursing Students

Authors: Z. Karakus, Z. Ozer

Abstract:

Nurses are responsible for the care and treatment of individuals, as well as health maintenance and education. Medication administration is an important part of health promotion. The administration of a medicine is a common but important clinical procedure for nurses because of its complex structure. Therefore, medication errors are inevitable for nurses or nursing students. Medication errors can cause ineffective treatment, patient’s prolonged hospital stay, disablement, or death. Additionally, medication errors affect the global economy adversely by increasing health costs. Hence, preventing or decreasing of medication errors is a critical and essential issue in nursing. Nurse educators are in pursuit of new teaching methods to teach students significance of medication application. In the light of technological developments of this age, e-learning has started to be accepted as an important teaching method. E-learning is the use of electronic media and information and communication technologies in education. It has advantages such as flexibility of time and place, lower costs, faster delivery, and lower environmental impact. Students can make their own schedule and decide the learning method. This study is conducted to determine the impact of e-learning on medication administration of nursing students.

Keywords: e-learning, medication administration, nursing, nursing students

Procedia PDF Downloads 255
8702 Classroom Readiness of Open and Distance Learning Student Teachers

Authors: E. C. du Plessis

Abstract:

Teaching practice is a major component of teacher education and the preparation of teachers for the real-life classroom throughout the world. Learning is seen as a constructive process, whether it is classroom based or takes place by means of distance education. Blending theory and practice with effective education in distance context as part of situated learning is crucial. Therefore, the aim of this research was to determine distance education student teachers' classroom readiness on completion of the teaching practice modules of their Postgraduate Certificate in Education (PGCE) course. A qualitative research approach was used for the collection, analysis, and interpretation of data. A total of 15 student teachers enrolled at the College of Education of an ODL (Open and Distance Learning) institution were selected and volunteered to participate in the research. In the light of the results of the research, it is recommended that more attention is given to the interaction between mentor teachers, academic lecturers, and student teachers, as well as the expectations and responsibilities of these role-players.

Keywords: communities of practice, mentor teachers, open and distance learning, practicum, professional development, student teachers, teaching practice

Procedia PDF Downloads 163
8701 Speaker Identification by Atomic Decomposition of Learned Features Using Computational Auditory Scene Analysis Principals in Noisy Environments

Authors: Thomas Bryan, Veton Kepuska, Ivica Kostanic

Abstract:

Speaker recognition is performed in high Additive White Gaussian Noise (AWGN) environments using principals of Computational Auditory Scene Analysis (CASA). CASA methods often classify sounds from images in the time-frequency (T-F) plane using spectrograms or cochleargrams as the image. In this paper atomic decomposition implemented by matching pursuit performs a transform from time series speech signals to the T-F plane. The atomic decomposition creates a sparsely populated T-F vector in “weight space” where each populated T-F position contains an amplitude weight. The weight space vector along with the atomic dictionary represents a denoised, compressed version of the original signal. The arraignment or of the atomic indices in the T-F vector are used for classification. Unsupervised feature learning implemented by a sparse autoencoder learns a single dictionary of basis features from a collection of envelope samples from all speakers. The approach is demonstrated using pairs of speakers from the TIMIT data set. Pairs of speakers are selected randomly from a single district. Each speak has 10 sentences. Two are used for training and 8 for testing. Atomic index probabilities are created for each training sentence and also for each test sentence. Classification is performed by finding the lowest Euclidean distance between then probabilities from the training sentences and the test sentences. Training is done at a 30dB Signal-to-Noise Ratio (SNR). Testing is performed at SNR’s of 0 dB, 5 dB, 10 dB and 30dB. The algorithm has a baseline classification accuracy of ~93% averaged over 10 pairs of speakers from the TIMIT data set. The baseline accuracy is attributable to short sequences of training and test data as well as the overall simplicity of the classification algorithm. The accuracy is not affected by AWGN and produces ~93% accuracy at 0dB SNR.

Keywords: time-frequency plane, atomic decomposition, envelope sampling, Gabor atoms, matching pursuit, sparse dictionary learning, sparse autoencoder

Procedia PDF Downloads 291
8700 Comparative Connectionism: Study of the Biological Constraints of Learning Through the Manipulation of Various Architectures in a Neural Network Model under the Biological Principle of the Correlation Between Structure and Function

Authors: Giselle Maggie-Fer Castañeda Lozano

Abstract:

The main objective of this research was to explore the role of neural network architectures in simulating behavioral phenomena as a potential explanation for selective associations, specifically related to biological constraints on learning. Biological constraints on learning refer to the limitations observed in conditioning procedures, where learning is expected to occur. The study involved simulations of five different experiments exploring various phenomena and sources of biological constraints in learning. These simulations included the interaction between response and reinforcer, stimulus and reinforcer, specificity of stimulus-reinforcer associations, species differences, neuroanatomical constraints, and learning in uncontrolled conditions. The overall results demonstrated that by manipulating neural network architectures, conditions can be created to model and explain diverse biological constraints frequently reported in comparative psychology literature as learning typicities. Additionally, the simulations offer predictive content worthy of experimental testing in the pursuit of new discoveries regarding the specificity of learning. The implications and limitations of these findings are discussed. Finally, it is suggested that this research could inaugurate a line of inquiry involving the use of neural networks to study biological factors in behavior, fostering the development of more ethical and precise research practices.

Keywords: comparative psychology, connectionism, conditioning, experimental analysis of behavior, neural networks

Procedia PDF Downloads 74
8699 A Fast Version of the Generalized Multi-Directional Radon Transform

Authors: Ines Elouedi, Atef Hammouda

Abstract:

This paper presents a new fast version of the generalized Multi-Directional Radon Transform method. The new method uses the inverse Fast Fourier Transform to lead to a faster Generalized Radon projections. We prove in this paper that the fast algorithm leads to almost the same results of the eldest one but with a considerable lower time computation cost. The projection end result of the fast method is a parameterized Radon space where a high valued pixel allows the detection of a curve from the original image. The proposed fast inversion algorithm leads to an exact reconstruction of the initial image from the Radon space. We show examples of the impact of this algorithm on the pattern recognition domain.

Keywords: fast generalized multi-directional Radon transform, curve, exact reconstruction, pattern recognition

Procedia PDF Downloads 279
8698 Comparison between LQR and ANN Active Anti-Roll Control of a Single Unit Heavy Vehicle

Authors: Babesse Saad, Ameddah Djemeleddine

Abstract:

In this paper, a learning algorithm using neuronal networks to improve the roll stability and prevent the rollover in a single unit heavy vehicle is proposed. First, LQR control to keep balanced normalized rollovers, between front and rear axles, below the unity, then a data collected from this controller is used as a training basis of a neuronal regulator. The ANN controller is thereafter applied for the nonlinear side force model, and gives satisfactory results than the LQR one.

Keywords: rollover, single unit heavy vehicle, neural networks, nonlinear side force

Procedia PDF Downloads 477
8697 Heuristic Search Algorithm (HSA) for Enhancing the Lifetime of Wireless Sensor Networks

Authors: Tripatjot S. Panag, J. S. Dhillon

Abstract:

The lifetime of a wireless sensor network can be effectively increased by using scheduling operations. Once the sensors are randomly deployed, the task at hand is to find the largest number of disjoint sets of sensors such that every sensor set provides complete coverage of the target area. At any instant, only one of these disjoint sets is switched on, while all other are switched off. This paper proposes a heuristic search method to find the maximum number of disjoint sets that completely cover the region. A population of randomly initialized members is made to explore the solution space. A set of heuristics has been applied to guide the members to a possible solution in their neighborhood. The heuristics escalate the convergence of the algorithm. The best solution explored by the population is recorded and is continuously updated. The proposed algorithm has been tested for applications which require sensing of multiple target points, referred to as point coverage applications. Results show that the proposed algorithm outclasses the existing algorithms. It always finds the optimum solution, and that too by making fewer number of fitness function evaluations than the existing approaches.

Keywords: coverage, disjoint sets, heuristic, lifetime, scheduling, Wireless sensor networks, WSN

Procedia PDF Downloads 453
8696 Bidirectional Long Short-Term Memory-Based Signal Detection for Orthogonal Frequency Division Multiplexing With All Index Modulation

Authors: Mahmut Yildirim

Abstract:

This paper proposed the bidirectional long short-term memory (Bi-LSTM) network-aided deep learning (DL)-based signal detection for Orthogonal frequency division multiplexing with all index modulation (OFDM-AIM), namely Bi-DeepAIM. OFDM-AIM is developed to increase the spectral efficiency of OFDM with index modulation (OFDM-IM), a promising multi-carrier technique for communication systems beyond 5G. In this paper, due to its strong classification ability, Bi-LSTM is considered an alternative to the maximum likelihood (ML) algorithm, which is used for signal detection in the classical OFDM-AIM scheme. The performance of the Bi-DeepAIM is compared with LSTM network-aided DL-based OFDM-AIM (DeepAIM) and classic OFDM-AIM that uses (ML)-based signal detection via BER performance and computational time criteria. Simulation results show that Bi-DeepAIM obtains better bit error rate (BER) performance than DeepAIM and lower computation time in signal detection than ML-AIM.

Keywords: bidirectional long short-term memory, deep learning, maximum likelihood, OFDM with all index modulation, signal detection

Procedia PDF Downloads 75
8695 Reducing Total Harmonic Content of 9-Level Inverter by Use of Cuckoo Algorithm

Authors: Mahmoud Enayati, Sirous Mohammadi

Abstract:

In this paper, a novel procedure to find the firing angles of the multilevel inverters of supply voltage and, consequently, to decline the total harmonic distortion (THD), has been presented. In order to eliminate more harmonics in the multilevel inverters, its number of levels can be lessened or pulse width modulation waveform, in which more than one switching occur in each level, be used. Both cases complicate the non-algebraic equations and their solution cannot be performed by the conventional methods for the numerical solution of nonlinear equations such as Newton-Raphson method. In this paper, Cuckoo algorithm is used to compute the optimal firing angle of the pulse width modulation voltage waveform in the multilevel inverter. These angles should be calculated in such a way that the voltage amplitude of the fundamental frequency be generated while the total harmonic distortion of the output voltage be small. The simulation and theoretical results for the 9-levels inverter offer the high applicability of the proposed algorithm to identify the suitable firing angles for declining the low order harmonics and generate a waveform whose total harmonic distortion is very small and it is almost a sinusoidal waveform.

Keywords: evolutionary algorithms, multilevel inverters, total harmonic content, Cuckoo Algorithm

Procedia PDF Downloads 534
8694 Assessment of Rangeland Condition in a Dryland System Using UAV-Based Multispectral Imagery

Authors: Vistorina Amputu, Katja Tielboerger, Nichola Knox

Abstract:

Primary productivity in dry savannahs is constraint by moisture availability and under increasing anthropogenic pressure. Thus, considering climate change and the unprecedented pace and scale of rangeland deterioration, methods for assessing the status of such rangelands should be easy to apply, yield reliable and repeatable results that can be applied over large spatial scales. Global and local scale monitoring of rangelands through satellite data and labor-intensive field measurements respectively, are limited in accurately assessing the spatiotemporal heterogeneity of vegetation dynamics to provide crucial information that detects degradation in its early stages. Fortunately, newly emerging techniques such as unmanned aerial vehicles (UAVs), associated miniaturized sensors and improving digital photogrammetric software provide an opportunity to transcend these limitations. Yet, they have not been extensively calibrated in natural systems to encompass their complexities if they are to be integrated for long-term monitoring. Limited research using drone technology has been conducted in arid savannas, for example to assess the health status of this dynamic two-layer vegetation ecosystem. In our study, we fill this gap by testing the relationship between UAV-estimated cover of rangeland functional attributes and field data collected in discrete sample plots in a Namibian dryland savannah along a degradation gradient. The first results are based on a supervised classification performed on the ultra-high resolution multispectral imagery to distinguish between rangeland functional attributes (bare, non-woody, and woody), with a relatively good match to the field observations. Integrating UAV-based observations to improve rangeland monitoring could greatly assist in climate-adapted rangeland management.

Keywords: arid savannah, degradation gradient, field observations, narrow-band sensor, supervised classification

Procedia PDF Downloads 137
8693 Extent of Constructivist Learning in Science Classes of the College Department of Southville International School and Colleges: Implication to Effective College Teaching

Authors: Mark Edward S. Paulo

Abstract:

This study was conducted to determine the extent of constructivist learning in science classes of the college department of Southville International School and Colleges. This explores the students’ assessment of their learning when professors would give lecture and various activities in the classroom and at the same time their perception on how their professors maintain a constructivist learning environment. In this study, a total of 185 students participated. These students were enrolled in Science courses offered in the first semester of AY 2014 to 2015. Descriptive correlational method was used in this study while simple random sampling technique was utilized in getting the number of target population. The results revealed that student often observed that their professors apply constructivist approach when teaching sciences. A positive correlation was found between students’ level of learning and extent of constructivism.

Keywords: college teaching, constructivism, pedagogy, student-centered approach

Procedia PDF Downloads 253
8692 Development of Active Learning Calculus Course for Biomedical Program

Authors: Mikhail Bouniaev

Abstract:

The paper reviews design and implementation of a Calculus Course required for the Biomedical Competency Based Program developed as a joint project between The University of Texas Rio Grande Valley, and the University of Texas’ Institute for Transformational Learning, from the theoretical perspective as presented in scholarly work on active learning, formative assessment, and on-line teaching. Following a four stage curriculum development process (objective, content, delivery, and assessment), and theoretical recommendations that guarantee effectiveness and efficiency of assessment in active learning, we discuss the practical recommendations on how to incorporate a strong formative assessment component to address disciplines’ needs, and students’ major needs. In design and implementation of this project, we used Constructivism and Stage-by-Stage Development of Mental Actions Theory recommendations.

Keywords: active learning, assessment, calculus, cognitive demand, mathematics, stage-by-stage development of mental action theory

Procedia PDF Downloads 362