Search results for: similarity matrix
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2853

Search results for: similarity matrix

1203 Tool for Maxillary Sinus Quantification in Computed Tomography Exams

Authors: Guilherme Giacomini, Ana Luiza Menegatti Pavan, Allan Felipe Fattori Alves, Marcela de Oliveira, Fernando Antonio Bacchim Neto, José Ricardo de Arruda Miranda, Seizo Yamashita, Diana Rodrigues de Pina

Abstract:

The maxillary sinus (MS), part of the paranasal sinus complex, is one of the most enigmatic structures in modern humans. The literature has suggested that MSs function as olfaction accessories, to heat or humidify inspired air, for thermoregulation, to impart resonance to the voice and others. Thus, the real function of the MS is still uncertain. Furthermore, the MS anatomy is complex and varies from person to person. Many diseases may affect the development process of sinuses. The incidence of rhinosinusitis and other pathoses in the MS is comparatively high, so, volume analysis has clinical value. Providing volume values for MS could be helpful in evaluating the presence of any abnormality and could be used for treatment planning and evaluation of the outcome. The computed tomography (CT) has allowed a more exact assessment of this structure, which enables a quantitative analysis. However, this is not always possible in the clinical routine, and if possible, it involves much effort and/or time. Therefore, it is necessary to have a convenient, robust, and practical tool correlated with the MS volume, allowing clinical applicability. Nowadays, the available methods for MS segmentation are manual or semi-automatic. Additionally, manual methods present inter and intraindividual variability. Thus, the aim of this study was to develop an automatic tool to quantity the MS volume in CT scans of paranasal sinuses. This study was developed with ethical approval from the authors’ institutions and national review panels. The research involved 30 retrospective exams of University Hospital, Botucatu Medical School, São Paulo State University, Brazil. The tool for automatic MS quantification, developed in Matlab®, uses a hybrid method, combining different image processing techniques. For MS detection, the algorithm uses a Support Vector Machine (SVM), by features such as pixel value, spatial distribution, shape and others. The detected pixels are used as seed point for a region growing (RG) segmentation. Then, morphological operators are applied to reduce false-positive pixels, improving the segmentation accuracy. These steps are applied in all slices of CT exam, obtaining the MS volume. To evaluate the accuracy of the developed tool, the automatic method was compared with manual segmentation realized by an experienced radiologist. For comparison, we used Bland-Altman statistics, linear regression, and Jaccard similarity coefficient. From the statistical analyses for the comparison between both methods, the linear regression showed a strong association and low dispersion between variables. The Bland–Altman analyses showed no significant differences between the analyzed methods. The Jaccard similarity coefficient was > 0.90 in all exams. In conclusion, the developed tool to quantify MS volume proved to be robust, fast, and efficient, when compared with manual segmentation. Furthermore, it avoids the intra and inter-observer variations caused by manual and semi-automatic methods. As future work, the tool will be applied in clinical practice. Thus, it may be useful in the diagnosis and treatment determination of MS diseases. Providing volume values for MS could be helpful in evaluating the presence of any abnormality and could be used for treatment planning and evaluation of the outcome. The computed tomography (CT) has allowed a more exact assessment of this structure which enables a quantitative analysis. However, this is not always possible in the clinical routine, and if possible, it involves much effort and/or time. Therefore, it is necessary to have a convenient, robust and practical tool correlated with the MS volume, allowing clinical applicability. Nowadays, the available methods for MS segmentation are manual or semi-automatic. Additionally, manual methods present inter and intraindividual variability. Thus, the aim of this study was to develop an automatic tool to quantity the MS volume in CT scans of paranasal sinuses. This study was developed with ethical approval from the authors’ institutions and national review panels. The research involved 30 retrospective exams of University Hospital, Botucatu Medical School, São Paulo State University, Brazil. The tool for automatic MS quantification, developed in Matlab®, uses a hybrid method, combining different image processing techniques. For MS detection, the algorithm uses a Support Vector Machine (SVM), by features such as pixel value, spatial distribution, shape and others. The detected pixels are used as seed point for a region growing (RG) segmentation. Then, morphological operators are applied to reduce false-positive pixels, improving the segmentation accuracy. These steps are applied in all slices of CT exam, obtaining the MS volume. To evaluate the accuracy of the developed tool, the automatic method was compared with manual segmentation realized by an experienced radiologist. For comparison, we used Bland-Altman statistics, linear regression and Jaccard similarity coefficient. From the statistical analyses for the comparison between both methods, the linear regression showed a strong association and low dispersion between variables. The Bland–Altman analyses showed no significant differences between the analyzed methods. The Jaccard similarity coefficient was > 0.90 in all exams. In conclusion, the developed tool to automatically quantify MS volume proved to be robust, fast and efficient, when compared with manual segmentation. Furthermore, it avoids the intra and inter-observer variations caused by manual and semi-automatic methods. As future work, the tool will be applied in clinical practice. Thus, it may be useful in the diagnosis and treatment determination of MS diseases.

Keywords: maxillary sinus, support vector machine, region growing, volume quantification

Procedia PDF Downloads 503
1202 Synthesis and Characterization of Nanocellulose Based Bio-Composites

Authors: Krishnakant Bhole, Neerakallu D. Shivakumar, Shakti Singh Chauhan, Sanketh Tonannavar, Rajath S

Abstract:

Synthesis of natural-based composite materials is state of the art. This work discusses the preparation and characterization of cellulose nanofibers (CNF) extracted from the bamboo pulp using TEMPO-oxidization and high-pressure homogenization methods. Bio-composites are prepared using synthesized CNF and bamboo particles. Nanocellulose prepared is characterized using SEM and XRD for morphological and crystallinity analysis, and the formation of fibers at the nano level is ensured. Composite specimens are fabricated using these natural sources and subjected to tensile and flexural tests to characterize the mechanical properties such as modulus of elasticity (MOE), modulus of rupture (MOR), and interfacial strength. Further, synthesized nanocellulose is used as a binding agent to prepare particleboards using various natural sources like bamboo, areca nut, and banana in the form of fibers. From the results, it can be inferred that nanocellulose prepared from bamboo pulp acts as a binding agent for making bio-composites. Hence, the concept of using matrix and reinforcement derived from natural sources can be used to prepare green composites that are highly degradable.

Keywords: nanocellulose, biocomposite, CNF, bamboo

Procedia PDF Downloads 85
1201 High Harmonics Generation in Hexagonal Graphene Quantum Dots

Authors: Armenuhi Ghazaryan, Qnarik Poghosyan, Tadevos Markosyan

Abstract:

We have considered the high-order harmonic generation in-plane graphene quantum dots of hexagonal shape by the independent quasiparticle approximation-tight binding model. We have investigated how such a nonlinear effect is affected by a strong optical wave field, quantum dot typical band gap and lateral size, and dephasing processes. The equation of motion for the density matrix is solved by performing the time integration with the eight-order Runge-Kutta algorithm. If the optical wave frequency is much less than the quantum dot intrinsic band gap, the main aspects of multiphoton high harmonic emission in quantum dots are revealed. In such a case, the dependence of the cutoff photon energy on the strength of the optical pump wave is almost linear. But when the wave frequency is comparable to the bandgap of the quantum dot, the cutoff photon energy shows saturation behavior with an increase in the wave field strength.

Keywords: strong wave field, multiphoton, bandgap, wave field strength, nanostructure

Procedia PDF Downloads 151
1200 Effect of Steel Fibers on Flexural Behavior of Normal and High Strength Concrete

Authors: K. M. Aldossari, W. A. Elsaigh, M. J. Shannag

Abstract:

An experimental study was conducted to investigate the effect of hooked-end steel fibers on the flexural behavior of normal and high strength concrete matrices. The fiber content appropriate for the concrete matrices investigated was also determined based on flexural tests on standard prisms. Parameters investigated include: Matrix compressive strength ranging from 45 MPa to 70 MPa, corresponding to normal and high strength concrete matrices respectively; Fiber volume fraction including 0, 0.5%, 0.76%, and 1%, equivalent to 0, 40, 60, and 80 kg/m3 of hooked-end steel fibers respectively. Test results indicated that flexural strength and toughness of normal and high strength concrete matrices were significantly improved with the increase in the fiber content added; Whereas a slight improvement in compressive strength was observed for the same matrices. Furthermore, the test results indicated that the effect of increasing the fiber content was more pronounced on increasing the flexural strength of high strength concrete than that of normal concrete.

Keywords: concrete, flexural strength, toughness, steel fibers

Procedia PDF Downloads 492
1199 Efficient Monolithic FEM for Compressible Flow and Conjugate Heat Transfer

Authors: Santhosh A. K.

Abstract:

This work presents an efficient monolithic finite element strategy for solving thermo-fluid-structure interaction problems involving compressible fluids and linear-elastic structure. This formulation uses displacement variables for structure and velocity variables for the fluid, with no additional variables required to ensure traction, velocity, temperature, and heat flux continuity at the fluid-structure interface. Rate of convergence in each time step is quadratic, which is achieved in this formulation by deriving an exact tangent stiffness matrix. The robustness and good performance of the method is ascertained by applying the proposed strategy on a wide spectrum of problems taken from the literature pertaining to steady, transient, two dimensional, axisymmetric, and three dimensional fluid flow and conjugate heat transfer. It is shown that the current formulation gives excellent results on all the case studies conducted, which includes problems involving compressibility effects as well as problems where fluid can be treated as incompressible.

Keywords: linear thermoelasticity, compressible flow, conjugate heat transfer, monolithic FEM

Procedia PDF Downloads 198
1198 Mechanical Environment of the Aortic Valve and Mechanobiology

Authors: Rania Abdulkareem Aboubakr Mahdaly Ammar

Abstract:

The aortic valve (AV) is a complex mechanical environment that includes flexure, tension, pressure and shear stress forces to blood flow during cardiac cycle. This mechanical environment regulates AV tissue structure by constantly renewing and remodeling the phenotype. In vitro, ex vivo and in vivo studies have explained that pathological states such as hypertension and congenital defects like bicuspid AV ( BAV ) can potentially alter the AV’s mechanical environment, triggering a cascade of remodeling, inflammation and calcification activities in AV tissue. Changes in mechanical environments are first sent by the endothelium that induces changes in the extracellular matrix, and triggers cell differentiation and activation. However, the molecular mechanism of this process is not very well understood. Understanding these mechanisms is critical for the development of effective medical based therapies. Recently, there have been some interesting studies on characterizing the hemodynamics associated with AV, especially in pathologies like BAV, using different experimental and numerical methods. Here, we review the current knowledge of the local AV mechanical environment and its effect on valve biology, focusing on in vitro and ex vivo approaches.

Keywords: aortic valve mechanobiology, bicuspid calcification, pressure stretch, shear stress

Procedia PDF Downloads 363
1197 Deep learning with Noisy Labels : Learning True Labels as Discrete Latent Variable

Authors: Azeddine El-Hassouny, Chandrashekhar Meshram, Geraldin Nanfack

Abstract:

In recent years, learning from data with noisy labels (Label Noise) has been a major concern in supervised learning. This problem has become even more worrying in Deep Learning, where the generalization capabilities have been questioned lately. Indeed, deep learning requires a large amount of data that is generally collected by search engines, which frequently return data with unreliable labels. In this paper, we investigate the Label Noise in Deep Learning using variational inference. Our contributions are : (1) exploiting Label Noise concept where the true labels are learnt using reparameterization variational inference, while observed labels are learnt discriminatively. (2) the noise transition matrix is learnt during the training without any particular process, neither heuristic nor preliminary phases. The theoretical results shows how true label distribution can be learned by variational inference in any discriminate neural network, and the effectiveness of our approach is proved in several target datasets, such as MNIST and CIFAR32.

Keywords: label noise, deep learning, discrete latent variable, variational inference, MNIST, CIFAR32

Procedia PDF Downloads 125
1196 Polyhedral Oligomeric Silsesquioxane in Poly Lactic Acid and Poly Butylene Adipate-Co-Terephthalate Blend

Authors: Elahe Moradi, Hoseinali A. Khonakdar

Abstract:

The escalating interest in renewable polymers is undeniable, albeit accompanied by inherent challenges. In our study, we endeavored to make a significant contribution to environmental conservation by introducing an eco-friendly structure, developed through an innovative approach. Specifically, we enhanced the compatibility between two immiscible polymers, namely poly (lactic acid) (PLA) and poly (butylene adipate-co-terephthalate) (PBAT). Our strategy involved the use of polyhedral oligomeric silsesquioxanes (POSS) nanoparticles, equipped with an epoxy functional group (Epoxy-POSS), to accomplish this objective with solution casting method. The incorporation of 1% nanoparticles into the PLA blend resulted in a decrease in its cold crystallization temperature. Furthermore, these nanoparticles possess the requisite capability to enhance molecular mobility, facilitated by the induction of a lubrication effect. The emergence of a PLA-CO-POSS-CO-PBAT structure at the interface between PLA and PBAT led to a significant amplification of the interactions at the interface of the matrix and the dispersed phase.

Keywords: compatibilization, thermal behavior, structure-properties, nanocomposite, PLA, PBAT

Procedia PDF Downloads 52
1195 Exact Energy Spectrum and Expectation Values of the Inverse Square Root Potential Model

Authors: Benedict Ita, Peter Okoi

Abstract:

In this work, the concept of the extended Nikiforov-Uvarov technique is discussed and employed to obtain the exact bound state energy eigenvalues and the corresponding normalized eigenfunctions of the inverse square root potential. With expressions for the exact energy eigenvalues and corresponding eigenfunctions, the expressions for the expectation values of the inverse separation-squared, kinetic energy, and the momentum-squared of the potential are presented using the Hellmann Feynman theorem. For visualization, algorithms written and implemented in Python language are used to generate tables and plots for l-states of the energy eigenvalues and some expectation values. The results obtained here may find suitable applications in areas like atomic and molecular physics, chemical physics, nuclear physics, and solid-state physics.

Keywords: Schrodinger equation, Nikoforov-Uvarov method, inverse square root potential, diatomic molecules, Python programming, Hellmann-Feynman theorem, second order differential equation, matrix algebra

Procedia PDF Downloads 16
1194 Preparation of Water Hyacinth and Oil Palm Fiber for Plastic Waste Composite

Authors: Pattamaphorn Phuangngamphan, Rewadee Anuwattana, Narumon Soparatana, Nestchanok Yongpraderm, Atiporn Jinpayoon, Supinya Sutthima, Saroj Klangkongsub, Worapong Pattayawan

Abstract:

This research aims to utilize the agricultural waste and plastic waste in Thailand in a study of the optimum conditions for preparing composite materials from water hyacinth and oil palm fiber and plastic waste in landfills. The water hyacinth and oil palm fiber were prepared by alkaline treatment with NaOH (5, 15 wt%) at 25-60 °C for 1 h. The treated fiber (5 and 10 phr) was applied to plastic waste composite. The composite was prepared by using a screw extrusion process from 185 °C to 200 °C with a screw speed of 60 rpm. The result confirmed that alkaline treatment can remove lignin, hemicellulose and other impurities on the fiber surface and also increase the cellulose content. The optimum condition of composite material is 10 phr of fiber coupling with 3 wt% PE-g-MA as compatibilizer. The composite of plastic waste and oil palm fiber has good adhesion between fiber and plastic matrix. The PE-g-MA has improved fiber-plastic interaction. The results suggested that the composite material from plastic waste and agricultural waste has the potential to be used as value-added products.

Keywords: agricultural waste, waste utilization, biomaterials, cellulose fiber, composite material

Procedia PDF Downloads 418
1193 Microstructure and Mechanical Properties of Mg-Zn Alloys

Authors: Young Sik Kim, Tae Kwon Ha

Abstract:

Effect of Zn addition on the microstructure and mechanical properties of Mg-Zn alloys with Zn contents from 6 to 10 weight percent was investigated in this study. Through calculation of phase equilibria of Mg-Zn alloys, carried out by using FactSage® and FTLite database, solution treatment temperature was decided as temperatures from 300 to 400oC, where supersaturated solid solution can be obtained. Solid solution treatment of Mg-Zn alloys was successfully conducted at 380oC and supersaturated microstructure with all beta phase resolved into matrix was obtained. After solution treatment, hot rolling was successfully conducted by reduction of 60%. Compression and tension tests were carried out at room temperature on the samples as-cast, solution treated, hot-rolled and recrystallized after rolling. After solid solution treatment, each alloy was annealed at temperatures of 180 and 200oC for time intervals from 1 min to 48 hrs and hardness of each condition was measured by micro-Vickers method. Peak aging conditions were deduced as at the temperature of 200oC for 10 hrs. By addition of Zn by 10 weight percent, hardness and strength were enhanced.

Keywords: Mg-Zn alloy, heat treatment, microstructure, mechanical properties, hardness

Procedia PDF Downloads 276
1192 Identification of miRNA-miRNA Interactions between Virus and Host in Human Cytomegalovirus Infection

Authors: Kai-Yao Huang, Tzong-Yi Lee, Pin-Hao Ho, Tzu-Hao Chang, Cheng-Wei Chang

Abstract:

Background: Human cytomegalovirus (HCMV) infects much people around the world, and there were many researches mention that many diseases were caused by HCMV. To understand the mechanism of HCMV lead to diseases during infection. We observe a microRNA (miRNA) – miRNA interaction between HCMV and host during infection. We found HCMV miRNA sequence component complementary with host miRNA precursors, and we also found that the host miRNA abundances were decrease in HCMV infection. Hence, we focus on the host miRNA which may target by the other HCMV miRNA to find theirs target mRNAs expression and analysis these mRNAs affect what kind of signaling pathway. Interestingly, we found the affected mRNA play an important role in some diseases related pathways, and these diseases had been annotated by HCMV infection. Results: From our analysis procedure, we found 464 human miRNAs might be targeted by 26 HCMV miRNAs and there were 291 human miRNAs shows the concordant decrease trend during HCMV infection. For case study, we found hcmv-miR-US22-5p may regulate hsa-mir-877 and we analysis the KEGG pathway which built by hsa-mir-877 validate target mRNA. Additionally, through survey KEGG Disease database found that these mRNA co-regulate some disease related pathway for instance cancer, nerve disease. However, there were studies annotated that HCMV infection casuse cancer and Alzheimer. Conclusions: This work supply a different scenario of miRNA target interactions(MTIs). In previous study assume miRNA only target to other mRNA. Here we wonder there is possibility that miRNAs might regulate non-mRNA targets, like other miRNAs. In this study, we not only consider the sequence similarity with HCMV miRNAs and human miRNA precursors but also the expression trend of these miRNAs. Then we analysis the human miRNAs validate target mRNAs and its associated KEGG pathway. Finally, we survey related works to validate our investigation.

Keywords: human cytomegalovirus, HCMV, microRNA, miRNA

Procedia PDF Downloads 433
1191 Mechanical Performances and Viscoelastic Behaviour of Starch-Grafted-Polypropylene/Kenaf Fibres Composites

Authors: A. Hamma, A. Pegoretti

Abstract:

The paper focuses on the evaluation of mechanical performances and viscoelastic behaviour of starch-grafted-PP reinforced with kenaf fibres. Investigations were carried out on composites prepared by melt compounding and compression molding. Two aspects have been taken into account, the effects of various fibres loading rates (10, 20 and 30 wt.%) and the fibres aspect ratios (L/D=30 and 160). Good fibres/matrix interaction has been evidenced by SEM observations. However, processing induced variation of fibre length quantified by optical microscopy observations. Tensile modulus and ultimate properties, hardness and tensile impact stress, were found to remarkably increase with fibre loading. Moreover, short term tensile creep tests have proven that kenaf fibres improved considerably the creep stability. Modelling of creep behaviour by a four parameter Burger model was successfully used. An empirical equation involving Halpin-Tsai semi empirical model was also used to predict the elastic modulus of composites.

Keywords: mechanical properties, creep, fibres, thermoplastic composites, starch-grafted-PP

Procedia PDF Downloads 259
1190 A Serious Game to Upgrade the Learning of Organizational Skills in Nursing Schools

Authors: Benoit Landi, Hervé Pingaud, Jean-Benoit Culie, Michel Galaup

Abstract:

Serious games have been widely disseminated in the field of digital learning. They have proved their utility in improving skills through virtual environments that simulate the field where new competencies have to be improved and assessed. This paper describes how we created CLONE, a serious game whose purpose is to help nurses create an efficient work plan in a hospital care unit. In CLONE, the number of patients to take care of is similar to the reality of their job, going far beyond what is currently practiced in nurse school classrooms. This similarity with the operational field increases proportionally the number of activities to be scheduled. Moreover, very often, the team of nurses is composed of regular nurses and nurse assistants that must share the work with respect to the regulatory obligations. Therefore, on the one hand, building a short-term planning is a complex task with a large amount of data to deal with, and on the other, good clinical practices have to be systematically applied. We present how reference planning has been defined by addressing an optimization problem formulation using the expertise of teachers. This formulation ensures the gameplay feasibility for the scenario that has been produced and enhanced throughout the game design process. It was also crucial to steer a player toward a specific gaming strategy. As one of our most important learning outcomes is a clear understanding of the workload concept, its factual calculation for each caregiver along time and its inclusion in the nurse reasoning during planning elaboration are focal points. We will demonstrate how to modify the game scenario to create a digital environment in which these somewhat abstract principles can be understood and applied. Finally, we give input on an experience we had on a pilot of a thousand undergraduate nursing students.

Keywords: care planning, workload, game design, hospital nurse, organizational skills, digital learning, serious game

Procedia PDF Downloads 189
1189 Identification of CLV for Online Shoppers Using RFM Matrix: A Case Based on Features of B2C Architecture

Authors: Riktesh Srivastava

Abstract:

Online Shopping have established an astonishing evolution in the last few years. And it is now apparent that B2C architecture is becoming progressively imperative channel for even traditional brick and mortar type traders as well. In this completion knowing customers and predicting behavior are extremely important. More important, when any customer logs onto the B2C architecture, the traces of their buying patterns can be stored and used for future predictions. Such a prediction is called Customer Lifetime Value (CLV). Earlier, we used Net Present Value to do so, however, it ignores two important aspects of B2C architecture, “market risks” and “big amount of customer data”. Now, we use RFM- Recency, Frequency and Monetary Value to estimate the CLV, and as the term exemplifies, market risks, is well sheltered. Big Data Analysis is also roofed in RFM, which gives real exploration of the Big Data and lead to a better estimation for future cash flow from customers. In the present paper, 6 factors (collected from varied sources) are used to determine as to what attracts the customers to the B2C architecture. For these 6 factors, RFM is computed for 3 years (2013, 2014 and 2015) respectively. CLV and Revenue are the two parameters defined using RFM analysis, which gives the clear picture of the future predictions.

Keywords: CLV, RFM, revenue, recency, frequency, monetary value

Procedia PDF Downloads 219
1188 Identification of Shocks from Unconventional Monetary Policy Measures

Authors: Margarita Grushanina

Abstract:

After several prominent central banks including European Central Bank (ECB), Federal Reserve System (Fed), Bank of Japan and Bank of England employed unconventional monetary policies in the aftermath of the financial crisis of 2008-2009 the problem of identification of the effects from such policies became of great interest. One of the main difficulties in identification of shocks from unconventional monetary policy measures in structural VAR analysis is that they often are anticipated, which leads to a non-fundamental MA representation of the VAR model. Moreover, the unconventional monetary policy actions may indirectly transmit to markets information about the future stance of the interest rate, which raises a question of the plausibility of the assumption of orthogonality between shocks from unconventional and conventional policy measures. This paper offers a method of identification that takes into account the abovementioned issues. The author uses factor-augmented VARs to increase the information set and identification through heteroskedasticity of error terms and rank restrictions on the errors’ second moments’ matrix to deal with the cross-correlation of the structural shocks.

Keywords: factor-augmented VARs, identification through heteroskedasticity, monetary policy, structural VARs

Procedia PDF Downloads 347
1187 Recycling of Plastic Waste into Composites Using Kaolin as Reinforcement

Authors: Gloria P. Manu, Johnson K. Efavi, Abu Yaya, Grace K. Arkorful, Frank Godson

Abstract:

Plastics have been used extensively in both food and water packaging and other applications because of their inherent properties of low bulk densities and inertness as well as its low cost. Waste management of these plastics after usage is troubling in Ghana. One way of addressing the environmental problems associated with these plastic wastes is by recycling into useful products such as composites for energy and construction applications using natural or local materials as reinforcement. In this work, composites have been formed from waste low-density polyethylene (LDPE) and kaolin at temperatures as low as 70 ֯C using low-cost solvents like kerosene. Chemical surface modifications have been employed to improve the interfacial bonding resulting in the enhancement of properties of the composites. Kaolin particles of sizes ≤ 90µm were dispersed in the polyethylene matrix. The content of the LDPE was varied between 10, 20, 30, 40, 50, 60, and 70 %wt. Results obtained indicated that all the composites exhibited impressive compressive and flexural strengths with the 50%wt. composition having the highest strength. The hardness value of the composites increased as the polyethylene composition reduces and that of the kaolin increased. The average density and water of absorption of the composites were 530kg/m³ and 1.3% respectively.

Keywords: polyethylene, recycling, waste, composite, kaolin

Procedia PDF Downloads 169
1186 A Clustering-Based Approach for Weblog Data Cleaning

Authors: Amine Ganibardi, Cherif Arab Ali

Abstract:

This paper addresses the data cleaning issue as a part of web usage data preprocessing within the scope of Web Usage Mining. Weblog data recorded by web servers within log files reflect usage activity, i.e., End-users’ clicks and underlying user-agents’ hits. As Web Usage Mining is interested in End-users’ behavior, user-agents’ hits are referred to as noise to be cleaned-off before mining. Filtering hits from clicks is not trivial for two reasons, i.e., a server records requests interlaced in sequential order regardless of their source or type, website resources may be set up as requestable interchangeably by end-users and user-agents. The current methods are content-centric based on filtering heuristics of relevant/irrelevant items in terms of some cleaning attributes, i.e., website’s resources filetype extensions, website’s resources pointed by hyperlinks/URIs, http methods, user-agents, etc. These methods need exhaustive extra-weblog data and prior knowledge on the relevant and/or irrelevant items to be assumed as clicks or hits within the filtering heuristics. Such methods are not appropriate for dynamic/responsive Web for three reasons, i.e., resources may be set up to as clickable by end-users regardless of their type, website’s resources are indexed by frame names without filetype extensions, web contents are generated and cancelled differently from an end-user to another. In order to overcome these constraints, a clustering-based cleaning method centered on the logging structure is proposed. This method focuses on the statistical properties of the logging structure at the requested and referring resources attributes levels. It is insensitive to logging content and does not need extra-weblog data. The used statistical property takes on the structure of the generated logging feature by webpage requests in terms of clicks and hits. Since a webpage consists of its single URI and several components, these feature results in a single click to multiple hits ratio in terms of the requested and referring resources. Thus, the clustering-based method is meant to identify two clusters based on the application of the appropriate distance to the frequency matrix of the requested and referring resources levels. As the ratio clicks to hits is single to multiple, the clicks’ cluster is the smallest one in requests number. Hierarchical Agglomerative Clustering based on a pairwise distance (Gower) and average linkage has been applied to four logfiles of dynamic/responsive websites whose click to hits ratio range from 1/2 to 1/15. The optimal clustering set on the basis of average linkage and maximum inter-cluster inertia results always in two clusters. The evaluation of the smallest cluster referred to as clicks cluster under the terms of confusion matrix indicators results in 97% of true positive rate. The content-centric cleaning methods, i.e., conventional and advanced cleaning, resulted in a lower rate 91%. Thus, the proposed clustering-based cleaning outperforms the content-centric methods within dynamic and responsive web design without the need of any extra-weblog. Such an improvement in cleaning quality is likely to refine dependent analysis.

Keywords: clustering approach, data cleaning, data preprocessing, weblog data, web usage data

Procedia PDF Downloads 168
1185 Graph Clustering Unveiled: ClusterSyn - A Machine Learning Framework for Predicting Anti-Cancer Drug Synergy Scores

Authors: Babak Bahri, Fatemeh Yassaee Meybodi, Changiz Eslahchi

Abstract:

In the pursuit of effective cancer therapies, the exploration of combinatorial drug regimens is crucial to leverage synergistic interactions between drugs, thereby improving treatment efficacy and overcoming drug resistance. However, identifying synergistic drug pairs poses challenges due to the vast combinatorial space and limitations of experimental approaches. This study introduces ClusterSyn, a machine learning (ML)-powered framework for classifying anti-cancer drug synergy scores. ClusterSyn employs a two-step approach involving drug clustering and synergy score prediction using a fully connected deep neural network. For each cell line in the training dataset, a drug graph is constructed, with nodes representing drugs and edge weights denoting synergy scores between drug pairs. Drugs are clustered using the Markov clustering (MCL) algorithm, and vectors representing the similarity of drug pairs to each cluster are input into the deep neural network for synergy score prediction (synergy or antagonism). Clustering results demonstrate effective grouping of drugs based on synergy scores, aligning similar synergy profiles. Subsequently, neural network predictions and synergy scores of the two drugs on others within their clusters are used to predict the synergy score of the considered drug pair. This approach facilitates comparative analysis with clustering and regression-based methods, revealing the superior performance of ClusterSyn over state-of-the-art methods like DeepSynergy and DeepDDS on diverse datasets such as Oniel and Almanac. The results highlight the remarkable potential of ClusterSyn as a versatile tool for predicting anti-cancer drug synergy scores.

Keywords: drug synergy, clustering, prediction, machine learning., deep learning

Procedia PDF Downloads 75
1184 Association of Photosynthetic Pigment with Oceanic Physical Parameters in the North-eastern Bay of Bengal

Authors: Saif Khan Sunny, Md. Masud-ul-alam

Abstract:

This study presents the association of photosynthetic pigment: chlorophyll-a (chl-a) and physical parameters: sea surface temperature (SST), dissolved oxygen (DO), sea surface salinity (SSS), and total dissolved solids (TDS) in the northeastern Bay of Bengal. At 15 sampling stations in the bay near the eastern coast of Teknaf, photosynthetic pigment and environmental variables were measured for surface water where acetone extraction was used for ch-a. Samples of seawater were taken in March 2021, where chlorophyll-a content varies from 0.554 to 9.696 mg/m3 in surface water over the sampling site. Higher concentrations may be attributable to the nutrient supply of hatcheries and the delivery of fluvial input. The observed SST, DO, SSS, and TDS in the north-eastern Bay of Bengal are 26.65 to 28.6 °C, 6.26 to 8.03 mg/l, 29.3 to 33.1 PSU, and 22.4 to 25.3 ppm, respectively. Temperature and chl-a had a positive association (0.18), according to an analysis of the cross-correlation matrix. Again, a negative correlation (0.34) between dissolved oxygen and temperature is significant at p < 0.05. Total dissolved solids and dissolved oxygen have a significant negative correlation (0.70) where p is < 0.001.

Keywords: photosynthetic pigment, nutrient supply, chlorophyll, physical parameters

Procedia PDF Downloads 89
1183 Effect of Linear Thermal Gradient on Steady-State Creep Behavior of Isotropic Rotating Disc

Authors: Minto Rattan, Tania Bose, Neeraj Chamoli

Abstract:

The present paper investigates the effect of linear thermal gradient on the steady-state creep behavior of rotating isotropic disc using threshold stress based Sherby’s creep law. The composite discs made of aluminum matrix reinforced with silicon carbide particulate has been taken for analysis. The stress and strain rate distributions have been calculated for discs rotating at linear thermal gradation using von Mises’ yield criterion. The material parameters have been estimated by regression fit of the available experimental data. The results are displayed and compared graphically in designer friendly format for the above said temperature profile with the disc operating under uniform temperature profile. It is observed that radial and tangential stresses show minor variation and the strain rates vary significantly in the presence of thermal gradation as compared to disc having uniform temperature.

Keywords: creep, isotropic, steady-state, thermal gradient

Procedia PDF Downloads 267
1182 Molecular Basis of Anti-Biofilm and Anti-Adherence Activity of Syzygium aromaticum on Streptococcus mutans: In Vitro and in Vivo Study

Authors: Mohd Adil, Rosina Khan, Asad U. Khan, Vasantha Rupasinghe HP

Abstract:

The study examined the effects of Syzygium aromaticum extracts on the virulence properties of Streptococcus mutans. The activity of glucosyltransferases in the presence of crude and diethylether fraction was reduced to 80% at concentration 78.12μg/ml and 39.06μg/ml respectively. The glycolytic pH drop by S. mutans cells was also disrupted by these extracts without affecting the bacterial viability. Microscopic analysis revealed morphological changes of the S. mutans biofilms, indicating that these plant extracts at sub-MICs could significantly affect the ability of S. mutans to form biofilm with distorted extracellular matrix. Furthermore, with the help of quantitative RT-PCR, the expression of different genes involved in adherence, quorum sensing, in the presence of these extracts were down regulated. The crude and active fractions were found effective in preventing caries development in rats. The data showed that S. aromaticum holds promise as a naturally occurring source of compounds that may prevent biofilm-related oral diseases.

Keywords: biofilm, quorum sensing, Streptococcus mutans, Syzygium aromaticum extract

Procedia PDF Downloads 306
1181 Laser-Ultrasonic Method for Measuring the Local Elastic Moduli of Porosity Isotropic Composite Materials

Authors: Alexander A. Karabutov, Natalia B. Podymova, Elena B. Cherepetskaya, Vladimir A. Makarov, Yulia G. Sokolovskaya

Abstract:

The laser-ultrasonic method is realized for quantifying the influence of porosity on the local Young’s modulus of isotropic composite materials. The method is based on a laser generation of ultrasound pulses combined with measurement of the phase velocity of longitudinal and shear acoustic waves in samples. The main advantage of this method compared with traditional ultrasonic research methods is the efficient generation of short and powerful probing acoustic pulses required for reliable testing of ultrasound absorbing and scattering heterogeneous materials. Using as an example samples of a metal matrix composite with reinforcing microparticles of silicon carbide in various concentrations, it is shown that to provide an effective increase in Young’s modulus with increasing concentration of microparticles, the porosity of the final sample should not exceed 2%.

Keywords: laser ultrasonic, longitudinal and shear ultrasonic waves, porosity, composite, local elastic moduli

Procedia PDF Downloads 345
1180 Thermo-Mechanical Characterization of MWCNTs-Modified Epoxy Resin

Authors: M. Dehghan, R. Al-Mahaidi, I. Sbarski

Abstract:

An industrial epoxy adhesive used in Carbon Fiber Reinforced Polymer (CFRP)-strengthening systems was modified by dispersing multi-walled carbon nanotubes (MWCNTs). Nanocomposites were fabricated using solvent-assisted dispersion method and ultrasonic mixing. Thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA) and tensile tests were conducted to study the effect of nanotubes dispersion on the thermal and mechanical properties of the epoxy composite. Experimental results showed a substantial enhancement in the decomposition temperature and tensile properties of epoxy composite, while, the glass transition temperature (Tg) was slightly reduced due to the solvent effect. The morphology of the epoxy nanocomposites was investigated by SEM. It was proved that using solvent improves the nanotubes dispersion. However, at contents higher than 2 wt. %, nanotubes started to re-bundle in the epoxy matrix which negatively affected the final properties of epoxy composite.

Keywords: carbon fiber reinforced polymer, epoxy, multi-walled carbon nanotube, DMA, glass transition temperature

Procedia PDF Downloads 341
1179 Hybrid Conductive Polymer Composites: Effect of Mixed Fillers and Polymer Blends on Pyroresistive Properties

Authors: Eric Asare, Jamie Evans, Mark Newton, Emiliano Bilotti

Abstract:

High-density polyethylene (HDPE) filled with silver coated glass flakes (5µm) was investigated and the effect on PTC by addition of a second filler (100µm silver coated glass flake) or matrix (polypropylene elastomer) to the composite were examined. The addition of the secondary filler promoted the electrical properties of the composite. The bigger flakes acted like a bridge between the small flakes and this helped to enhance the electrical properties. The PTC behaviour of the composite was also improved by the addition of the bigger flakes due to the increase in separation distance between particles caused by the bigger flakes. Addition of small amount of polypropylene elastomer enhanced not only PTC effect but also improved substantially the flexibility of the composite as well as reduces the overall filler content. SEM images showed that the fillers were dispersed in the HDPE phase.

Keywords: positive temperature coefficient, conductive polymer composite, electrical conductivity, high density polyethylene

Procedia PDF Downloads 470
1178 An Easy-Applicable Method for In situ Silver Nanoparticles Preparation into Wool Fibers

Authors: Salwa Mowafi, Mohamed Rehan, Hany Kafafy

Abstract:

In this study, three different systems including room temperature, conventional water bath heating and microwave irradiation technique will be employed in the fabrication of silver nanoparticle-wool fibers. The silver nanoparticles will be synthesized in-situ incorporated into wool fibers under redox active bio-template of wool protein which facilitates the reduction of Ag+ to nanoparticulate Ag0. Silver NPs incorporated wool fiber will be characterized by scanning electron microscopy, energy dispersive X-ray, FTIR, TGA, silver content and X-ray photoelectron spectroscopy. The mechanism of binding Ag NPs in-situ incorporated wool fibers matrix will be discussed. The effect of silver nanoparticles on the coloration, antimicrobial, UV-protection and catalytic properties of the wool fibers will be evaluated. The overall results of this study indicate that the Ag NPs in-situ incorporated wool fibers will be applied as colorants for wool fibers with improving in its multi-functionality properties. So, this study provides a simple approach for innovative protein fibers design by applying the optical properties of Plasmonic noble metal nanoparticles.

Keywords: microwave irradiation technique, multi-functionality properties, silver nanoparticles, wool fibers

Procedia PDF Downloads 205
1177 The Multiple Sclerosis condition and the Role of Varicella-zoster virus in its Progression

Authors: Sina Mahdavi, Mahdi Asghari Ozma

Abstract:

Multiple sclerosis (MS) is the most common inflammatory autoimmune disease of the CNS that affects the myelination process in the central nervous system (CNS). Complex interactions of various "environmental or infectious" factors may act as triggers in autoimmunity and disease progression. The association between viral infections, especially human Varicella-zoster virus (VZV) and MS is one potential cause that is not well understood. This study aims to summarize the available data on VZV retrovirus infection in MS disease progression. For this study, the keywords "Multiple sclerosis", " Human Varicella-zoster virus ", and "central nervous system" in the databases PubMed, Google Scholar, Sid, and MagIran between 2016 and 2022 were searched and 14 articles were chosen, studied, and analyzed. Analysis of the amino acid sequences of HNRNPA1 with VZV proteins has shown a 62% amino acid sequence similarity between VZV gE and the PrLD/M9 epitope region (TNPO1 binding domain) of mutant HNRNPA1. A heterogeneous nuclear ribonucleoprotein (hnRNP), which is produced by HNRNPA1, is involved in the processing and transfer of mRNA and pre-mRNA. Mutant HNRNPA1 mimics gE of VZV as an antigen that leads to autoantibody production. Mutant HnRNPA1 translocates to the cytoplasm, after aggregation is presented by MHC class I, followed by CD8 + cells. Of these, antibodies and immune cells against the gE epitopes of VZV remain due to the memory immune response, causing neurodegeneration and the development of MS in genetically predisposed individuals. VZV expression during the course of MS is present in genetically predisposed individuals with HNRNPA1 mutation, suggesting a link between VZV and MS, and that this virus may play a role in the development of MS by inducing an inflammatory state. Therefore, measures to modulate VZV expression may be effective in reducing inflammatory processes in demyelinated areas of MS patients in genetically predisposed individuals.

Keywords: multiple sclerosis, varicella-zoster virus, central nervous system, autoimmunity

Procedia PDF Downloads 74
1176 Instability Index Method and Logistic Regression to Assess Landslide Susceptibility in County Route 89, Taiwan

Authors: Y. H. Wu, Ji-Yuan Lin, Yu-Ming Liou

Abstract:

This study aims to set up the landslide susceptibility map of County Route 89 at Ren-Ai Township in Nantou County using the Instability Index Method and Logistic regression. Seven susceptibility factors including Slope Angle, Aspect, Elevation, Distance to fold, Distance to River, Distance to Road and Accumulated Rainfall were obtained by GIS based on the Typhoon Toraji landslide area identified by Industrial Technology Research Institute in 2001. To calculate the landslide percentage of each factor and acquire the weight and grade the grid by means of Instability Index Method. In this study, landslide susceptibility can be classified into four grades: high, medium high, medium low and low, in order to determine the advantages and disadvantages of the two models. The precision of this model is verified by classification error matrix and SRC curve. These results suggest that the logistic regression model is a preferred method than instability index in the assessment of landslide susceptibility. It is suitable for the landslide prediction and precaution in this area in the future.

Keywords: instability index method, logistic regression, landslide susceptibility, SRC curve

Procedia PDF Downloads 289
1175 Automatic Classification of Periodic Heart Sounds Using Convolutional Neural Network

Authors: Jia Xin Low, Keng Wah Choo

Abstract:

This paper presents an automatic normal and abnormal heart sound classification model developed based on deep learning algorithm. MITHSDB heart sounds datasets obtained from the 2016 PhysioNet/Computing in Cardiology Challenge database were used in this research with the assumption that the electrocardiograms (ECG) were recorded simultaneously with the heart sounds (phonocardiogram, PCG). The PCG time series are segmented per heart beat, and each sub-segment is converted to form a square intensity matrix, and classified using convolutional neural network (CNN) models. This approach removes the need to provide classification features for the supervised machine learning algorithm. Instead, the features are determined automatically through training, from the time series provided. The result proves that the prediction model is able to provide reasonable and comparable classification accuracy despite simple implementation. This approach can be used for real-time classification of heart sounds in Internet of Medical Things (IoMT), e.g. remote monitoring applications of PCG signal.

Keywords: convolutional neural network, discrete wavelet transform, deep learning, heart sound classification

Procedia PDF Downloads 346
1174 Stability and Sensitivity Analysis of Cholera Model with Treatment Class

Authors: Yunusa Aliyu Hadejia

Abstract:

Cholera is a gastrointestinal disease caused by a bacterium called Vibrio Cholerae which spread as a result of eating food or drinking water contaminated with feaces from an infected person. In this work we proposed and analyzed the impact of isolating infected people and give them therapeutic treatment, the specific objectives of the research was to formulate a mathematical model of cholera transmission incorporating treatment class, to make analysis on stability of equilibrium points of the model, positivity and boundedness was shown to ensure that the model has a biological meaning, the basic reproduction number was derived by next generation matrix approach. The result of stability analysis show that the Disease free equilibrium was both locally and globally asymptotically stable when R_0< 1 while endemic equilibrium has locally asymptotically stable when R_0> 1. Sensitivity analysis was perform to determine the contribution of each parameter to the basic reproduction number. Numerical simulation was carried out to show the impact of the model parameters using MAT Lab Software.

Keywords: mathematical model, treatment, stability, sensitivity

Procedia PDF Downloads 98