Search results for: semisolid metals processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4840

Search results for: semisolid metals processing

3190 The Use of Political Savviness in Dealing with Workplace Ostracism: A Social Information Processing Perspective

Authors: Amy Y. Wang, Eko L. Yi

Abstract:

Can vicarious experiences of workplace ostracism affect employees’ willingness to voice? Given the increasingly interdependent nature of the modern workplace in which employees rely on social interactions to fulfill organizational goals, workplace ostracism –the extent to which an individual perceives that he or she is ignored or excluded by others in the workplace– has garnered significant interest from scholars and practitioners alike. Extending beyond conventional studies that largely focus on the perspectives and outcomes of ostracized targets, we address the indirect effects of workplace ostracism on third-party employees embedded in the same social context. Using a social information processing approach, we propose that the ostracism of coworkers acts as political information that influences third-party employees in their decisions to engage in risky and discretionary behaviors such as employee voice. To make sense of and to navigate through experiences of workplace ostracism, we posit that both political understanding and political skill allow third party employees to minimize the risks and uncertainty of voicing. This conceptual model was tested by a study involving 154 supervisor-subordinate dyads of a publicly listed bio-technology firm located in Mainland China. Each supervisor and their direct subordinates composed of a work team; each team had a minimum of two subordinates and a maximum of four subordinates. Human resources used the master list to distribute the ID coded questionnaires to the matching names. All studied constructs were measured using existing scales proved effective in previous literature. Hypotheses were tested using Confirmatory Factor Analysis and Hierarchal Multiple Regression. All three hypotheses were supported which showed that employees were less likely to engage in voice behaviors when their coworkers reported having experienced ostracism in the workplace. Results also showed a significant three-way interaction between political understanding and political skill on the relationship between coworkers’ ostracism and employee voice, indicating that political savviness is a valuable resource in mitigating ostracism’s negative and indirect effects. Our results illustrated that an employee’s coworkers being ostracized indeed adversely impacted his or her own voice behavior. However, not all individuals reacted passively to the social context; rather, we found that politically savvy individuals – possessing both political understanding and political skill – and their voice behaviors were less impacted by ostracism in their work environment. At the same time, we found that having only political understanding or only political skill was significantly less effective in mitigating ostracism’s negative effects, suggesting a necessary duality of political knowledge and political skill in combatting ostracism. Organizational implications, recommendations, and future research ideas are also discussed.

Keywords: employee voice, organizational politics, social information processing, workplace ostracism

Procedia PDF Downloads 139
3189 Controllable Modification of Glass-Crystal Composites with Ion-Exchange Technique

Authors: Andrey A. Lipovskii, Alexey V. Redkov, Vyacheslav V. Rusan, Dmitry K. Tagantsev, Valentina V. Zhurikhina

Abstract:

The presented research is related to the development of recently proposed technique of the formation of composite materials, like optical glass-ceramics, with predetermined structure and properties of the crystalline component. The technique is based on the control of the size and concentration of the crystalline grains using the phenomenon of glass-ceramics decrystallization (vitrification) induced by ion-exchange. This phenomenon was discovered and explained in the beginning of the 2000s, while related theoretical description was given in 2016 only. In general, the developed theory enables one to model the process and optimize the conditions of ion-exchange processing of glass-ceramics, which provide given properties of crystalline component, in particular, profile of the average size of the crystalline grains. The optimization is possible if one knows two dimensionless parameters of the theoretical model. One of them (β) is the value which is directly related to the solubility of crystalline component of the glass-ceramics in the glass matrix, and another (γ) is equal to the ratio of characteristic times of ion-exchange diffusion and crystalline grain dissolution. The presented study is dedicated to the development of experimental technique and simulation which allow determining these parameters. It is shown that these parameters can be deduced from the data on the space distributions of diffusant concentrations and average size of crystalline grains in the glass-ceramics samples subjected to ion-exchange treatment. Measurements at least at two temperatures and two processing times at each temperature are necessary. The composite material used was a silica-based glass-ceramics with crystalline grains of Li2OSiO2. Cubical samples of the glass-ceramics (6x6x6 mm3) underwent the ion exchange process in NaNO3 salt melt at 520 oC (for 16 and 48 h), 540 oC (for 8 and 24 h), 560 oC (for 4 and 12 h), and 580 oC (for 2 and 8 h). The ion exchange processing resulted in the glass-ceramics vitrification in the subsurface layers where ion-exchange diffusion took place. Slabs about 1 mm thick were cut from the central part of the samples and their big facets were polished. These slabs were used to find profiles of diffusant concentrations and average size of the crystalline grains. The concentration profiles were determined from refractive index profiles measured with Max-Zender interferometer, and profiles of the average size of the crystalline grains were determined with micro-Raman spectroscopy. Numerical simulation were based on the developed theoretical model of the glass-ceramics decrystallization induced by ion exchange. The simulation of the processes was carried out for different values of β and γ parameters under all above-mentioned ion exchange conditions. As a result, the temperature dependences of the parameters, which provided a reliable coincidence of the simulation and experimental data, were found. This ensured the adequate modeling of the process of the glass-ceramics decrystallization in 520-580 oC temperature interval. Developed approach provides a powerful tool for fine tuning of the glass-ceramics structure, namely, concentration and average size of crystalline grains.

Keywords: diffusion, glass-ceramics, ion exchange, vitrification

Procedia PDF Downloads 269
3188 Tribological Properties of Non-Stick Coatings Used in Bread Baking Process

Authors: Maurice Brogly, Edwige Privas, Rajesh K. Gajendran, Sophie Bistac

Abstract:

Anti-sticky coatings based on perfluoroalkoxy (PFA) coatings are widely used in food processing industry especially for bread making. Their tribological performance, such as low friction coefficient, low surface energy and high heat resistance, make them an appropriate choice for anti-sticky coating application in moulds for food processing industry. This study is dedicated to evidence the transfer of contaminants from the coating due to wear and thermal ageing of the mould. The risk of contamination is induced by the damage of the coating by bread crust during the demoulding stage. The study focuses on the wear resistance and potential transfer of perfluorinated polymer from the anti-sticky coating. Friction between perfluorinated coating and bread crust is modeled by a tribological pin-on-disc test. The cellular nature of the bread crust is modeled by a polymer foam. FTIR analysis of the polymer foam after friction allow the evaluation of the transfer from the perfluorinated coating to polymer foam. Influence of thermal ageing on the physical, chemical and wear properties of the coating are also investigated. FTIR spectroscopic results show that the increase of PFA transfer onto the foam counterface is associated to the decrease of the friction coefficient. Increasing lubrication by film transfer results in the decrease of the friction coefficient. Moreover increasing the friction test parameters conditions (load, speed and sliding distance) also increase the film transfer onto the counterface. Thermal ageing increases the hydrophobic character of the PFA coating and thus also decreases the friction coefficient.

Keywords: fluorobased polymer coatings, FTIR spectroscopy, non-stick food moulds, wear and friction

Procedia PDF Downloads 328
3187 Long Term Changes of Water Quality in Latvia

Authors: Maris Klavins, Valery Rodinov

Abstract:

The aim of this study was to analyze long term changes of surface water quality in Latvia, spatial variability of water chemical composition, possible impacts of different pollution sources as well as to analyze the measures to protect national water resources - river basin management. Within this study, the concentrations of major water ingredients and microelements in major rivers and lakes of Latvia have been determined. Metal concentrations in river and lake waters were compared with water chemical composition. The mean concentrations of trace metals in inland waters of Latvia are appreciably lower than the estimated world averages for river waters and close to or lower than background values, unless regional impacts determined by local geochemistry. This may be explained by a comparatively lower level of anthropogenic load. In the same time in several places, direct anthropogenic impacts are evident, regarding influences of point sources both transboundary transport impacts. Also, different processes related to pollution of surface waters in Latvia have been analyzed. At first the analysis of changes and composition of pollutant emissions in Latvia has been realized, and the obtained results were compared with actual composition of atmospheric precipitation and their changes in time.

Keywords: water quality, trend analysis, pollution, human impact

Procedia PDF Downloads 266
3186 A Review of Material and Methods Used in Liner Layers in Various Landfills

Authors: S. Taghvamanesh

Abstract:

Modern landfills are highly engineered containment systems that are designed to reduce the environmental and human health impacts of solid waste (trash). In modern landfills, waste is contained by a liner system. The primary goal of the liner system is to isolate the landfill contents from the environment, thereby protecting the soil and groundwater from pollution caused by the leachate of a landfill. Landfill leachate is the most serious threat to groundwater. Therefore, it is necessary to design a system that prevents the penetration of this dangerous substance into the environment. These layers are made up of two basic elements: clay and geosynthetics. Hydraulic conductivity and flexibility are two desirable properties of these materials. There are three different types of liner systems that will be discussed in this paper. According to available data, the current article analyzed materials and methods for constructing liner layers made of distinct leachates, including various harmful components and heavy metals from all around the world. Also, this study attempted to gather data on leachates for each of the sites discussed. In conclusion, every landfill requires a specific type of liner, which depends on the type of leachate that it produces daily. It should also be emphasized that, based on available data, this article focused on the number of landfills that each country or continent possesses.

Keywords: landfill, liner layer, impervious layer, barrier layer

Procedia PDF Downloads 75
3185 Parallelization of Random Accessible Progressive Streaming of Compressed 3D Models over Web

Authors: Aayushi Somani, Siba P. Samal

Abstract:

Three-dimensional (3D) meshes are data structures, which store geometric information of an object or scene, generally in the form of vertices and edges. Current technology in laser scanning and other geometric data acquisition technologies acquire high resolution sampling which leads to high resolution meshes. While high resolution meshes give better quality rendering and hence is used often, the processing, as well as storage of 3D meshes, is currently resource-intensive. At the same time, web applications for data processing have become ubiquitous owing to their accessibility. For 3D meshes, the advancement of 3D web technologies, such as WebGL, WebVR, has enabled high fidelity rendering of huge meshes. However, there exists a gap in ability to stream huge meshes to a native client and browser application due to high network latency. Also, there is an inherent delay of loading WebGL pages due to large and complex models. The focus of our work is to identify the challenges faced when such meshes are streamed into and processed on hand-held devices, owing to its limited resources. One of the solutions that are conventionally used in the graphics community to alleviate resource limitations is mesh compression. Our approach deals with a two-step approach for random accessible progressive compression and its parallel implementation. The first step includes partition of the original mesh to multiple sub-meshes, and then we invoke data parallelism on these sub-meshes for its compression. Subsequent threaded decompression logic is implemented inside the Web Browser Engine with modification of WebGL implementation in Chromium open source engine. This concept can be used to completely revolutionize the way e-commerce and Virtual Reality technology works for consumer electronic devices. These objects can be compressed in the server and can be transmitted over the network. The progressive decompression can be performed on the client device and rendered. Multiple views currently used in e-commerce sites for viewing the same product from different angles can be replaced by a single progressive model for better UX and smoother user experience. Can also be used in WebVR for commonly and most widely used activities like virtual reality shopping, watching movies and playing games. Our experiments and comparison with existing techniques show encouraging results in terms of latency (compressed size is ~10-15% of the original mesh), processing time (20-22% increase over serial implementation) and quality of user experience in web browser.

Keywords: 3D compression, 3D mesh, 3D web, chromium, client-server architecture, e-commerce, level of details, parallelization, progressive compression, WebGL, WebVR

Procedia PDF Downloads 168
3184 Investigating the English Speech Processing System of EFL Japanese Older Children

Authors: Hiromi Kawai

Abstract:

This study investigates the nature of EFL older children’s L2 perceptive and productive abilities using classroom data, in order to find a pedagogical solution to the teaching of L2 sounds at an early stage of learning in a formal school setting. It is still inconclusive whether older children with only EFL formal school instruction at the initial stage of L2 learning are able to attain native-like perception and production in English within the very limited amount of exposure to the target language available. Based on the notion of the lack of study of EFL Japanese children’s acquisition of English segments, the researcher uses a model of L1 speech processing which was developed for investigating L1 English children’s speech and literacy difficulties using a psycholinguistic framework. The model is composed of input channel, output channel, and lexical representation, and examines how a child receives information from spoken or written language, remembers and stores it within the lexical representations and how the child selects and produces spoken or written words. Concerning language universality and language specificity in the language acquisitional process, the aim of finding any sound errors in L1 English children seemed to conform to the author’s intention to find abilities of English sounds in older Japanese children at the novice level of English in an EFL setting. 104 students in Grade 5 (between the ages of 10 and 11 years old) of an elementary school in Tokyo participated in this study. Four tests to measure their perceptive ability and three oral repetition tests to measure their productive ability were conducted with/without reference to lexical representation. All the test items were analyzed to calculate item facility (IF) indices, and correlational analyses and Structural Equation Modeling (SEM) were conducted to examine the relationship between the receptive ability and the productive ability. IF analysis showed that (1) the participants were better at perceiving a segment than producing a segment, (2) they had difficulty in auditory discrimination of paired consonants when one of them does not exist in the Japanese inventory, (3) they had difficulty in both perceiving and producing English vowels, and (4) their L1 loan word knowledge had an influence on their ability to perceive and produce L2 sounds. The result of the Multiple Regression Modeling showed that the two production tests could predict the participants’ auditory ability of real words in English. The result of SEM showed that the hypothesis that perceptive ability affects productive ability was supported. Based on these findings, the author discusses the possible explicit method of teaching English segments to EFL older children in a formal school setting.

Keywords: EFL older children, english segments, perception, production, speech processing system

Procedia PDF Downloads 243
3183 Liquid-Liquid Extraction of Rare Earths Elements by Use of Ionic Liquids

Authors: C. Lopez, S. Dourdain, G. Arrachart, S. Pellet-Rostaing

Abstract:

Ionic liquids (ILs) are considered a good alternative for organic solvents in extractive processes; however, the higher or lower extraction efficiency in ILs remains difficult to predict because a lack of understanding of the extraction mechanisms in this class of diluents, making their application difficult to generalize. We have studied the extraction behavior of La(III) and Eu(III) from aqueous solution into n-dodecane and two ionic liquids (ILs), 1-ethyl-1-butylpiperidinium bis (trifluoromethylsulfonyl)imide [EBPip⁺] [NTf₂⁻] and 1-ethyl-1-octylpiperidinium bis (trifluoromethylsulfonyl)imide [EOPip⁺] [NTf₂⁻], at room temperature using N,N’- dimethyl- N,N’-dioctylhexylethoxymalonamide (DMDOHEMA) as extractant. Fe(III) was introduced to the aqueous phase in order to study the selectivity toward La(III) and Eu(III) and the effect of variation of PH was investigated by using of several HNO₃ concentrations. We found that the ionic liquid with shorter alkyl chain [EBPip⁺] [NTf₂⁻] showed a higher extraction ability than [EOPip⁺] [NTf₂⁻] and that the use of ILs as organic solvent instead n-dodecane, greatly enhanced the extraction percentage of the target metals with a good selectivity. Cation ([EBPip⁺] or [EOPip⁺]) and anion ([NTf₂⁻]) concentration in the aqueous phase, has been determined in order to elucidate the extraction mechanism.

Keywords: extraction mechanism, ionic liquids, rare earths elements, solvent extraction

Procedia PDF Downloads 116
3182 Electrochemical Reduction of Carbon-dioxide Using Metal Nano-particles Supported on Nano-Materials

Authors: Mulatu Kassie Birhanu

Abstract:

Electrochemical reduction of CO₂ is an emerging and current issue for its conversion in to valuable product upon minimization of its atmospheric level for contribution of maintaining within the range of permissible limit. Among plenty of electro-catalysts gold and copper are efficient and effective catalysts, which are synthesized and applicable for this research work. The two metal catalysts were prepared in inert environment with different compositions through co-reduction process from their corresponding precursors and then by adding multi-walled carbon nano-tube as a supporter and enhanced the conductivity. The catalytic performance of CO₂ reduction for each composition was performed and resulted an outstanding catalytic activity with generation of high current density (70 mA/cm² at 0.91V vs. RHE) and relatively small onset potential. The catalytic performance, compositions, morphologies, structure and geometric arrangements were evaluated by electrochemical analysis (LSV, impedance, chronoamperometry & tafel plot), EDS, SEM and XAS respectively. The composite metals showed better selectivity of products and faradaic efficiencies due to the synergetic effects of the combined nano-particles in addition to the impact of grain size in reduction of CO₂. Carbon monoxide, hydrogen, formate and ethanol are the reduction products, which are detected and quantifiable by chromatographic techniques considering their physical state of each product.

Keywords: carbondioxide, faradaic efficiency, electrocatalyst, current density

Procedia PDF Downloads 54
3181 Electrospun Membrane doped with Gold Nanorods for Surface-Enhanced Raman Sepctroscopy

Authors: Ziwei Wang, Andrea Lucotti, Luigi Brambilla, Matteo Tommasini, Chiara Bertarelli

Abstract:

Surface-enhanced Raman Spectroscopy (SERS) is a highly sensitive detection that provides abundant information on low concentration analytes from various researching areas. Based on localized surface plasmon resonance, metal nanostructures including gold, silver and copper have been investigated as SERS substrate during recent decades. There has been increasing more attention of exploring good performance, homogenous, repeatable SERS substrates. Here, we show that electrospinning, which is an inexpensive technique to fabricate large-scale, self-standing and repeatable membranes, can be effectively used for producing SERS substrates. Nanoparticles and nanorods are added to the feed electrospinning solution to collect functionalized polymer fibrous mats. We report stable electrospun membranes as SERS substrate using gold nanorods (AuNRs) and poly(vinyl alcohol). Particularly, a post-processing crosslinking step using glutaraldehyde under acetone environment was carried out to the electrospun membrane. It allows for using the membrane in any liquid environment, including water, which is of interest both for sensing of contaminant in wastewater, as well as for biosensing. This crosslinked AuNRs/PVA membrane has demonstrated excellent performance as SERS substrate for low concentration 10-6 M Rhodamine 6G (Rh6G) aqueous solution. This post-processing for fabricating SERS substrate is the first time reported and proved through Raman imaging of excellent stability and outstanding performance. Finally, SERS tests have been applied to several analytes, and the application of AuNRs/PVA membrane is broadened by removing the detected analyte by rinsing. Therefore, this crosslinked AuNRs/PVA membrane is re-usable.

Keywords: SERS spectroscopy, electrospinning, crosslinking, composite materials

Procedia PDF Downloads 139
3180 Computational Determination of the Magneto Electronic Properties of Ce₁₋ₓCuₓO₂ (x=12.5%): Emerging Material for Spintronic Devices

Authors: Aicha Bouhlala, Sabah Chettibi

Abstract:

Doping CeO₂ with transition metals is an effective way of tuning its properties. In the present work, we have performed self-consistent ab-initio calculation using the full-potential linearized augmented plane-wave method (FP-LAPW), based on the density functional theory (DFT) as implemented in the Wien2k simulation code to study the structural, electronic, and magnetic properties of the compound Ce₁₋ₓCuₓO₂ (x=12.5%) fluorite type oxide and to explore the effects of dopant Cu in ceria. The exchange correlation potential has been treated using the Perdew-Burke-Eenzerhof revised of solid (PBEsol). In structural properties, the equilibrium lattice constant is observed for the compound, which exists within the value of 5.382 A°. In electronic properties, the spin-polarized electronic bandstructure elucidates the semiconductor nature of the material in both spin channels, with the compound was observed to have a narrow bandgap on the spin-down configuration (0.162 EV) and bandgap on the spin-up (2.067 EV). Hence, the doped atom Cu plays a vital role in increasing the magnetic moments of the supercell, and the value of the total magnetic moment is found to be 2.99438 μB. Therefore, the compound Cu-doped CeO₂ shows a strong ferromagnetic behavior. The predicted results propose the compound could be a good candidate for spintronics applications.

Keywords: Cu-doped CeO₂, DFT, Wien2k, properties

Procedia PDF Downloads 254
3179 Teaching Practices for Subverting Significant Retentive Learner Errors in Arithmetic

Authors: Michael Lousis

Abstract:

The systematic identification of the most conspicuous and significant errors made by learners during three-years of testing of their progress in learning Arithmetic throughout the development of the Kassel Project in England and Greece was accomplished. How much retentive these errors were over three-years in the officially provided school instruction of Arithmetic in these countries has also been shown. The learners’ errors in Arithmetic stemmed from a sample, which was comprised of two hundred (200) English students and one hundred and fifty (150) Greek students. The sample was purposefully selected according to the students’ participation in each testing session in the development of the three-year project, in both domains simultaneously in Arithmetic and Algebra. Specific teaching practices have been invented and are presented in this study for subverting these learners’ errors, which were found out to be retentive to the level of the nationally provided mathematical education of each country. The invention and the development of these proposed teaching practices were founded on the rationality of the theoretical accounts concerning the explanation, prediction and control of the errors, on the conceptual metaphor and on an analysis, which tried to identify the required cognitive components and skills of the specific tasks, in terms of Psychology and Cognitive Science as applied to information-processing. The aim of the implementation of these instructional practices is not only the subversion of these errors but the achievement of the mathematical competence, as this was defined to be constituted of three elements: appropriate representations - appropriate meaning - appropriately developed schemata. However, praxis is of paramount importance, because there is no independent of science ‘real-truth’ and because praxis serves as quality control when it takes the form of a cognitive method.

Keywords: arithmetic, cognitive science, cognitive psychology, information-processing paradigm, Kassel project, level of the nationally provided mathematical education, praxis, remedial mathematical teaching practices, retentiveness of errors

Procedia PDF Downloads 315
3178 Sentiment Analysis of Fake Health News Using Naive Bayes Classification Models

Authors: Danielle Shackley, Yetunde Folajimi

Abstract:

As more people turn to the internet seeking health-related information, there is more risk of finding false, inaccurate, or dangerous information. Sentiment analysis is a natural language processing technique that assigns polarity scores to text, ranging from positive, neutral, and negative. In this research, we evaluate the weight of a sentiment analysis feature added to fake health news classification models. The dataset consists of existing reliably labeled health article headlines that were supplemented with health information collected about COVID-19 from social media sources. We started with data preprocessing and tested out various vectorization methods such as Count and TFIDF vectorization. We implemented 3 Naive Bayes classifier models, including Bernoulli, Multinomial, and Complement. To test the weight of the sentiment analysis feature on the dataset, we created benchmark Naive Bayes classification models without sentiment analysis, and those same models were reproduced, and the feature was added. We evaluated using the precision and accuracy scores. The Bernoulli initial model performed with 90% precision and 75.2% accuracy, while the model supplemented with sentiment labels performed with 90.4% precision and stayed constant at 75.2% accuracy. Our results show that the addition of sentiment analysis did not improve model precision by a wide margin; while there was no evidence of improvement in accuracy, we had a 1.9% improvement margin of the precision score with the Complement model. Future expansion of this work could include replicating the experiment process and substituting the Naive Bayes for a deep learning neural network model.

Keywords: sentiment analysis, Naive Bayes model, natural language processing, topic analysis, fake health news classification model

Procedia PDF Downloads 96
3177 Development of the Integrated Quality Management System of Cooked Sausage Products

Authors: Liubov Lutsyshyn, Yaroslava Zhukova

Abstract:

Over the past twenty years, there has been a drastic change in the mode of nutrition in many countries which has been reflected in the development of new products, production techniques, and has also led to the expansion of sales markets for food products. Studies have shown that solution of the food safety problems is almost impossible without the active and systematic activity of organizations directly involved in the production, storage and sale of food products, as well as without management of end-to-end traceability and exchange of information. The aim of this research is development of the integrated system of the quality management and safety assurance based on the principles of HACCP, traceability and system approach with creation of an algorithm for the identification and monitoring of parameters of technological process of manufacture of cooked sausage products. Methodology of implementation of the integrated system based on the principles of HACCP, traceability and system approach during the manufacturing of cooked sausage products for effective provision for the defined properties of the finished product has been developed. As a result of the research evaluation technique and criteria of performance of the implementation and operation of the system of the quality management and safety assurance based on the principles of HACCP have been developed and substantiated. In the paper regularities of influence of the application of HACCP principles, traceability and system approach on parameters of quality and safety of the finished product have been revealed. In the study regularities in identification of critical control points have been determined. The algorithm of functioning of the integrated system of the quality management and safety assurance has also been described and key requirements for the development of software allowing the prediction of properties of finished product, as well as the timely correction of the technological process and traceability of manufacturing flows have been defined. Based on the obtained results typical scheme of the integrated system of the quality management and safety assurance based on HACCP principles with the elements of end-to-end traceability and system approach for manufacture of cooked sausage products has been developed. As a result of the studies quantitative criteria for evaluation of performance of the system of the quality management and safety assurance have been developed. A set of guidance documents for the implementation and evaluation of the integrated system based on the HACCP principles in meat processing plants have also been developed. On the basis of the research the effectiveness of application of continuous monitoring of the manufacturing process during the control on the identified critical control points have been revealed. The optimal number of critical control points in relation to the manufacture of cooked sausage products has been substantiated. The main results of the research have been appraised during 2013-2014 under the conditions of seven enterprises of the meat processing industry and have been implemented at JSC «Kyiv meat processing plant».

Keywords: cooked sausage products, HACCP, quality management, safety assurance

Procedia PDF Downloads 246
3176 NR/PEO Block Copolymer: A Chelating Exchanger for Metal Ions

Authors: M. S. Mrudula, M. R. Gopinathan Nair

Abstract:

In order to utilize the natural rubber for developing new green polymeric materials for specialty applications, we have prepared natural rubber and polyethylene oxide based polymeric networks by two shot method. The polymeric networks thus formed have been used as chelating exchanger for metal ion binding. Chelating exchangers are, in general, coordinating copolymers containing one or more electron donor atoms such as N, S, O, and P that can form coordinate bonds with metals. Hydrogels are water- swollen network of hydrophilic homopolymer or copolymers. They acquire a great interest due to the facility of the incorporation of different chelating groups into the polymeric networks. Such polymeric hydrogels are promising materials in the field of hydrometallurgical applications and water purification due to their chemical stability. The current study discusses the swelling response of the polymeric networks as a function of time, temperature, pH and [NaCl] and sorption studies. Equilibrium swelling has been observed to depend on both structural aspects of the polymers and environmental factors. Metal ion sorption shows that these polymeric networks can be used for removal, separation, and enrichment of metal ions from aqueous solutions and can play an important role for environmental remediation of municipal and industrial wastewater.

Keywords: block copolymer, adsorption, chelating exchanger, swelling study, polymer, metal complexes

Procedia PDF Downloads 342
3175 Reclamation of Molding Sand: A Chemical Approach to Recycle Waste Foundry Sand

Authors: Mohd Moiz Khan, S. M. Mahajani, G. N. Jadhav

Abstract:

Waste foundry sand (total clay content 15%) contains toxic heavy metals and particulate matter which make dumping of waste sand an environmental and health hazard. Disposal of waste foundry sand (WFS) remains one of the substantial challenges faced by Indian foundries nowadays. To cope up with this issue, the chemical method was used to reclaim WFS. A stirrer tank reactor was used for chemical reclamation. Experiments were performed to reduce the total clay content from 15% to as low as 0.9% in chemical reclamation. This method, although found to be effective for WFS reclamation, it may face a challenge due to the possibly high operating cost. Reclaimed sand was found to be satisfactory in terms of sand qualities such as total clay (0.9%), active clay (0.3%), acid demand value (ADV) (2.6%), loss on igniting (LOI) (3 %), grain fineness number (GFN) (56), and compressive strength (60 kPa). The experimental data generated on chemical reactor under different conditions is further used to optimize the design and operating parameters (rotation speed, sand to acidic solution ratio, acid concentration, temperature and time) for the best performance. The use of reclaimed sand within the foundry would improve the economics and efficiency of the process and reduce environmental concerns.

Keywords: chemical reclamation, clay content, environmental concerns, recycle, waste foundry sand

Procedia PDF Downloads 145
3174 Design and Development of Fleet Management System for Multi-Agent Autonomous Surface Vessel

Authors: Zulkifli Zainal Abidin, Ahmad Shahril Mohd Ghani

Abstract:

Agent-based systems technology has been addressed as a new paradigm for conceptualizing, designing, and implementing software systems. Agents are sophisticated systems that act autonomously across open and distributed environments in solving problems. Nevertheless, it is impractical to rely on a single agent to do all computing processes in solving complex problems. An increasing number of applications lately require multiple agents to work together. A multi-agent system (MAS) is a loosely coupled network of agents that interact to solve problems that are beyond the individual capacities or knowledge of each problem solver. However, the network of MAS still requires a main system to govern or oversees the operation of the agents in order to achieve a unified goal. We had developed a fleet management system (FMS) in order to manage the fleet of agents, plan route for the agents, perform real-time data processing and analysis, and issue sets of general and specific instructions to the agents. This FMS should be able to perform real-time data processing, communicate with the autonomous surface vehicle (ASV) agents and generate bathymetric map according to the data received from each ASV unit. The first algorithm is developed to communicate with the ASV via radio communication using standard National Marine Electronics Association (NMEA) protocol sentences. Next, the second algorithm will take care of the path planning, formation and pattern generation is tested using various sample data. Lastly, the bathymetry map generation algorithm will make use of data collected by the agents to create bathymetry map in real-time. The outcome of this research is expected can be applied on various other multi-agent systems.

Keywords: autonomous surface vehicle, fleet management system, multi agent system, bathymetry

Procedia PDF Downloads 269
3173 Revolutionizing Healthcare Communication: The Transformative Role of Natural Language Processing and Artificial Intelligence

Authors: Halimat M. Ajose-Adeogun, Zaynab A. Bello

Abstract:

Artificial Intelligence (AI) and Natural Language Processing (NLP) have transformed computer language comprehension, allowing computers to comprehend spoken and written language with human-like cognition. NLP, a multidisciplinary area that combines rule-based linguistics, machine learning, and deep learning, enables computers to analyze and comprehend human language. NLP applications in medicine range from tackling issues in electronic health records (EHR) and psychiatry to improving diagnostic precision in orthopedic surgery and optimizing clinical procedures with novel technologies like chatbots. The technology shows promise in a variety of medical sectors, including quicker access to medical records, faster decision-making for healthcare personnel, diagnosing dysplasia in Barrett's esophagus, boosting radiology report quality, and so on. However, successful adoption requires training for healthcare workers, fostering a deep understanding of NLP components, and highlighting the significance of validation before actual application. Despite prevailing challenges, continuous multidisciplinary research and collaboration are critical for overcoming restrictions and paving the way for the revolutionary integration of NLP into medical practice. This integration has the potential to improve patient care, research outcomes, and administrative efficiency. The research methodology includes using NLP techniques for Sentiment Analysis and Emotion Recognition, such as evaluating text or audio data to determine the sentiment and emotional nuances communicated by users, which is essential for designing a responsive and sympathetic chatbot. Furthermore, the project includes the adoption of a Personalized Intervention strategy, in which chatbots are designed to personalize responses by merging NLP algorithms with specific user profiles, treatment history, and emotional states. The synergy between NLP and personalized medicine principles is critical for tailoring chatbot interactions to each user's demands and conditions, hence increasing the efficacy of mental health care. A detailed survey corroborated this synergy, revealing a remarkable 20% increase in patient satisfaction levels and a 30% reduction in workloads for healthcare practitioners. The poll, which focused on health outcomes and was administered to both patients and healthcare professionals, highlights the improved efficiency and favorable influence on the broader healthcare ecosystem.

Keywords: natural language processing, artificial intelligence, healthcare communication, electronic health records, patient care

Procedia PDF Downloads 74
3172 Optimal Formation of Metallic Nuggets during the Reduction of Coal-Composite Briquette

Authors: Chol Min Yu, Sok Chol Ri

Abstract:

The optimization of formation and growth of metallic nuggets during self-reduction of coal composite briquette (CCB here) is essential to increase the yield of valuable metals. The formation of metallic nuggets was investigated theoretically and experimentally during the reduction of coal composite briquette made from stainless steel dust and coal. The formation of metallic nuggets is influenced by slag viscosity and interfacial tension between the liquid metal and the slag in the reduced product. Surface tensions of liquid metal and slag are rather strong, respectively, due to the high basicity of its slag. Strong surface tensions of them lead to increase of interfacial tension between the liquid metal and the slag to be favorable to the growth of metallic nuggets. The viscosity of slag and interfacial tension between the liquid metal and the slag depends on the temperature and composition of the slag. The formation and the growth of metallic nuggets depend on carbon to oxygen ratio FC/O and temperature.

Keywords: stainless steel dust, coal-composite briquette, temperature, high basicity, interfacial tension

Procedia PDF Downloads 79
3171 An Analysis of Learners’ Reports for Measuring Co-Creational Education

Authors: Takatoshi Ishii, Koji Kimita, Keiichi Muramatsu, Yoshiki Shimomura

Abstract:

To increase the quality of learning, teacher and learner need mutual effort for realization of educational value. For this purpose, we need to manage the co-creational education among teacher and learners. In this research, we try to find a feature of co-creational education. To be more precise, we analyzed learners’ reports by natural language processing, and extract some features that describe the state of the co-creational education.

Keywords: co-creational education, e-portfolios, ICT integration, latent dirichlet allocation

Procedia PDF Downloads 620
3170 An EBSD Investigation of Ti-6Al-4Nb Alloy Processed by Plan Strain Compression Test

Authors: Anna Jastrzebska, K. S. Suresh, T. Kitashima, Y. Yamabe-Mitarai, Z. Pakiela

Abstract:

Near α titanium alloys are important materials for aerospace applications, especially in high temperature applications such as jet engine. Mechanical properties of Ti alloys strongly depends on their processing route, then it is very important to understand micro-structure change by different processing. In our previous study, Nb was found to improve oxidation resistance of Ti alloys. In this study, micro-structure evolution of Ti-6Al-4Nb (wt %) alloy was investigated after plain strain compression test in hot working temperatures in the α and β phase region. High-resolution EBSD was successfully used for precise phase and texture characterization of this alloy. 1.1 kg of Ti-6Al-4Nb ingot was prepared using cold crucible levitation melting. The ingot was subsequently homogenized in 1050 deg.C for 1h followed by cooling in the air. Plate like specimens measuring 10×20×50 mm3 were cut from an ingot by electrical discharge machining (EDM). The plain strain compression test using an anvil with 10 x 35 mm in size was performed with 3 different strain rates: 0.1s-1, 1s-1and 10s-1 in 700 deg.C and 1050 deg.C to obtain 75% of deformation. The micro-structure was investigated by scanning electron microscopy (SEM) equipped with electron backscatter diffraction (EBSD) detector. The α/β phase ratio and phase morphology as well as the crystallographic texture, subgrain size, misorientation angles and misorientation gradients corresponding to each phase were determined over the middle and the edge of sample areas. The deformation mechanism in each working temperature was discussed. The evolution of texture changes with strain rate was investigated. The micro-structure obtained by plain strain compression test was heterogeneous with a wide range of grain sizes. This is because deformation and dynamic recrystallization occurred during deformation at temperature in the α and β phase. It was strongly influenced by strain rate.

Keywords: EBSD, plain strain compression test, Ti alloys

Procedia PDF Downloads 379
3169 Quality Analysis of Vegetables Through Image Processing

Authors: Abdul Khalique Baloch, Ali Okatan

Abstract:

The quality analysis of food and vegetable from image is hot topic now a day, where researchers make them better then pervious findings through different technique and methods. In this research we have review the literature, and find gape from them, and suggest better proposed approach, design the algorithm, developed a software to measure the quality from images, where accuracy of image show better results, and compare the results with Perouse work done so for. The Application we uses an open-source dataset and python language with tensor flow lite framework. In this research we focus to sort food and vegetable from image, in the images, the application can sorts and make them grading after process the images, it could create less errors them human base sorting errors by manual grading. Digital pictures datasets were created. The collected images arranged by classes. The classification accuracy of the system was about 94%. As fruits and vegetables play main role in day-to-day life, the quality of fruits and vegetables is necessary in evaluating agricultural produce, the customer always buy good quality fruits and vegetables. This document is about quality detection of fruit and vegetables using images. Most of customers suffering due to unhealthy foods and vegetables by suppliers, so there is no proper quality measurement level followed by hotel managements. it have developed software to measure the quality of the fruits and vegetables by using images, it will tell you how is your fruits and vegetables are fresh or rotten. Some algorithms reviewed in this thesis including digital images, ResNet, VGG16, CNN and Transfer Learning grading feature extraction. This application used an open source dataset of images and language used python, and designs a framework of system.

Keywords: deep learning, computer vision, image processing, rotten fruit detection, fruits quality criteria, vegetables quality criteria

Procedia PDF Downloads 68
3168 Swelling Hydrogels on the Base Nitron Fiber Wastes for Water Keeping in Sandy Soils

Authors: Alim Asamatdinov

Abstract:

Superabsorbent polymer hydrogels can swell to absorb huge volumes of water or aqueous solutions. This property has led to many practical applications of these new materials, particularly in agriculture for improving the water retention of soils and the water supply of plants. This article reviews the methods of polymeric hydrogels, measurements and treatments of their properties, as well as their effects on soil and on plant growth. The thermodynamic approach used to describe the swelling behaviour of polymer networks proves to be quite helpful in modelling the hydrogel efficiency of water-absorbing additives. The paper presents the results of a study of the physical and chemical properties of hydrogels based on of the production of "Nitron" (Polyacrylonitrile) wastes fibre and salts of the 3-rd transition metals and formalin. The developed hydrogels HG-Al, HG-Cr and HG-formalin have been tested for water holding the capacity of sand. Such a conclusion was also confirmed by data from the method of determining the wilting point by vegetative thumbnails. In the entering process using a dose of 0.1% of the swelling polymeric hydrogel in sand with a culture of barley the difference between the wilting point in comparison with the control was negligible. This indicates that the moisture which was contained in the hydrogel is involved in moisture availability for plant growth, to the same extent as that in the capillaries.

Keywords: hydrogel, chemical, polymer, sandy, colloid

Procedia PDF Downloads 143
3167 Deproteinization of Moroccan Sardine (Sardina pilchardus) Scales: A Pilot-Scale Study

Authors: F. Bellali, M. Kharroubi, Y. Rady, N. Bourhim

Abstract:

In Morocco, fish processing industry is an important source income for a large amount of by-products including skins, bones, heads, guts, and scales. Those underutilized resources particularly scales contain a large amount of proteins and calcium. Sardina plichardus scales from resulting from the transformation operation have the potential to be used as raw material for the collagen production. Taking into account this strong expectation of the regional fish industry, scales sardine upgrading is well justified. In addition, political and societal demands for sustainability and environment-friendly industrial production systems, coupled with the depletion of fish resources, drive this trend forward. Therefore, fish scale used as a potential source to isolate collagen has a wide large of applications in food, cosmetic, and biomedical industry. The main aim of this study is to isolate and characterize the acid solubilize collagen from sardine fish scale, Sardina pilchardus. Experimental design methodology was adopted in collagen processing for extracting optimization. The first stage of this work is to investigate the optimization conditions of the sardine scale deproteinization on using response surface methodology (RSM). The second part focus on the demineralization with HCl solution or EDTA. And the last one is to establish the optimum condition for the isolation of collagen from fish scale by solvent extraction. The advancement from lab scale to pilot scale is a critical stage in the technological development. In this study, the optimal condition for the deproteinization which was validated at laboratory scale was employed in the pilot scale procedure. The deproteinization of fish scale was then demonstrated on a pilot scale (2Kg scales, 20l NaOH), resulting in protein content (0,2mg/ml) and hydroxyproline content (2,11mg/l). These results indicated that the pilot-scale showed similar performances to those of lab-scale one.

Keywords: deproteinization, pilot scale, scale, sardine pilchardus

Procedia PDF Downloads 444
3166 Document-level Sentiment Analysis: An Exploratory Case Study of Low-resource Language Urdu

Authors: Ammarah Irum, Muhammad Ali Tahir

Abstract:

Document-level sentiment analysis in Urdu is a challenging Natural Language Processing (NLP) task due to the difficulty of working with lengthy texts in a language with constrained resources. Deep learning models, which are complex neural network architectures, are well-suited to text-based applications in addition to data formats like audio, image, and video. To investigate the potential of deep learning for Urdu sentiment analysis, we implemented five different deep learning models, including Bidirectional Long Short Term Memory (BiLSTM), Convolutional Neural Network (CNN), Convolutional Neural Network with Bidirectional Long Short Term Memory (CNN-BiLSTM), and Bidirectional Encoder Representation from Transformer (BERT). In this study, we developed a hybrid deep learning model called BiLSTM-Single Layer Multi Filter Convolutional Neural Network (BiLSTM-SLMFCNN) by fusing BiLSTM and CNN architecture. The proposed and baseline techniques are applied on Urdu Customer Support data set and IMDB Urdu movie review data set by using pre-trained Urdu word embedding that are suitable for sentiment analysis at the document level. Results of these techniques are evaluated and our proposed model outperforms all other deep learning techniques for Urdu sentiment analysis. BiLSTM-SLMFCNN outperformed the baseline deep learning models and achieved 83%, 79%, 83% and 94% accuracy on small, medium and large sized IMDB Urdu movie review data set and Urdu Customer Support data set respectively.

Keywords: urdu sentiment analysis, deep learning, natural language processing, opinion mining, low-resource language

Procedia PDF Downloads 70
3165 Modelling of Filters CO2 (Carbondioxide) and CO (Carbonmonoxide) Portable in Motor Vehicle's Exhaust with Absorbent Chitosan

Authors: Yuandanis Wahyu Salam, Irfi Panrepi, Nuraeni

Abstract:

The increased of greenhouse gases, that is CO2 (carbondioxide) in atmosphere induce the rising of earth’s surface average temperature. One of the largest contributors to greenhouse gases is motor vehicles. Smoke which is emitted by motor’s exhaust containing gases such as CO2 (carbondioxide) and CO (carbon monoxide). Chemically, chitosan is cellulose like plant fiber that has the ability to bind like absorbant foam. Chitosan is a natural antacid (absorb toxins), when chitosan is spread over the surface of water, chitosan is able to absorb fats, oils, heavy metals, and other toxic substances. Judging from the nature of chitosan is able to absorb various toxic substances, it is expected that chitosan is also able to filter out gas emission from the motor vehicles. This study designing a carbondioxide filter in the exhaust of motor vehicles using chitosan as its absorbant. It aims to filter out gases in the exhaust so that CO2 and CO can be reducted before emitted by exhaust. Form of this reseach is study of literature and applied with experimental research of tool manufacture. Data collected through documentary studies by studying books, magazines, thesis, search on the internet as well as the relevant reference. This study will produce a filters which has main function to filter out CO2 and CO emissions that generated by vehicle’s exhaust and can be used as portable.

Keywords: filter, carbon, carbondioxide, exhaust, chitosan

Procedia PDF Downloads 349
3164 Data Mining Spatial: Unsupervised Classification of Geographic Data

Authors: Chahrazed Zouaoui

Abstract:

In recent years, the volume of geospatial information is increasing due to the evolution of communication technologies and information, this information is presented often by geographic information systems (GIS) and stored on of spatial databases (BDS). The classical data mining revealed a weakness in knowledge extraction at these enormous amounts of data due to the particularity of these spatial entities, which are characterized by the interdependence between them (1st law of geography). This gave rise to spatial data mining. Spatial data mining is a process of analyzing geographic data, which allows the extraction of knowledge and spatial relationships from geospatial data, including methods of this process we distinguish the monothematic and thematic, geo- Clustering is one of the main tasks of spatial data mining, which is registered in the part of the monothematic method. It includes geo-spatial entities similar in the same class and it affects more dissimilar to the different classes. In other words, maximize intra-class similarity and minimize inter similarity classes. Taking account of the particularity of geo-spatial data. Two approaches to geo-clustering exist, the dynamic processing of data involves applying algorithms designed for the direct treatment of spatial data, and the approach based on the spatial data pre-processing, which consists of applying clustering algorithms classic pre-processed data (by integration of spatial relationships). This approach (based on pre-treatment) is quite complex in different cases, so the search for approximate solutions involves the use of approximation algorithms, including the algorithms we are interested in dedicated approaches (clustering methods for partitioning and methods for density) and approaching bees (biomimetic approach), our study is proposed to design very significant to this problem, using different algorithms for automatically detecting geo-spatial neighborhood in order to implement the method of geo- clustering by pre-treatment, and the application of the bees algorithm to this problem for the first time in the field of geo-spatial.

Keywords: mining, GIS, geo-clustering, neighborhood

Procedia PDF Downloads 374
3163 Detecting Indigenous Languages: A System for Maya Text Profiling and Machine Learning Classification Techniques

Authors: Alejandro Molina-Villegas, Silvia Fernández-Sabido, Eduardo Mendoza-Vargas, Fátima Miranda-Pestaña

Abstract:

The automatic detection of indigenous languages ​​in digital texts is essential to promote their inclusion in digital media. Underrepresented languages, such as Maya, are often excluded from language detection tools like Google’s language-detection library, LANGDETECT. This study addresses these limitations by developing a hybrid language detection solution that accurately distinguishes Maya (YUA) from Spanish (ES). Two strategies are employed: the first focuses on creating a profile for the Maya language within the LANGDETECT library, while the second involves training a Naive Bayes classification model with two categories, YUA and ES. The process includes comprehensive data preprocessing steps, such as cleaning, normalization, tokenization, and n-gram counting, applied to text samples collected from various sources, including articles from La Jornada Maya, a major newspaper in Mexico and the only media outlet that includes a Maya section. After the training phase, a portion of the data is used to create the YUA profile within LANGDETECT, which achieves an accuracy rate above 95% in identifying the Maya language during testing. Additionally, the Naive Bayes classifier, trained and tested on the same database, achieves an accuracy close to 98% in distinguishing between Maya and Spanish, with further validation through F1 score, recall, and logarithmic scoring, without signs of overfitting. This strategy, which combines the LANGDETECT profile with a Naive Bayes model, highlights an adaptable framework that can be extended to other underrepresented languages in future research. This fills a gap in Natural Language Processing and supports the preservation and revitalization of these languages.

Keywords: indigenous languages, language detection, Maya language, Naive Bayes classifier, natural language processing, low-resource languages

Procedia PDF Downloads 15
3162 Investigation on the Effect of Welding Parameters in Additive Friction Stir Welding of Glass Fiber Reinforced Polyamide 66 Composite

Authors: Nandhini Ravi, Muthukumaran Shanmugam

Abstract:

Metals are being replaced by thermoplastic polymer composites in automotive industries because of their low density, easiness to fabricate, low cost and good wear resistance. Complex polymer components consist of assemblies of smaller parts which can be joined by friction stir welding. This study deals with the additive friction stir welding of 15 wt.% glass fiber reinforced polyamide 66 composite which is a modified technique of the conventional friction stir welding by the addition of a filler plate for the heating of the composite work piece through the tool during the welding process. Welding at different combinations of tool rotational speed, travel speed and tool plunge depth was done after which the tensile strength of the respective experiments was determined. The maximum tensile strength obtained was 77 MPa which was 80% of the strength of the base material. The process parameters were optimized using the L9 orthogonal array and also the effect of individual welding parameter on the tensile strength was studied. The optimum parameter combination was determined with the help of ANOVA studies. The hardness of the welded joints was studied with the help of Shore Durometer which yielded the maximum of D 75.

Keywords: additive friction stir welding, polyamide 66, process parameters, thermoplastic polymer composite

Procedia PDF Downloads 157
3161 Additive Manufacturing – Application to Next Generation Structured Packing (SpiroPak)

Authors: Biao Sun, Tejas Bhatelia, Vishnu Pareek, Ranjeet Utikar, Moses Tadé

Abstract:

Additive manufacturing (AM), commonly known as 3D printing, with the continuing advances in parallel processing and computational modeling, has created a paradigm shift (with significant radical thinking) in the design and operation of chemical processing plants, especially LNG plants. With the rising energy demands, environmental pressures, and economic challenges, there is a continuing industrial need for disruptive technologies such as AM, which possess capabilities that can drastically reduce the cost of manufacturing and operations of chemical processing plants in the future. However, the continuing challenge for 3D printing is its lack of adaptability in re-designing the process plant equipment coupled with the non-existent theory or models that could assist in selecting the optimal candidates out of the countless potential fabrications that are possible using AM. One of the most common packings used in the LNG process is structured packing in the packed column (which is a unit operation) in the process. In this work, we present an example of an optimum strategy for the application of AM to this important unit operation. Packed columns use a packing material through which the gas phase passes and comes into contact with the liquid phase flowing over the packing, typically performing the necessary mass transfer to enrich the products, etc. Structured packing consists of stacks of corrugated sheets, typically inclined between 40-70° from the plane. Computational Fluid Dynamics (CFD) was used to test and model various geometries to study the governing hydrodynamic characteristics. The results demonstrate that the costly iterative experimental process can be minimized. Furthermore, they also improve the understanding of the fundamental physics of the system at the multiscale level. SpiroPak, patented by Curtin University, represents an innovative structured packing solution currently at a technology readiness level (TRL) of 5~6. This packing exhibits remarkable characteristics, offering a substantial increase in surface area while significantly enhancing hydrodynamic and mass transfer performance. Recent studies have revealed that SpiroPak can reduce pressure drop by 50~70% compared to commonly used commercial packings, and it can achieve 20~50% greater mass transfer efficiency (particularly in CO2 absorption applications). The implementation of SpiroPak has the potential to reduce the overall size of columns and decrease power consumption, resulting in cost savings for both capital expenditure (CAPEX) and operational expenditure (OPEX) when applied to retrofitting existing systems or incorporated into new processes. Furthermore, pilot to large-scale tests is currently underway to further advance and refine this technology.

Keywords: Additive Manufacturing (AM), 3D printing, Computational Fluid Dynamics (CFD, structured packing (SpiroPak)

Procedia PDF Downloads 84