Search results for: pandemic. Economics variables shocks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5825

Search results for: pandemic. Economics variables shocks

4175 Investigation of the Trunk Inclination Positioning Angle on Swallowing and Respiratory Function

Authors: Hsin-Yi Kathy Cheng, Yan-Ying JU, Wann-Yun Shieh, Chin-Man Wang

Abstract:

Although the coordination of swallowing and respiration has been discussed widely, the influence of the positioning angle on swallowing and respiration during feeding has rarely been investigated. This study aimed to investigate the timing and coordination of swallowing and respiration in different seat inclination angles, with liquid and bolus, to provide suggestions and guidelines for the design and develop a feedback-controlled seat angle adjustment device for the back-adjustable wheelchair. Twenty-six participants aged between 15-30 years old without any signs of swallowing difficulty were included. The combination of seat inclinations and food types was randomly assigned, with three repetitions in each combination. The trunk inclination angle was adjusted by a commercialized positioning wheelchair. A total of 36 swallows were done, with at least 30 seconds of rest between each swallow. We used a self-developed wearable device to measure the submandibular muscle surface EMG, the movement of the thyroid cartilage, and the respiratory status of the nasal cavity. Our program auto-analyzed the onset and offset of duration, and the excursion and strength of thyroid cartilage when it was moving, coordination between breathing and swallowing were also included. Variables measured include the EMG duration (DsEMG), swallowing apnea duration (SAD), total excursion time (TET), duration of 2nd deflection, FSR amplitude, Onset latency, DsEMG onset, DsEMG offset, FSR onset, and FSR offset. These measurements were done in four-seat inclination angles (5。, 15。, 30。, 45。) and three food contents (1ml water, 10ml water, and 5ml pudding bolus) for each subject. The data collected between different contents were compared. Descriptive statistics were used to describe the basic features of the data. Repeated measure ANOVAs were used to analyze the differences for the dependent variables in different seat inclination and food content combinations. The results indicated significant differences in seat inclination, mostly between 5。 and 45。, in all variables except FSR amplitude. It also indicated significant differences in food contents almost among all variables. Significant interactions between seat inclination and food contents were only found in FSR offsets. The same protocol will be applied to participants with disabilities. The results of this study would serve as clinical guidance for proper feeding positions with different food contents. The ergonomic data would also provide references for assistive technology professionals and practitioners in device design and development. In summary, the current results indicated that it is easier for a subject to lean backward during swallowing than when sitting upright and swallowing water is easier than swallowing pudding. The results of this study would serve as the clinical guidance for proper feeding position (such as wheelchair back angle adjustment) with different food contents. The same protocol can be applied to elderly participants or participants with physical disabilities. The ergonomic data would also provide references for assistive technology professionals and practitioners in device design and development.

Keywords: swallowing, positioning, assistive device, disability

Procedia PDF Downloads 72
4174 Structural Vulnerability of Banking Network – Systemic Risk Approach

Authors: Farhad Reyazat, Richard Werner

Abstract:

This paper contributes to the existent literature by developing a framework that explains how to monitor potential threats to banking sector stability. The study explores structural vulnerabilities at the country level, but also look at bilateral exposures within a network context. The study contributes in analysing of the European banking systemic risk at aggregated level, which integrates the characteristics of bank size, and interconnectedness relative to the size of the economy which ultimate risk belong to, taking to account the concentration ratio of the banking industry within the whole economy. The nature of the systemic risk depends on the interplay of the network topology with the nature of financial transactions over the network, assets and buffer stemming from bank size, correlations, and the nature of the shocks to the financial system. The study’s results illustrate the contribution of banks’ size, size of economy and concentration of counterparty exposures to a given country’s banks in explaining its systemic importance, how much the banking network depends on a few traditional hubs activities and the changes of this dependencies over the last 9 years. The role of few of traditional hubs such as Swiss banks and British Banks and also Irish banks- where the financial sector is fairly new and grew strongly between 1990s till 2008- take the fourth position on 2014 reducing the relative size since 2006 where they had the first position. In-degree concentration index analysis in the study shows concentration index of banking network was not changed since financial crisis 2007-8. In-degree concentration index on first quarter of 2014 indicates that US, UK and Germany together, getting over 70% of the network exposures. The result of comparing the in-degree concentration index with 2007-4Q, shows the same group having over 70% of the network exposure, however the UK getting more important role in the hub and the market share of US and Germany are slightly diminished.

Keywords: systemic risk, counterparty risk, financial stability, interconnectedness, banking concentration, european banks risk, network effect on systemic risk, concentration risk

Procedia PDF Downloads 492
4173 Improving Online Learning Engagement through a Kid-Teach-Kid Approach for High School Students during the Pandemic

Authors: Alexander Huang

Abstract:

Online learning sessions have become an indispensable complement to in-classroom-learning sessions in the past two years due to the emergence of Covid-19. Due to social distance requirements, many courses and interaction-intensive sessions, ranging from music classes to debate camps, are online. However, online learning imposes a significant challenge for engaging students effectively during the learning sessions. To resolve this problem, Project PWR, a non-profit organization formed by high school students, developed an online kid-teach-kid learning environment to boost students' learning interests and further improve students’ engagement during online learning. Fundamentally, the kid-teach-kid learning model creates an affinity space to form learning groups, where like-minded peers can learn and teach their interests. The role of the teacher can also help a kid identify the instructional task and set the rules and procedures for the activities. The approach also structures initial discussions to reveal a range of ideas, similar experiences, thinking processes, language use, and lower student-to-teacher ratio, which become enriched online learning experiences for upcoming lessons. In such a manner, a kid can practice both the teacher role and the student role to accumulate experiences on how to convey ideas and questions over the online session more efficiently and effectively. In this research work, we conducted two case studies involving a 3D-Design course and a Speech and Debate course taught by high-school kids. Through Project PWR, a kid first needs to design the course syllabus based on a provided template to become a student-teacher. Then, the Project PWR academic committee evaluates the syllabus and offers comments and suggestions for changes. Upon the approval of a syllabus, an experienced and voluntarily adult mentor is assigned to interview the student-teacher and monitor the lectures' progress. Student-teachers construct a comprehensive final evaluation for their students, which they grade at the end of the course. Moreover, each course requires conducting midterm and final evaluations through a set of surveyed replies provided by students to assess the student-teacher’s performance. The uniqueness of Project PWR lies in its established kid-teach-kids affinity space. Our research results showed that Project PWR could create a closed-loop system where a student can help a teacher improve and vice versa, thus improving the overall students’ engagement. As a result, Project PWR’s approach can train teachers and students to become better online learners and give them a solid understanding of what to prepare for and what to expect from future online classes. The kid-teach-kid learning model can significantly improve students' engagement in the online courses through the Project PWR to effectively supplement the traditional teacher-centric model that the Covid-19 pandemic has impacted substantially. Project PWR enables kids to share their interests and bond with one another, making the online learning environment effective and promoting positive and effective personal online one-on-one interactions.

Keywords: kid-teach-kid, affinity space, online learning, engagement, student-teacher

Procedia PDF Downloads 143
4172 Effect of 10 Weeks of Aerobic Exercise Training on Serum Concentrations of Surfactant Protein D and Insulin Resistance in Women with Type 2 Diabetes

Authors: Sajjad Rezaei, Mahdieh Molanouri Shamsi, Azadeh Jamali

Abstract:

Background and purpose: Surfactant protein D (SP-D) is a lung-specific protein that is detectable in human plasma. Effect of exercise training on SP-D levels as well as its relation to metabolic indices is not known. The present study then aimed to investigate the effects of 10 weeks of aerobic training on serum levels of SP-D and insulin resistance in women with type 2 diabetes. Materials and methods: Twenty-two overweight women with type 2 diabetes mellitus were recruited through deliberate sampling and randomly assigned to intervention and control groups (11 in each group). The intervention group underwent a progressive aerobic training program for 10 weeks, 3 days per week, 30-55 min/day at 50-75% heart rate reserve (HRR). Control group continued with its everyday routine. Blood samples were obtained before and after training for biochemical analysis. Within-group and between-group differences were analyzed with paired and independent t-tests in spss software, respectively, and the relation between variables was analyzed with Pearson’s correlation coefficient (all at P = 0.05). Results: Significant differences were observed between groups in leptin, glucose, waist circumference and VO2 max after training. SP-D was decreased and VO2 max was increased significantly in intervention group. However, no significant correlation was observed between SP-D and other variables. Conclusion: Since there was no corresponding decrease in insulin resistance with decreased levels of SP-D, it seems unlikely for SP-D to mediate the association between obesity and insulin resistance in type 2 diabetics.

Keywords: exercise training, SP-D, insulin resistance, type 2 diabetes

Procedia PDF Downloads 419
4171 Application of Nonparametric Geographically Weighted Regression to Evaluate the Unemployment Rate in East Java

Authors: Sifriyani Sifriyani, I Nyoman Budiantara, Sri Haryatmi, Gunardi Gunardi

Abstract:

East Java Province has a first rank as a province that has the most counties and cities in Indonesia and has the largest population. In 2015, the population reached 38.847.561 million, this figure showed a very high population growth. High population growth is feared to lead to increase the levels of unemployment. In this study, the researchers mapped and modeled the unemployment rate with 6 variables that were supposed to influence. Modeling was done by nonparametric geographically weighted regression methods with truncated spline approach. This method was chosen because spline method is a flexible method, these models tend to look for its own estimation. In this modeling, there were point knots, the point that showed the changes of data. The selection of the optimum point knots was done by selecting the most minimun value of Generalized Cross Validation (GCV). Based on the research, 6 variables were declared to affect the level of unemployment in eastern Java. They were the percentage of population that is educated above high school, the rate of economic growth, the population density, the investment ratio of total labor force, the regional minimum wage and the ratio of the number of big industry and medium scale industry from the work force. The nonparametric geographically weighted regression models with truncated spline approach had a coefficient of determination 98.95% and the value of MSE equal to 0.0047.

Keywords: East Java, nonparametric geographically weighted regression, spatial, spline approach, unemployed rate

Procedia PDF Downloads 322
4170 The Usage of Bridge Estimator for Hegy Seasonal Unit Root Tests

Authors: Huseyin Guler, Cigdem Kosar

Abstract:

The aim of this study is to propose Bridge estimator for seasonal unit root tests. Seasonality is an important factor for many economic time series. Some variables may contain seasonal patterns and forecasts that ignore important seasonal patterns have a high variance. Therefore, it is very important to eliminate seasonality for seasonal macroeconomic data. There are some methods to eliminate the impacts of seasonality in time series. One of them is filtering the data. However, this method leads to undesired consequences in unit root tests, especially if the data is generated by a stochastic seasonal process. Another method to eliminate seasonality is using seasonal dummy variables. Some seasonal patterns may result from stationary seasonal processes, which are modelled using seasonal dummies but if there is a varying and changing seasonal pattern over time, so the seasonal process is non-stationary, deterministic seasonal dummies are inadequate to capture the seasonal process. It is not suitable to use seasonal dummies for modeling such seasonally nonstationary series. Instead of that, it is necessary to take seasonal difference if there are seasonal unit roots in the series. Different alternative methods are proposed in the literature to test seasonal unit roots, such as Dickey, Hazsa, Fuller (DHF) and Hylleberg, Engle, Granger, Yoo (HEGY) tests. HEGY test can be also used to test the seasonal unit root in different frequencies (monthly, quarterly, and semiannual). Another issue in unit root tests is the lag selection. Lagged dependent variables are added to the model in seasonal unit root tests as in the unit root tests to overcome the autocorrelation problem. In this case, it is necessary to choose the lag length and determine any deterministic components (i.e., a constant and trend) first, and then use the proper model to test for seasonal unit roots. However, this two-step procedure might lead size distortions and lack of power in seasonal unit root tests. Recent studies show that Bridge estimators are good in selecting optimal lag length while differentiating nonstationary versus stationary models for nonseasonal data. The advantage of this estimator is the elimination of the two-step nature of conventional unit root tests and this leads a gain in size and power. In this paper, the Bridge estimator is proposed to test seasonal unit roots in a HEGY model. A Monte-Carlo experiment is done to determine the efficiency of this approach and compare the size and power of this method with HEGY test. Since Bridge estimator performs well in model selection, our approach may lead to some gain in terms of size and power over HEGY test.

Keywords: bridge estimators, HEGY test, model selection, seasonal unit root

Procedia PDF Downloads 342
4169 The Transformation of Hot Spring Destinations in Taiwan in a Post-pandemic Future: Exploring the COVID-19 Impacts on Hot Spring Experiences, Individual, and Community Resilience of Residents From a Posttraumatic Growth Perspective

Authors: Hsin-Hung Lin, Janet Chang, Te-Yi Chang, You-Sheng Huang

Abstract:

The natural and men-made disasters have become huge challenges for tourism destinations as well as emphasizing the fragility of the industry. Hot springs, among all destinations, are prone to disasters due to their dependence on natural resources and locations. After the COVID-19 outbreak, hot spring destinations have experienced not only the loss of businesses but also the psychological trauma. However, evidence has also shown that the impacts may not necessarily reduce the resilience for people but may be converted into posttraumatic growth. In Taiwan, a large proportion of hot springs are located in rural or indigenous areas. As a result, hot spring resources are associated with community cohesion for local residents. Yet prior research on hot spring destinations has mainly focused on visitors, whereas residents have been overlooked. More specifically, the relationship between hot springs resources and resident resilience in the face of the COVID-19 impacts remains unclear. To fulfill this knowledge gap, this paper aims to explore the COVID-19 impacts on residents’ hot spring experiences as well as individual and community resilience from the perspective of posttraumatic growth. A total of 315 residents of 13 hot spring destinations that are most popular in Taiwan were recruited. Online questionnaires were distributed over travel forums and social networks after the COVID-19. This paper subsequently used Partial Least Squares Structural Equation Modeling for data analysis as the technique offers significant advantages in addressing nonnormal data and small sample sizes. A preliminary test was conducted, and the results showed acceptable internal consistency and no serious common method variance. The path analysis demonstrated that the COVID-19 impacts strengthened residents’ perceptions of hot spring resources and experiences, implying that the pandemic had propelled the residents to visit hot springs for the healing benefits. In addition, the COVID-19 impacts significantly enhanced residents’ individual and community resilience, which indicates that the residents at hot springs are more resilient thanks to their awareness of external risks. Thirdly, residents’ individual resilience was positively associated with hot spring experiences, while community resilience was not affected by hot spring experiences. Such findings may suggest that hot spring experiences are more related to individual-level experiences and, consequently, have insignificant influence on community resilience. Finally, individual resilience was proved to be the most relevant factor that help foster community resilience. To conclude, the authorities may consider exploiting the hot spring resources so as to increase individual resilience for local residents. Such implications can be used as a reference for other post-disaster tourist destinations as well. As for future research, longitudinal studies with qualitative methods are suggested to better understand how the hot spring experiences have changed individuals and communities over the long term. It should be noted that the main subjects of this paper were focused on the hot spring communities in Taiwan. Therefore, the results cannot be generalized for all types of tourism destinations. That is, more diverse tourism destinations may be investigated to provide a broader perspective of post-disaster recovery.

Keywords: community resilience, hot spring destinations, individual resilience, posttraumatic growth

Procedia PDF Downloads 85
4168 The Determinants of Financial Stability: Evidence from Jordan

Authors: Wasfi Al Salamat, Shaker Al-Kharouf

Abstract:

This study aims to examine the determinants of financial stability for 13 commercial banks listed on the Amman stock exchange (ASE) over the period (2007-2016) after controlling for the independent variables: return on equity (ROE), return on assets (ROA), earnings per share (EPS), growth in gross domestic product (GDP), inflation rate and debt ratio to measure the financial stability by three main variables: capital adequacy, non-performing loans and the number of returned checks. The balanced panel data statistical approach has been used for data analysis. Results are estimated by using multiple regression models. The empirical results suggested that there is statistically significant negative effect of inflation rate and debt ratio on the capital adequacy while there is statistically significant positive effect of growth in gross domestic product on capital adequacy. In contrast, there is statistically significant negative effect of return on equity and growth in gross domestic product on the non-performing loans while there is statistically significant positive effect of inflation rate on non-performing loans. Finally, there is statistically significant negative effect of growth in gross domestic product on the number of returned checks while there is statistically significant positive effect of inflation rate on the number of returned checks.

Keywords: capital adequacy, financial stability, non-performing loans, number of returned checks, ASE

Procedia PDF Downloads 227
4167 The Transformation of Hot Spring Destinations in Taiwan in a Post-pandemic Future: Exploring the COVID-19 Impacts on Hot Spring Experiences and Resilience of Local Residents from a Posttraumatic Growth Perspective

Authors: Hsin-Hung Lin, Janet Chang, Te-Yi Chang, You-Sheng Huang

Abstract:

The natural and men-made disasters have become huge challenges for tourism destinations as well as emphasizing the fragility of the industry. Hot springs, among all destinations, are prone to disasters due to their dependence on natural resources and locations. After the COVID-19 outbreak, hot spring destinations have experienced not only the loss of businesses but also the psychological trauma. However, evidence has also shown that the impacts may not necessarily reduce the resilience for people but may be converted into posttraumatic growth. In Taiwan, a large proportion of hot springs are located in rural or indigenous areas. As a result, hot spring resources are associated with community cohesion for local residents. Yet prior research on hot spring destinations has mainly focused on visitors, whereas residents have been overlooked. More specifically, the relationship between hot springs resources and resident resilience in the face of the COVID-19 impacts remains unclear. To fulfill this knowledge gap, this paper aims to explore the COVID-19 impacts on residents’ hot spring experiences as well as individual and community resilience from the perspective of posttraumatic growth. A total of 315 residents of 13 hot spring destinations that are most popular in Taiwan were recruited. Online questionnaires were distributed over travel forums and social networks after the COVID-19. This paper subsequently used Partial Least Squares Structural Equation Modeling for data analysis as the technique offers significant advantages in addressing nonnormal data and small sample sizes. A preliminary test was conducted, and the results showed acceptable internal consistency and no serious common method variance. The path analysis demonstrated that the COVID-19 impacts strengthened residents’ perceptions of hot spring resources and experiences, implying that the pandemic had propelled the residents to visit hot springs for the healing benefits. In addition, the COVID-19 impacts significantly enhanced residents’ individual and community resilience, which indicates that the residents at hot springs are more resilient thanks to their awareness of external risks. Thirdly, residents’ individual resilience was positively associated with hot spring experiences, while community resilience was not affected by hot spring experiences. Such findings may suggest that hot spring experiences are more related to individual-level experiences and, consequently, have insignificant influence on community resilience. Finally, individual resilience was proved to be the most relevant factor that help foster community resilience. To conclude, the authorities may consider exploiting the hot spring resources so as to increase individual resilience for local residents. Such implications can be used as a reference for other post-disaster tourist destinations as well.As for future research, longitudinal studies with qualitative methods are suggested to better understand how the hot spring experiences have changed individuals and communities over the long term. It should be noted that the main subjects of this paper were focused on the hot spring communities in Taiwan. Therefore, the results cannot be generalized for all types of tourism destinations. That is, more diverse tourism destinations may be investigated to provide a broader perspective of post-disaster recovery.

Keywords: community resilience, hot spring destinations, individual resilience, posttraumatic growth (PTG)

Procedia PDF Downloads 76
4166 Train Timetable Rescheduling Using Sensitivity Analysis: Application of Sobol, Based on Dynamic Multiphysics Simulation of Railway Systems

Authors: Soha Saad, Jean Bigeon, Florence Ossart, Etienne Sourdille

Abstract:

Developing better solutions for train rescheduling problems has been drawing the attention of researchers for decades. Most researches in this field deal with minor incidents that affect a large number of trains due to cascading effects. They focus on timetables, rolling stock and crew duties, but do not take into account infrastructure limits. The present work addresses electric infrastructure incidents that limit the power available for train traction, and hence the transportation capacity of the railway system. Rescheduling is needed in order to optimally share the available power among the different trains. We propose a rescheduling process based on dynamic multiphysics railway simulations that include the mechanical and electrical properties of all the system components and calculate physical quantities such as the train speed profiles, voltage along the catenary lines, temperatures, etc. The optimization problem to solve has a large number of continuous and discrete variables, several output constraints due to physical limitations of the system, and a high computation cost. Our approach includes a phase of sensitivity analysis in order to analyze the behavior of the system and help the decision making process and/or more precise optimization. This approach is a quantitative method based on simulation statistics of the dynamic railway system, considering a predefined range of variation of the input parameters. Three important settings are defined. Factor prioritization detects the input variables that contribute the most to the outputs variation. Then, factor fixing allows calibrating the input variables which do not influence the outputs. Lastly, factor mapping is used to study which ranges of input values lead to model realizations that correspond to feasible solutions according to defined criteria or objectives. Generalized Sobol indexes are used for factor prioritization and factor fixing. The approach is tested in the case of a simple railway system, with a nominal traffic running on a single track line. The considered incident is the loss of a feeding power substation, which limits the power available and the train speed. Rescheduling is needed and the variables to be adjusted are the trains departure times, train speed reduction at a given position and the number of trains (cancellation of some trains if needed). The results show that the spacing between train departure times is the most critical variable, contributing to more than 50% of the variation of the model outputs. In addition, we identify the reduced range of variation of this variable which guarantees that the output constraints are respected. Optimal solutions are extracted, according to different potential objectives: minimizing the traveling time, the train delays, the traction energy, etc. Pareto front is also built.

Keywords: optimization, rescheduling, railway system, sensitivity analysis, train timetable

Procedia PDF Downloads 399
4165 Utilizing Federated Learning for Accurate Prediction of COVID-19 from CT Scan Images

Authors: Jinil Patel, Sarthak Patel, Sarthak Thakkar, Deepti Saraswat

Abstract:

Recently, the COVID-19 outbreak has spread across the world, leading the World Health Organization to classify it as a global pandemic. To save the patient’s life, the COVID-19 symptoms have to be identified. But using an AI (Artificial Intelligence) model to identify COVID-19 symptoms within the allotted time was challenging. The RT-PCR test was found to be inadequate in determining the COVID status of a patient. To determine if the patient has COVID-19 or not, a Computed Tomography Scan (CT scan) of patient is a better alternative. It will be challenging to compile and store all the data from various hospitals on the server, though. Federated learning, therefore, aids in resolving this problem. Certain deep learning models help to classify Covid-19. This paper will have detailed work of certain deep learning models like VGG19, ResNet50, MobileNEtv2, and Deep Learning Aggregation (DLA) along with maintaining privacy with encryption.

Keywords: federated learning, COVID-19, CT-scan, homomorphic encryption, ResNet50, VGG-19, MobileNetv2, DLA

Procedia PDF Downloads 73
4164 Lifestyle Factors Associated With Overweight/obesity Status In Croatian Adolescents: A Population-Based Study

Authors: Lovro Štefan

Abstract:

The main purpose of the present study was to investigate the associations between the overweight/obesity status and lifestyle factors. In this cross-sectional study, participants were 1950 urban secondary-school students (54.7% of female students) aged 17-18 years old. Dependent variable was body-mass index status derived from self-reported height and weight. The outcome was binarised, where participants with value <25 kg/m2 were collapsed into „normal“, while those ≥25 kg/m2 into „overweight/obesity“ category. Independent variables were gender, type of school, physical activity, sedentary behaviour, self-rated health, self-perceived socioeconomic status and psychological distress. The associations between the dependent and independent variables were analyzed by using multiple logistic regression analysis. In the univariate model, being overweight/obese was significantly associated with being a male student (OR 0.31; 95% CI 0.23 to 0.42), attending a vocational school (OR 1.87; 95% CI 1.42 to 2.48), not meeting the recommendations for moderate-to-vigorous physical activity (OR 0.44; 95% CI 0.22 to 0.88), more time spending in sedentary behaviour (OR 1.53; 95% CI 1.07 to 2.19), poor self-rated health (OR 0.35, 95% CI 0.20 to 0.56) and lower socioeconomic status (OR 0.63; 95% CI 0.48 to 0.84). In the multivariate model, the same associations occured between the dependent and independent variable. In both models, psychological distress was not associated with being overweight/obese. In conclusion, our findings suggest, that lifestyle factors are independently associated with body-mass index

Keywords: body mass index, secondary-school students, Croatia, physical activity, sedentary behaviour, logistic regression

Procedia PDF Downloads 89
4163 Radio Frequency Identification Device Based Emergency Department Critical Care Billing: A Framework for Actionable Intelligence

Authors: Shivaram P. Arunachalam, Mustafa Y. Sir, Andy Boggust, David M. Nestler, Thomas R. Hellmich, Kalyan S. Pasupathy

Abstract:

Emergency departments (EDs) provide urgent care to patients throughout the day in a complex and chaotic environment. Real-time location systems (RTLS) are increasingly being utilized in healthcare settings, and have shown to improve safety, reduce cost, and increase patient satisfaction. Radio Frequency Identification Device (RFID) data in an ED has been shown to compute variables such as patient-provider contact time, which is associated with patient outcomes such as 30-day hospitalization. These variables can provide avenues for improving ED operational efficiency. A major challenge with ED financial operations is under-coding of critical care services due to physicians’ difficulty reporting accurate times for critical care provided under Current Procedural Terminology (CPT) codes 99291 and 99292. In this work, the authors propose a framework to optimize ED critical care billing using RFID data. RFID estimated physician-patient contact times could accurately quantify direct critical care services which will help model a data-driven approach for ED critical care billing. This paper will describe the framework and provide insights into opportunities to prevent under coding as well as over coding to avoid insurance audits. Future work will focus on data analytics to demonstrate the feasibility of the framework described.

Keywords: critical care billing, CPT codes, emergency department, RFID

Procedia PDF Downloads 133
4162 An Integration of Genetic Algorithm and Particle Swarm Optimization to Forecast Transport Energy Demand

Authors: N. R. Badurally Adam, S. R. Monebhurrun, M. Z. Dauhoo, A. Khoodaruth

Abstract:

Transport energy demand is vital for the economic growth of any country. Globalisation and better standard of living plays an important role in transport energy demand. Recently, transport energy demand in Mauritius has increased significantly, thus leading to an abuse of natural resources and thereby contributing to global warming. Forecasting the transport energy demand is therefore important for controlling and managing the demand. In this paper, we develop a model to predict the transport energy demand. The model developed is based on a system of five stochastic differential equations (SDEs) consisting of five endogenous variables: fuel price, population, gross domestic product (GDP), number of vehicles and transport energy demand and three exogenous parameters: crude birth rate, crude death rate and labour force. An interval of seven years is used to avoid any falsification of result since Mauritius is a developing country. Data available for Mauritius from year 2003 up to 2009 are used to obtain the values of design variables by applying genetic algorithm. The model is verified and validated for 2010 to 2012 by substituting the values of coefficients obtained by GA in the model and using particle swarm optimisation (PSO) to predict the values of the exogenous parameters. This model will help to control the transport energy demand in Mauritius which will in turn foster Mauritius towards a pollution-free country and decrease our dependence on fossil fuels.

Keywords: genetic algorithm, modeling, particle swarm optimization, stochastic differential equations, transport energy demand

Procedia PDF Downloads 370
4161 The Effect of COVID-19 Transmission, Lockdown Measures, and Vaccination on Stock Market Returns

Authors: Belhouchet Selma, Ben Amar Anis

Abstract:

We examine the impact of COVID-19 transmission, containment measures, and vaccination growth on daily stock market returns for the G7 countries (Canada, France, Germany, Italy, Japan, the United Kingdom, and the United States) from January 22, 2020, to August 31, 2021, more than a year and a half after COVID-19. For this objective, we use panel pooled ordinary least squares regressions. Our findings indicate that the spread of the pandemic has a negative impact on the daily performance of the world's seven main stock markets. Government measures to improve stock market returns are no longer successful. Furthermore, our findings demonstrate that immunization efforts in G7 nations do not increase stock market performance in these countries. A variety of robustness tests back up our conclusions. Our findings have far-reaching implications for investors, governments, and regulators not only in the G7 countries but also in all developed countries and all countries globally.

Keywords: COVID-19, G7 stock market, containment measures, vaccination

Procedia PDF Downloads 100
4160 Impacts of Aquaculture Farms on the Mangroves Forests of Sundarbans, India (2010-2018): Temporal Changes of NDVI

Authors: Sandeep Thakur, Ismail Mondal, Phani Bhusan Ghosh, Papita Das, Tarun Kumar De

Abstract:

Sundarbans Reserve forest of India has been undergoing major transformations in the recent past owing to population pressure and related changes. This has brought about major changes in the spatial landscape of the region especially in the western parts. This study attempts to assess the impacts of the Landcover changes on the mangrove habitats. Time series imageries of Landsat were used to analyze the Normalized Differential Vegetation Index (NDVI) patterns over the western parts of Indian Sundarbans forest in order to assess the heath of the mangroves in the region. The images were subjected to Land use Land cover (LULC) classification using sub-pixel classification techniques in ERDAS Imagine software and the changes were mapped. The spatial proliferation of aquaculture farms during the study period was also mapped. A multivariate regression analysis was carried out between the obtained NDVI values and the LULC classes. Similarly, the observed meteorological data sets (time series rainfall and minimum and maximum temperature) were also statistically correlated for regression. The study demonstrated the application of NDVI in assessing the environmental status of mangroves as the relationship between the changes in the environmental variables and the remote sensing based indices felicitate an efficient evaluation of environmental variables, which can be used in the coastal zone monitoring and development processes.

Keywords: aquaculture farms, LULC, Mangrove, NDVI

Procedia PDF Downloads 184
4159 Reconceptualizing Bioeconomy: From the Hegemonic Vision to Diverse Economies and Economies-others for Life – Advocating for a Resilient and Just Future in Colombia

Authors: Alexander Rincón Ruiz

Abstract:

This article is based on an exhaustive review and interdisciplinary effort spanning three years. It involved interviews, dialogues, discussion panels, and collective work on various visions of bio-economy in Colombia. The dialogue included government institutions, universities, local communities, activist groups, research institutes, the productive sector, and politicians, integrating perspectives such as Latin American environmental thought, complexity theory, modern visions, local worldviews (Afro-Colombian, indigenous, peasant), decoloniality, political ecology, ecological economics, and environmental economies. This work highlighted the need to redefine the traditional bio-economy concept, typically focused on markets and biotechnology, and to revisit the original idea of a bio-economy as an ‘economy for life’. In a country as diverse as Colombia—both biophysically and in its varied relationships with the territory—this redefinition is crucial. It emphasizes alternative logics of well-being related to resilience, care, and cooperation, reflecting Indigenous, Afro-Colombian, and peasant worldviews. This article is significant for proposing, for the first time, a viable approach to diverse and alternative economies for life tailored to the Colombian context. It represents not only academic work but also a political commitment to inclusion and plurality, aligning with the Colombian context and potentially extendable to other regions.

Keywords: ecological economics, decoloniality, complexity, Biodiversity

Procedia PDF Downloads 38
4158 Opportunities for Precision Feed in Apiculture

Authors: John Michael Russo

Abstract:

Honeybees are important to our food system and continue to suffer from high rates of colony loss. Precision feed has brought many benefits to livestock cultivation and these should transfer to apiculture. However, apiculture has unique challenges. The objective of this research is to understand how principles of precision agriculture, applied to apiculture and feed specifically, might effectively improve state-of-the-art cultivation. The methodology surveys apicultural practice to build a model for assessment. First, a review of apicultural motivators is made. Feed method is then evaluated. Finally, precision feed methods are examined as accelerants with potential to advance the effectiveness of feed practice. Six important motivators emerge: colony loss, disease, climate change, site variance, operational costs, and competition. Feed practice itself is used to compensate for environmental variables. The research finds that the current state-of-the-art in apiculture feed focuses on critical challenges in the management of feed schedules which satisfy requirements of the bees, preserve potency, optimize environmental variables, and manage costs. Many of the challenges are most acute when feed is used to dispense medication. Technology such as RNA treatments have even more rigorous demands. Precision feed solutions focus on strategies which accommodate specific needs of individual livestock. A major component is data; they integrate precise data with methods that respond to individual needs. There is enormous opportunity for precision feed to improve apiculture through the integration of precision data with policies to translate data into optimized action in the apiary, particularly through automation.

Keywords: precision agriculture, precision feed, apiculture, honeybees

Procedia PDF Downloads 79
4157 Modelling Conceptual Quantities Using Support Vector Machines

Authors: Ka C. Lam, Oluwafunmibi S. Idowu

Abstract:

Uncertainty in cost is a major factor affecting performance of construction projects. To our knowledge, several conceptual cost models have been developed with varying degrees of accuracy. Incorporating conceptual quantities into conceptual cost models could improve the accuracy of early predesign cost estimates. Hence, the development of quantity models for estimating conceptual quantities of framed reinforced concrete structures using supervised machine learning is the aim of the current research. Using measured quantities of structural elements and design variables such as live loads and soil bearing pressures, response and predictor variables were defined and used for constructing conceptual quantities models. Twenty-four models were developed for comparison using a combination of non-parametric support vector regression, linear regression, and bootstrap resampling techniques. R programming language was used for data analysis and model implementation. Gross soil bearing pressure and gross floor loading were discovered to have a major influence on the quantities of concrete and reinforcement used for foundations. Building footprint and gross floor loading had a similar influence on beams and slabs. Future research could explore the modelling of other conceptual quantities for walls, finishes, and services using machine learning techniques. Estimation of conceptual quantities would assist construction planners in early resource planning and enable detailed performance evaluation of early cost predictions.

Keywords: bootstrapping, conceptual quantities, modelling, reinforced concrete, support vector regression

Procedia PDF Downloads 207
4156 Evaluating Psychosocial Influence of Dental Aesthetics: A Cross-Sectional Study

Authors: Mahjabeen Akbar

Abstract:

Dental aesthetics and its associated psychosocial influence have a significant impact on individuals. Correcting malocclusions is a key motivating factor for majority patients; however, psychosocial factors have been rarely incorporated in evaluating malocclusions. Therefore, it is necessary to study the psychosocial influence of malocclusion in patients. The study aimed to determine the psychosocial influence of dental aesthetics in dental students by the ‘Psychosocial Impact of Dental Aesthetics Questionnaire’ and self-rated Aesthetic Component of the Index of Orthodontic Treatment Need (IOTN). This was a quantitative study using a cross-sectional study design. One hundred twenty dental students (71 females and 49 males; mean age 24.5) were selected via purposive sampling from July to August 2019. Dental students with no former orthodontic treatment were requested to fill out the ‘Psychosocial Impact of Dental Aesthetics Questionnaire.’ Variables including; self-confidence/insecurity, social influence, psychological influence and self-perception of the need of an orthodontic treatment were evaluated by a sequence of statements, while dental aesthetics were evaluated by using the IOTN Aesthetic Component. To determine the significance, the Kruskal-Wallis test was utilized. The results show that all four variables measuring psychosocial impact indicated significant correlations with the perceived malocclusions with a p-value of less than 0.01. The results conclude there is a strong psychological and social influence of altered dental aesthetics on an individual. Moreover, the relationship between the IOTN-AC grading with the psychosocial wellbeing of an individual stands proven, indicating that the perception of altered dental aesthetics is as important as a factor in treatment need as the amount of malocclusion.

Keywords: dental aesthetics, malocclusion, psychosocial influence, dental students

Procedia PDF Downloads 152
4155 Topic Sentiments toward the COVID-19 Vaccine on Twitter

Authors: Melissa Vang, Raheyma Khan, Haihua Chen

Abstract:

The coronavirus disease 2019 (COVID‐19) pandemic has changed people's lives from all over the world. More people have turned to Twitter to engage online and discuss the COVID-19 vaccine. This study aims to present a text mining approach to identify people's attitudes towards the COVID-19 vaccine on Twitter. To achieve this purpose, we collected 54,268 COVID-19 vaccine tweets from September 01, 2020, to November 01, 2020, then the BERT model is used for the sentiment and topic analysis. The results show that people had more negative than positive attitudes about the vaccine, and countries with an increasing number of confirmed cases had a higher percentage of negative attitudes. Additionally, the topics discussed in positive and negative tweets are different. The tweet datasets can be helpful to information professionals to inform the public about vaccine-related informational resources. Our findings may have implications for understanding people's cognitions and feelings about the vaccine.

Keywords: BERT, COVID-19 vaccine, sentiment analysis, topic modeling

Procedia PDF Downloads 152
4154 Global Collaboration During Global Crisis a Response to Rigorous Field Education in Social Work

Authors: Ruth Gerritsen-McKane, Mimi Sodhi, Lisa Gray, Donette Considine, Henry Kronner, Tameca Harris-Jackson

Abstract:

During these extraordinary times amid a global pandemic, political/civil unrest, and natural disasters, the need for appropriately trained professional social workers has never been stronger. Needs do not diminish but are heightened during such remarkable times. All too often, “developed” countries see the crisis in developing countries as uniquely theirs; 2020 has shown, there are no “others”; there is only us. Consequently, engaging in meaningful collaboration worldwide is essential! This presentation speaks to the fundamentals of global collaboration and, more importantly, how an in these trying times, the development of strong international partnerships can create opportunities for social work students across the planet to engage in meaningful field education opportunities. Accomplished by multiple modalities, a deeper understanding and response to social work students becoming formidable global citizens can be achieved.

Keywords: global citizens, global crisis, global collaboration, modalities

Procedia PDF Downloads 221
4153 Airline Choice Model for Domestic Flights: The Role of Airline Flexibility

Authors: Camila Amin-Puello, Lina Vasco-Diaz, Juan Ramirez-Arias, Claudia Munoz, Carlos Gonzalez-Calderon

Abstract:

Operational flexibility is a fundamental aspect in the field of airlines because although demand is constantly changing, it is the duty of companies to provide a service to users that satisfies their needs in an efficient manner without sacrificing factors such as comfort, safety and other perception variables. The objective of this research is to understand the factors that describe and explain operational flexibility by implementing advanced analytical methods such as exploratory factor analysis and structural equation modeling, examining multiple levels of operational flexibility and understanding how these variable influences users' decision-making when choosing an airline and in turn how it affects the airlines themselves. The use of a hybrid model and latent variables improves the efficiency and accuracy of airline performance prediction in the unpredictable Colombian market. This pioneering study delves into traveler motivations and their impact on domestic flight demand, offering valuable insights to optimize resources and improve the overall traveler experience. Applying the methods, it was identified that low-cost airlines are not useful for flexibility, while users, especially women, found airlines with greater flexibility in terms of ticket costs and flight schedules to be more useful. All of this allows airlines to anticipate and adapt to their customers' needs efficiently: to plan flight capacity appropriately, adjust pricing strategies and improve the overall passenger experience.

Keywords: hybrid choice model, airline, business travelers, domestic flights

Procedia PDF Downloads 14
4152 Virtual Marketing Team Leadership and Burnout: Literature Review, Implications for Managers, and Recommendations for Future Research

Authors: Chad A. Roberts

Abstract:

In the digitally connected world, global virtual teams are increasingly becoming the norm at large, multinational companies. Marketing managers see the positives of virtual teams. They also see the negatives. Employees who work from home may feel isolated, unorganized, and distracted by homelife. These complexities create a phenomenon that leaves virtual team members feeling burnout, a significant issue for marketing leaders and their team members. This paper examines remote worker burnout in global virtual marketing team settings. It provides an overview of the benefits and downsides to remote working marketing teams. The paper presents the literature on remote work stress and burnout, discusses ways marketing leaders can help prevent virtual employee burnout and suggests future research studies.

Keywords: burnout, COVID-19 pandemic, leadership, marketing, remote work, virtual team

Procedia PDF Downloads 220
4151 Potentials of Ecotourism to Nature Conservation and Improvement of Livelihood of People around Ayikunnugba Waterfalls, Oke-Ila Orangun, Nigeria

Authors: Funmilola Ajani, I. A. Ayodele, O.A. Filade

Abstract:

Tourism has direct, indirect and induced impacts on economic development and the industry is one of the most crucial tradable sectors in the world. The study was therefore carried out to assess the potentials of ecotourism to nature conservation and its contributions to the improvement of the livelihood of Oke- Ila Orangun community. One hundred and fifty residents were chosen by stratified random sampling as respondents. Respondents awareness of ecotourism was assessed using an 8-point scale while respondents acceptance of ecotourism was assessed using a 14-point scale. Contributions to improvement of livelihood of residents and perceived constraints identified by residents to the development of the water fall and socio-economic variables among others were also obtained. Also, in-depth interview was conducted with the king of Ayikunnugba. The data was analyzed using descriptive statistics such as frequency count, mean and percentages. Correlation analysis was used to determine whether or not a relationship exists between two variables at 0.05 level of significance. Perception of respondents based on the awareness of ecotourism and contributions to livelihood development was high (78.3%). A significant relationship exists between acceptance of ecotourism and its contributions to peoples’ livelihood. Also, relationship between constraints encountered by respondents and its contributions to peoples livelihood is highly significant(r =0.546; P =0.00). Majority (71.3%) of the respondents believed that the development of the area will not lead to environmental pollution. Public- Private- Partnership (PPP) is therefore recommended so as to enable the recreation site to meet international standard in terms of development and management.

Keywords: Ayikunnugba water fall, ecotourism constraints, nature conservation, awareness

Procedia PDF Downloads 160
4150 Nation Branding: Guidelines for Identity Development and Image Perception of Thailand Brand in Health and Wellness Tourism

Authors: Jiraporn Prommaha

Abstract:

The purpose of this research is to study the development of Thailand Brand Identity and the perception of its image in order to find any guidelines for the identity development and the image perception of Thailand Brand in Health and Wellness Tourism. The paper is conducted through mixed methods research, both the qualitative and quantitative researches. The qualitative focuses on the in-depth interview of executive administrations from public and private sectors involved scholars and experts in identity and image issue, main 11 people. The quantitative research was done by the questionnaires to collect data from foreign tourists 800; Chinese tourists 400 and UK tourists 400. The technique used for this was the Exploratory Factor Analysis (EFA), this was to determine the relation between the structures of the variables by categorizing the variables into group by applying the Varimax rotation technique. This technique showed recognition the Thailand brand image related to the 2 countries, China and UK. The results found that guidelines for brand identity development and image perception of health and wellness tourism in Thailand; as following (1) Develop communication in order to understanding of the meaning of the word 'Health and beauty tourism' throughout the country, (2) Develop human resources as a national agenda, (3) Develop awareness rising in the conservation and preservation of natural resources of the country, (4) Develop the cooperation of all stakeholders in Health and Wellness Businesses, (5) Develop digital communication throughout the country and (6) Develop safety in Tourism.

Keywords: brand identity, image perception, nation branding, health and wellness tourism, mixed methods research

Procedia PDF Downloads 201
4149 Employee Commitment as a Means of Revitalising the Hospitality Industry post-Covid: Considering the Impact of Psychological Contract and Psychological Capital

Authors: Desere Kokt

Abstract:

Hospitality establishments worldwide are bearing the brunt of the effects of Covid-19. As the hospitality industry is looking to recover, emphasis is placed on rejuvenating the industry. This is especially pertinent for economic development in areas of high unemployment, such as the Free State province of South Africa. The province is not a main tourist area and thus depends on the influx of tourists. The province has great scenic beauty with many accommodation establishments that provide job opportunities to the local population. The two main economic hubs of the Free State province namely Bloemfontein and Clarens, were the focus of the investigation. The emphasis was on graded accommodation establishments as they must adhere to the quality principles of the Tourism Grading Council of South Africa (TGCSA) to obtain star grading. The hospitality industry is known for being labour intensive, and employees need to be available to cater for the needs of paying customers. This is referred to as ‘emotional labour’ and implies that employees need to manage their feelings and emotions as part of performing their jobs. The focus of this study was thus on psychological factors related to working in the hospitality industry – specifically psychological contract and psychological capital and its impact on the commitment of employees in graded accommodation establishments. Employee commitment can be explained as a psychological state that binds the individual to the organisation and involves a set of psychological relationships that include affective (emotions), normative (perceived obligation) and continuance (staying with the organisation) dimensions. Psychological contract refers to the reciprocal beliefs and expectations between the employer and the employee and consists of transactional and rational contracts. Transactional contracts are associated with the economic exchange, and contractional issues related to the employment contract and rational contracts relate to the social exchange between the employee and the organisation. Psychological capital refers to an individual’s positive psychology state of development that is characterised by self-efficiency (having confidence in doing one’s job), optimism (being positive and persevering towards achieving one’s goals), hope (expectations for goals to succeed) and resilience (bouncing back to attain success when beset by problems and adversity). The study employed a quantitative research approach, and a structured questionnaire was used to gather data from respondents. The study was conducted during the Covid-19 pandemic, which hampered the data gathering efforts of the researchers. Many accommodation establishments were either closed or temporarily closed, which meant that data gathering was an intensive and laborious process. The main researcher travelled to the various establishments to collect the data. Nine hospitality establishments participated in the study, and around 150 employees were targeted for data collection. Ninety-two (92) questionnaires were completed, which represents a response rate of 61%. Data were analysed using descriptive and inferential statistics, and partial least squares structural equation modelling (PLS-SEM) was applied to examine the relationship between the variables.

Keywords: employee commitment, hospitality industry, psychological contract, psychological capital

Procedia PDF Downloads 107
4148 Predictive Analytics of Bike Sharing Rider Parameters

Authors: Bongs Lainjo

Abstract:

The evolution and escalation of bike-sharing programs (BSP) continue unabated. Since the sixties, many countries have introduced different models and strategies of BSP. These include variations ranging from dockless models to electronic real-time monitoring systems. Reasons for using this BSP include recreation, errands, work, etc. And there is all indication that complex, and more innovative rider-friendly systems are yet to be introduced. The objective of this paper is to analyze current variables established by different operators and streamline them identifying the most compelling ones using analytics. Given the contents of available databases, there is a lack of uniformity and common standard on what is required and what is not. Two factors appear to be common: user type (registered and unregistered, and duration of each trip). This article uses historical data provided by one operator based in the greater Washington, District of Columbia, USA area. Several variables including categorical and continuous data types were screened. Eight out of 18 were considered acceptable and significantly contribute to determining a useful and reliable predictive model. Bike-sharing systems have become popular in recent years all around the world. Although this trend has resulted in many studies on public cycling systems, there have been few previous studies on the factors influencing public bicycle travel behavior. A bike-sharing system is a computer-controlled system in which individuals can borrow bikes for a fee or free for a limited period. This study has identified unprecedented useful, and pragmatic parameters required in improving BSP ridership dynamics.

Keywords: sharing program, historical data, parameters, ridership dynamics, trip duration

Procedia PDF Downloads 139
4147 An Exploratory Factor and Cluster Analysis of the Willingness to Pay for Last Mile Delivery

Authors: Maximilian Engelhardt, Stephan Seeck

Abstract:

The COVID-19 pandemic is accelerating the already growing field of e-commerce. The resulting urban freight transport volume leads to traffic and negative environmental impact. Furthermore, the service level of parcel logistics service provider is lacking far behind the expectations of consumer. These challenges can be solved by radically reorganize the urban last mile distribution structure: parcels could be consolidated in a micro hub within the inner city and delivered within time windows by cargo bike. This approach leads to a significant improvement of consumer satisfaction with their overall delivery experience. However, this approach also leads to significantly increased costs per parcel. While there is a relevant share of online shoppers that are willing to pay for such a delivery service there are no deeper insights about this target group available in the literature. Being aware of the importance of knowing target groups for businesses, the aim of this paper is to elaborate the most important factors that determine the willingness to pay for sustainable and service-oriented parcel delivery (factor analysis) and to derive customer segments (cluster analysis). In order to answer those questions, a data set is analyzed using quantitative methods of multivariate statistics. The data set was generated via an online survey in September and October 2020 within the five largest cities in Germany (n = 1.071). The data set contains socio-demographic, living-related and value-related variables, e.g. age, income, city, living situation and willingness to pay. In a prior work of the author, the data was analyzed applying descriptive and inference statistical methods that only provided limited insights regarding the above-mentioned research questions. The analysis in an exploratory way using factor and cluster analysis promise deeper insights of relevant influencing factors and segments for user behavior of the mentioned parcel delivery concept. The analysis model is built and implemented with help of the statistical software language R. The data analysis is currently performed and will be completed in December 2021. It is expected that the results will show the most relevant factors that are determining user behavior of sustainable and service-oriented parcel deliveries (e.g. age, current service experience, willingness to pay) and give deeper insights in characteristics that describe the segments that are more or less willing to pay for a better parcel delivery service. Based on the expected results, relevant implications and conclusions can be derived for startups that are about to change the way parcels are delivered: more customer-orientated by time window-delivery and parcel consolidation, more environmental-friendly by cargo bike. The results will give detailed insights regarding their target groups of parcel recipients. Further research can be conducted by exploring alternative revenue models (beyond the parcel recipient) that could compensate the additional costs, e.g. online-shops that increase their service-level or municipalities that reduce traffic on their streets.

Keywords: customer segmentation, e-commerce, last mile delivery, parcel service, urban logistics, willingness-to-pay

Procedia PDF Downloads 108
4146 An Assessment of Thermal Comfort and Air Quality in Educational Space: A Case Study of Design Studios in the Arab Academy for Science, Technology and Maritime Transport, Alexandria

Authors: Bakr Gomaa, Hana Awad

Abstract:

A stuffy room is one of the indicators of poor indoor air quality. Through working in an educational building in Alexandria, it is noticed that one of the rooms is smelly. A field study is conducted in a private university building in Alexandria to achieve indoor sustainable educational environment. Additionally, the indoor air quality is empirically assessed, and thermal comfort is identified in educational buildings, in studio halls specifically during lecture hours. The current research uses qualitative and quantitative methods in the form of literature review, investigation and test measurements. At a similar time that the teachers and students fill in a questionnaire regarding the concept of indoor climate, thermal comfort variables are determined. The indoor thermal conditions of the studio are assessed through three variables including Fanger’s comfort indicators (calculated using PMV, predicted mean vote and PPD, predicted percentage of dissatisfied people), the actual people clothing and metabolic rate. Actual measurements of air quality are obtained in a case study in an architectural building. Results have proved that indoor climatic conditions as air flow and temperature are inconvenient to inhabitants. Regarding questionnaire results, occupants appear to be uncomfortable in both seasons, with result percentages out of the acceptable range. Finally, further researches will center on how to preserve thermal comfort in school buildings since it has a vital influence on the student’s knowledge.

Keywords: educational buildings, Indoor air quality, productivity, thermal comfort

Procedia PDF Downloads 196