Search results for: neural perception.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3795

Search results for: neural perception.

2145 A Multi-Output Network with U-Net Enhanced Class Activation Map and Robust Classification Performance for Medical Imaging Analysis

Authors: Jaiden Xuan Schraut, Leon Liu, Yiqiao Yin

Abstract:

Computer vision in medical diagnosis has achieved a high level of success in diagnosing diseases with high accuracy. However, conventional classifiers that produce an image to-label result provides insufficient information for medical professionals to judge and raise concerns over the trust and reliability of a model with results that cannot be explained. In order to gain local insight into cancerous regions, separate tasks such as imaging segmentation need to be implemented to aid the doctors in treating patients, which doubles the training time and costs which renders the diagnosis system inefficient and difficult to be accepted by the public. To tackle this issue and drive AI-first medical solutions further, this paper proposes a multi-output network that follows a U-Net architecture for image segmentation output and features an additional convolutional neural networks (CNN) module for auxiliary classification output. Class activation maps are a method of providing insight into a convolutional neural network’s feature maps that leads to its classification but in the case of lung diseases, the region of interest is enhanced by U-net-assisted Class Activation Map (CAM) visualization. Therefore, our proposed model combines image segmentation models and classifiers to crop out only the lung region of a chest X-ray’s class activation map to provide a visualization that improves the explainability and is able to generate classification results simultaneously which builds trust for AI-led diagnosis systems. The proposed U-Net model achieves 97.61% accuracy and a dice coefficient of 0.97 on testing data from the COVID-QU-Ex Dataset which includes both diseased and healthy lungs.

Keywords: multi-output network model, U-net, class activation map, image classification, medical imaging analysis

Procedia PDF Downloads 203
2144 Lung Cancer Detection and Multi Level Classification Using Discrete Wavelet Transform Approach

Authors: V. Veeraprathap, G. S. Harish, G. Narendra Kumar

Abstract:

Uncontrolled growth of abnormal cells in the lung in the form of tumor can be either benign (non-cancerous) or malignant (cancerous). Patients with Lung Cancer (LC) have an average of five years life span expectancy provided diagnosis, detection and prediction, which reduces many treatment options to risk of invasive surgery increasing survival rate. Computed Tomography (CT), Positron Emission Tomography (PET), and Magnetic Resonance Imaging (MRI) for earlier detection of cancer are common. Gaussian filter along with median filter used for smoothing and noise removal, Histogram Equalization (HE) for image enhancement gives the best results without inviting further opinions. Lung cavities are extracted and the background portion other than two lung cavities is completely removed with right and left lungs segmented separately. Region properties measurements area, perimeter, diameter, centroid and eccentricity measured for the tumor segmented image, while texture is characterized by Gray-Level Co-occurrence Matrix (GLCM) functions, feature extraction provides Region of Interest (ROI) given as input to classifier. Two levels of classifications, K-Nearest Neighbor (KNN) is used for determining patient condition as normal or abnormal, while Artificial Neural Networks (ANN) is used for identifying the cancer stage is employed. Discrete Wavelet Transform (DWT) algorithm is used for the main feature extraction leading to best efficiency. The developed technology finds encouraging results for real time information and on line detection for future research.

Keywords: artificial neural networks, ANN, discrete wavelet transform, DWT, gray-level co-occurrence matrix, GLCM, k-nearest neighbor, KNN, region of interest, ROI

Procedia PDF Downloads 153
2143 Web Data Scraping Technology Using Term Frequency Inverse Document Frequency to Enhance the Big Data Quality on Sentiment Analysis

Authors: Sangita Pokhrel, Nalinda Somasiri, Rebecca Jeyavadhanam, Swathi Ganesan

Abstract:

Tourism is a booming industry with huge future potential for global wealth and employment. There are countless data generated over social media sites every day, creating numerous opportunities to bring more insights to decision-makers. The integration of Big Data Technology into the tourism industry will allow companies to conclude where their customers have been and what they like. This information can then be used by businesses, such as those in charge of managing visitor centers or hotels, etc., and the tourist can get a clear idea of places before visiting. The technical perspective of natural language is processed by analysing the sentiment features of online reviews from tourists, and we then supply an enhanced long short-term memory (LSTM) framework for sentiment feature extraction of travel reviews. We have constructed a web review database using a crawler and web scraping technique for experimental validation to evaluate the effectiveness of our methodology. The text form of sentences was first classified through Vader and Roberta model to get the polarity of the reviews. In this paper, we have conducted study methods for feature extraction, such as Count Vectorization and TFIDF Vectorization, and implemented Convolutional Neural Network (CNN) classifier algorithm for the sentiment analysis to decide the tourist’s attitude towards the destinations is positive, negative, or simply neutral based on the review text that they posted online. The results demonstrated that from the CNN algorithm, after pre-processing and cleaning the dataset, we received an accuracy of 96.12% for the positive and negative sentiment analysis.

Keywords: counter vectorization, convolutional neural network, crawler, data technology, long short-term memory, web scraping, sentiment analysis

Procedia PDF Downloads 88
2142 Dynamic EEG Desynchronization in Response to Vicarious Pain

Authors: Justin Durham, Chanda Rooney, Robert Mather, Mickie Vanhoy

Abstract:

The psychological construct of empathy is to understand a person’s cognitive perspective and experience the other person’s emotional state. Deciphering emotional states is conducive for interpreting vicarious pain. Observing others' physical pain activates neural networks related to the actual experience of pain itself. The study addresses empathy as a nonlinear dynamic process of simulation for individuals to understand the mental states of others and experience vicarious pain, exhibiting self-organized criticality. Such criticality follows from a combination of neural networks with an excitatory feedback loop generating bistability to resonate permutated empathy. Cortical networks exhibit diverse patterns of activity, including oscillations, synchrony and waves, however, the temporal dynamics of neurophysiological activities underlying empathic processes remain poorly understood. Mu rhythms are EEG oscillations with dominant frequencies of 8-13 Hz becoming synchronized when the body is relaxed with eyes open and when the sensorimotor system is in idle, thus, mu rhythm synchrony is expected to be highest in baseline conditions. When the sensorimotor system is activated either by performing or simulating action, mu rhythms become suppressed or desynchronize, thus, should be suppressed while observing video clips of painful injuries if previous research on mirror system activation holds. Twelve undergraduates contributed EEG data and survey responses to empathy and psychopathy scales in addition to watching consecutive video clips of sports injuries. Participants watched a blank, black image on a computer monitor before and after observing a video of consecutive sports injuries incidents. Each video condition lasted five-minutes long. A BIOPAC MP150 recorded EEG signals from sensorimotor and thalamocortical regions related to a complex neural network called the ‘pain matrix’. Physical and social pain are activated in this network to resonate vicarious pain responses to processing empathy. Five EEG single electrode locations were applied to regions measuring sensorimotor electrical activity in microvolts (μV) to monitor mu rhythms. EEG signals were sampled at a rate of 200 Hz. Mu rhythm desynchronization was measured via 8-13 Hz at electrode sites (F3 & F4). Data for each participant’s mu rhythms were analyzed via Fast Fourier Transformation (FFT) and multifractal time series analysis.

Keywords: desynchronization, dynamical systems theory, electroencephalography (EEG), empathy, multifractal time series analysis, mu waveform, neurophysiology, pain simulation, social cognition

Procedia PDF Downloads 283
2141 Ideology and the Writer's Commitment to National Development: Profiling the Nigerian Soldier in Isidore Okpewho's ‘The Last Duty and Festus Iyayi's Heroes’

Authors: Edwin Onwuka, Segun Omidiora, Eugenia Abiodun-Eniaiyekan

Abstract:

The Nigerian military is often the subject of active critical inquiries having played significant roles in Nigeria’s national development. However, the soldier is one of the most vilified characters in Nigeria’s imaginative literature, be it in poetry, drama or prose fiction. In the main, the characterization of soldiers is predictable because of their entrenched stereotype as oppressors, tyrants, bullies, rapists, despots, killers or at best law-breakers subject to no authority outside the military institution. In most novels, the soldier’s personality is associated with force and violence; still, few have defied the norm to portray soldiers that go against the grain of notoriety. Such novels have characterized the Nigerian soldier positively as a civil, thinking and human personality in relating to civil society. To a great extent, two major impetuses that influence literary representation of characters and institutions in African literature are ideology and commitment, and one necessarily impacts on the other in shaping the artistic vision of the writer. Using two war novels therefore as templates, this paper argues that the ideology that drives the Nigerian writer’s socio-cultural commitment to national development shapes their portrayal of the Nigerian soldier in imaginative literature. A major objective of this study, therefore, is to show through close textual analysis that the writers’ ideologies influence their perception and characterization of the Nigerian soldier in Isidore Okpewho’s The Last Duty and Festus Iyayi’s Heroes, two representative novels of both persuasions described above. New Historicism is the critical framework applied in this study and its conclusion is that the Nigerian writer’s characterization of the soldier is influenced by his ideological perception of the military in the policy against the backdrop of their past socio-political activities.

Keywords: commitment, ideology, national development, new historicism, Nigerian soldier

Procedia PDF Downloads 254
2140 Neural Network Based Control Algorithm for Inhabitable Spaces Applying Emotional Domotics

Authors: Sergio A. Navarro Tuch, Martin Rogelio Bustamante Bello, Leopoldo Julian Lechuga Lopez

Abstract:

In recent years, Mexico’s population has seen a rise of different physiological and mental negative states. Two main consequences of this problematic are deficient work performance and high levels of stress generating and important impact on a person’s physical, mental and emotional health. Several approaches, such as the use of audiovisual stimulus to induce emotions and modify a person’s emotional state, can be applied in an effort to decreases these negative effects. With the use of different non-invasive physiological sensors such as EEG, luminosity and face recognition we gather information of the subject’s current emotional state. In a controlled environment, a subject is shown a series of selected images from the International Affective Picture System (IAPS) in order to induce a specific set of emotions and obtain information from the sensors. The raw data obtained is statistically analyzed in order to filter only the specific groups of information that relate to a subject’s emotions and current values of the physical variables in the controlled environment such as, luminosity, RGB light color, temperature, oxygen level and noise. Finally, a neural network based control algorithm is given the data obtained in order to feedback the system and automate the modification of the environment variables and audiovisual content shown in an effort that these changes can positively alter the subject’s emotional state. During the research, it was found that the light color was directly related to the type of impact generated by the audiovisual content on the subject’s emotional state. Red illumination increased the impact of violent images and green illumination along with relaxing images decreased the subject’s levels of anxiety. Specific differences between men and women were found as to which type of images generated a greater impact in either gender. The population sample was mainly constituted by college students whose data analysis showed a decreased sensibility to violence towards humans. Despite the early stage of the control algorithm, the results obtained from the population sample give us a better insight into the possibilities of emotional domotics and the applications that can be created towards the improvement of performance in people’s lives. The objective of this research is to create a positive impact with the application of technology to everyday activities; nonetheless, an ethical problem arises since this can also be applied to control a person’s emotions and shift their decision making.

Keywords: data analysis, emotional domotics, performance improvement, neural network

Procedia PDF Downloads 140
2139 Chemical vs Visual Perception in Food Choice Ability of Octopus vulgaris (Cuvier, 1797)

Authors: Al Sayed Al Soudy, Valeria Maselli, Gianluca Polese, Anna Di Cosmo

Abstract:

Cephalopods are considered as a model organism with a rich behavioral repertoire. Sophisticated behaviors were widely studied and described in different species such as Octopus vulgaris, who has evolved the largest and more complex nervous system among invertebrates. In O. vulgaris, cognitive abilities in problem-solving tasks and learning abilities are associated with long-term memory and spatial memory, mediated by highly developed sensory organs. They are equipped with sophisticated eyes, able to discriminate colors even with a single photoreceptor type, vestibular system, ‘lateral line analogue’, primitive ‘hearing’ system and olfactory organs. They can recognize chemical cues either through direct contact with odors sources using suckers or by distance through the olfactory organs. Cephalopods are able to detect widespread waterborne molecules by the olfactory organs. However, many volatile odorant molecules are insoluble or have a very low solubility in water, and must be perceived by direct contact. O. vulgaris, equipped with many chemosensory neurons located in their suckers, exhibits a peculiar behavior that can be provocatively described as 'smell by touch'. The aim of this study is to establish the priority given to chemical vs. visual perception in food choice. Materials and methods: Three different types of food (anchovies, clams, and mussels) were used, and all sessions were recorded with a digital camera. During the acclimatization period, Octopuses were exposed to the three types of food to test their natural food preferences. Later, to verify if food preference is maintained, food was provided in transparent screw-jars with pierced lids to allow both visual and chemical recognition of the food inside. Subsequently, we tested alternatively octopuses with food in sealed transparent screw-jars and food in blind screw-jars with pierced lids. As a control, we used blind sealed jars with the same lid color to verify a random choice among food types. Results and discussion: During the acclimatization period, O. vulgaris shows a higher preference for anchovies (60%) followed by clams (30%), then mussels (10%). After acclimatization, using the transparent and pierced screw jars octopus’s food choices resulted in 50-50 between anchovies and clams, avoiding mussels. Later, guided by just visual sense, with transparent but not pierced jars, their food preferences resulted in 100% anchovies. With pierced but not transparent jars their food preference resulted in 100% anchovies as first food choice, the clams as a second food choice result (33.3%). With no possibility to select food, neither by vision nor by chemoreception, the results were 20% anchovies, 20% clams, and 60% mussels. We conclude that O. vulgaris uses both chemical and visual senses in an integrative way in food choice, but if we exclude one of them, it appears clear that its food preference relies on chemical sense more than on visual perception.

Keywords: food choice, Octopus vulgaris, olfaction, sensory organs, visual sense

Procedia PDF Downloads 221
2138 Forecast Financial Bubbles: Multidimensional Phenomenon

Authors: Zouari Ezzeddine, Ghraieb Ikram

Abstract:

From the results of the academic literature which evokes the limitations of previous studies, this article shows the reasons for multidimensionality Prediction of financial bubbles. A new framework for modeling study predicting financial bubbles by linking a set of variable presented on several dimensions dictating its multidimensional character. It takes into account the preferences of financial actors. A multicriteria anticipation of the appearance of bubbles in international financial markets helps to fight against a possible crisis.

Keywords: classical measures, predictions, financial bubbles, multidimensional, artificial neural networks

Procedia PDF Downloads 577
2137 Community Perceptions on Honey Quality in Tobacco Growing Areas in Kigoma Region, Tanzania

Authors: Pilly Kagosi, Cherestino Balama

Abstract:

Beekeeping plays major role in improving biodiversity, increasing household income, and crop production through pollination. Tobacco farming is also the main source of household income for smallholder farmers. In Kigoma, production of Tobacco has increased and is perceived to threaten honey quality. The study explored the perception of the community on quality of honey in tobacco and non tobacco growing areas. The study was conducted in Kigoma Region, Tanzania. District and Villages were purposively sampled based on large numbers of people dealing with beekeeping activities and tobacco farming. Socioeconomic data were collected and analysed using Statistical Package for Social Sciences and content analysis. The perception of stakeholders on honey quality was analysed using Likert scale. Majority of the respondents agreed that tobacco farming greatly affects honey quality because honey from beehives near tobacco farms test bitter and sometimes irritating, which was associated with nicotine content and agrochemicals applied to tobacco crops. Though they cannot differentiate honey bitterness from agrochemicals and bee fodders. Furthermore, it was revealed that chemicals applied to tobacco and vegetables have negative effect on the bees and honey quality. Respondents believe that setting bee hives near tobacco farms might contaminate honey and therefore affect its quality. Beekeepers are not aware of the nicotine content from other bee fodders like miombo of which do not have any effect on human beings. Actually, tobacco farming does not affect beekeeping activities in issue of quality when farmers follow proper management of tobacco flowers and proper handling of honey. Though, big challenge in tobacco farming is chemically applied to the crops and harvest bee fodders for curing tobacco. The study recommends training to community on proper management of tobacco and proper handling of bee products.

Keywords: community, honey, perceptions, tobacco

Procedia PDF Downloads 144
2136 ARABEX: Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder and Custom Convolutional Recurrent Neural Network

Authors: Hozaifa Zaki, Ghada Soliman

Abstract:

In this paper, we introduced an approach for Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder (ARABEX) with bidirectional LSTM. This approach is used for translating the Arabic dot-matrix expiration dates into their corresponding filled-in dates. A custom lightweight Convolutional Recurrent Neural Network (CRNN) model is then employed to extract the expiration dates. Due to the lack of available dataset images for the Arabic dot-matrix expiration date, we generated synthetic images by creating an Arabic dot-matrix True Type Font (TTF) matrix to address this limitation. Our model was trained on a realistic synthetic dataset of 3287 images, covering the period from 2019 to 2027, represented in the format of yyyy/mm/dd. We then trained our custom CRNN model using the generated synthetic images to assess the performance of our model (ARABEX) by extracting expiration dates from the translated images. Our proposed approach achieved an accuracy of 99.4% on the test dataset of 658 images, while also achieving a Structural Similarity Index (SSIM) of 0.46 for image translation on our dataset. The ARABEX approach demonstrates its ability to be applied to various downstream learning tasks, including image translation and reconstruction. Moreover, this pipeline (ARABEX+CRNN) can be seamlessly integrated into automated sorting systems to extract expiry dates and sort products accordingly during the manufacturing stage. By eliminating the need for manual entry of expiration dates, which can be time-consuming and inefficient for merchants, our approach offers significant results in terms of efficiency and accuracy for Arabic dot-matrix expiration date recognition.

Keywords: computer vision, deep learning, image processing, character recognition

Procedia PDF Downloads 82
2135 Italian Speech Vowels Landmark Detection through the Legacy Tool 'xkl' with Integration of Combined CNNs and RNNs

Authors: Kaleem Kashif, Tayyaba Anam, Yizhi Wu

Abstract:

This paper introduces a methodology for advancing Italian speech vowels landmark detection within the distinctive feature-based speech recognition domain. Leveraging the legacy tool 'xkl' by integrating combined convolutional neural networks (CNNs) and recurrent neural networks (RNNs), the study presents a comprehensive enhancement to the 'xkl' legacy software. This integration incorporates re-assigned spectrogram methodologies, enabling meticulous acoustic analysis. Simultaneously, our proposed model, integrating combined CNNs and RNNs, demonstrates unprecedented precision and robustness in landmark detection. The augmentation of re-assigned spectrogram fusion within the 'xkl' software signifies a meticulous advancement, particularly enhancing precision related to vowel formant estimation. This augmentation catalyzes unparalleled accuracy in landmark detection, resulting in a substantial performance leap compared to conventional methods. The proposed model emerges as a state-of-the-art solution in the distinctive feature-based speech recognition systems domain. In the realm of deep learning, a synergistic integration of combined CNNs and RNNs is introduced, endowed with specialized temporal embeddings, harnessing self-attention mechanisms, and positional embeddings. The proposed model allows it to excel in capturing intricate dependencies within Italian speech vowels, rendering it highly adaptable and sophisticated in the distinctive feature domain. Furthermore, our advanced temporal modeling approach employs Bayesian temporal encoding, refining the measurement of inter-landmark intervals. Comparative analysis against state-of-the-art models reveals a substantial improvement in accuracy, highlighting the robustness and efficacy of the proposed methodology. Upon rigorous testing on a database (LaMIT) speech recorded in a silent room by four Italian native speakers, the landmark detector demonstrates exceptional performance, achieving a 95% true detection rate and a 10% false detection rate. A majority of missed landmarks were observed in proximity to reduced vowels. These promising results underscore the robust identifiability of landmarks within the speech waveform, establishing the feasibility of employing a landmark detector as a front end in a speech recognition system. The synergistic integration of re-assigned spectrogram fusion, CNNs, RNNs, and Bayesian temporal encoding not only signifies a significant advancement in Italian speech vowels landmark detection but also positions the proposed model as a leader in the field. The model offers distinct advantages, including unparalleled accuracy, adaptability, and sophistication, marking a milestone in the intersection of deep learning and distinctive feature-based speech recognition. This work contributes to the broader scientific community by presenting a methodologically rigorous framework for enhancing landmark detection accuracy in Italian speech vowels. The integration of cutting-edge techniques establishes a foundation for future advancements in speech signal processing, emphasizing the potential of the proposed model in practical applications across various domains requiring robust speech recognition systems.

Keywords: landmark detection, acoustic analysis, convolutional neural network, recurrent neural network

Procedia PDF Downloads 63
2134 The Prevailing Practice of Night Hunting in Central Bhutan: Traditional Practice of Courtship as a Sexual Coercion to Women

Authors: Ugyen Phuntsho

Abstract:

A popular and entrenched custom as a form of courtship has been practicing in Bhutan from long time back. This custom is widely being practiced in the villages of eastern and central Bhutan. This long-practiced custom is known by different terms in Bhutan, but it is popularly known to the foreigners as ‘night hunting’. This unique form of courtship custom involves the boy visiting the girl’s house stealthily under the cover of darkness without any pre-appointment. It is still perceived as a serving norms of courtship in the villages in central Bhutan. For many years this practice of night hunting has been in the spotlight of debate as a harmless culture but as sexual violence against women. However, this study examined the changing perception on the night hunting as a form of courtship custom or sexual coercion to women by employing the in-depth interview with 42 participants (21 females and 9 males from 3 different villages, 5 females and 7 males from urban areas) in central Bhutan. Moreover, the study investigated the gender inequality linked with the practice of night hunting in the rural areas of central Bhutan. The study revealed the changing perception on night hunting as more of sexual coercion taking place during night hunting than merely tolerating it as traditional form of practice of courtship. The finding of this study revealed unlike the past; this practice serves minimal social purpose in the society as the social changes with the development of socioeconomic of the people. However, the practice of night hunting is still prevalent at the villages, and it is known that the social power, single and widow women, valuing of village endogamy practices and the popular notion of pride of promiscuous amongst the men have attributed in sexual coercion and in ultimate victimization of the women. Furthermore, the study revealed the gender inequality linked with night hunting thus significantly increasing the vulnerability of rural women to other forms of violence in the society.

Keywords: courtship, custom, men, night hunting, practice, sexual coercion, women, violence

Procedia PDF Downloads 246
2133 An Event-Related Potential Investigation of Speech-in-Noise Recognition in Native and Nonnative Speakers of English

Authors: Zahra Fotovatnia, Jeffery A. Jones, Alexandra Gottardo

Abstract:

Speech communication often occurs in environments where noise conceals part of a message. Listeners should compensate for the lack of auditory information by picking up distinct acoustic cues and using semantic and sentential context to recreate the speaker’s intended message. This situation seems to be more challenging in a nonnative than native language. On the other hand, early bilinguals are expected to show an advantage over the late bilingual and monolingual speakers of a language due to their better executive functioning components. In this study, English monolingual speakers were compared with early and late nonnative speakers of English to understand speech in noise processing (SIN) and the underlying neurobiological features of this phenomenon. Auditory mismatch negativities (MMNs) were recorded using a double-oddball paradigm in response to a minimal pair that differed in their middle vowel (beat/bit) at Wilfrid Laurier University in Ontario, Canada. The results did not show any significant structural and electroneural differences across groups. However, vocabulary knowledge correlated positively with performance on tests that measured SIN processing in participants who learned English after age 6. Moreover, their performance on the test negatively correlated with the integral area amplitudes in the left superior temporal gyrus (STG). In addition, the STG was engaged before the inferior frontal gyrus (IFG) in noise-free and low-noise test conditions in all groups. We infer that the pre-attentive processing of words engages temporal lobes earlier than the fronto-central areas and that vocabulary knowledge helps the nonnative perception of degraded speech.

Keywords: degraded speech perception, event-related brain potentials, mismatch negativities, brain regions

Procedia PDF Downloads 107
2132 “The Day I Became a Woman” by Marziyeh Meshkiny: An Analysis of the Cinematographic Image of the Middle East

Authors: Ana Carolina Domingues

Abstract:

This work presents the preliminary results of the above-titled doctoral research. Based on this film and on Middle East authors who discuss films made by women, it has been concluded so far, that it is part of a larger movement, which together with other productions, show the perceptions of the world of these women, who see the world otherwise, for not holding positions of power. These modes of perception revealed from the encounter of women with the cameras, educate viewers to denaturalize the impressions constructed in relation to the Middle East.

Keywords: cinema, image, middle east, women

Procedia PDF Downloads 117
2131 The Phonemic Inventory of Tenyidie Affricates: An Acoustic Study

Authors: NeisaKuonuo Tungoe

Abstract:

Tenyidie, also known as Angami, is spoken by the Angami tribe of Nagaland, North-East India, bordering Myanmar (Burma). It belongs to the Tibeto-Burman language group, falling under the Kuki-Chin-Naga sub-family. Tenyidie studies have seen random attempts at explaining the phonemic inventory of Tenyidie. Different scholars have variously emphasized the grammar or the history of Tenyidie. Many of these claims have been stimulating, but they were often based on a small amount of merely suggestive data or on auditory perception only. The principal objective of this paper is to analyse the affricate segments of Tenyidie as an acoustic study. There are seven categories to the inventory of Tenyidie; Plosives, Nasals, Affricates, Laterals, Rhotics, Fricatives, Semi vowels and Vowels. In all, there are sixty phonemes in the inventory. As mentioned above, the only prominent readings on Tenyidie or affricates in particular are only reflected through auditory perception. As noted above, this study aims to lay out the affricate segments based only on acoustic conclusions. There are seven affricates found in Tenyidie. They are: 1) Voiceless Labiodental Affricate - / pf /, 2) Voiceless Aspirated Labiodental Affricate- / pfh /, 3) Voiceless Alveolar Affricate - / ts /, 4) Voiceless Aspirated Alveolar Affricate - / tsh /, 5) Voiced Alveolar Affricate - / dz /, 6) Voiceless Post-Alveolar Affricate / tʃ / and 7) Voiced Post- Alveolar Affricate- / dʒ /. Since the study is based on acoustic features of affricates, five informants were asked to record their voice with Tenyidie phonemes and English phonemes. Throughout the study of the recorded data, PRAAT, a scientific software program that has made itself indispensible for the analyses of speech in phonetics, have been used as the main software. This data was then used as a comparative study between Tenyidie and English affricates. Comparisons have also been drawn between this study and the work of another author who has stated that there are only six affricates in Tenyidie. The study has been quite detailed regarding the specifics of the data. Detailed accounts of the duration and acoustic cues have been noted. The data will be presented in the form of spectrograms. Since there aren’t any other acoustic related data done on Tenyidie, this study will be the first in the long line of acoustic researches on Tenyidie.

Keywords: tenyidie, affricates, praat, phonemic inventory

Procedia PDF Downloads 416
2130 Unsupervised Classification of DNA Barcodes Species Using Multi-Library Wavelet Networks

Authors: Abdesselem Dakhli, Wajdi Bellil, Chokri Ben Amar

Abstract:

DNA Barcode, a short mitochondrial DNA fragment, made up of three subunits; a phosphate group, sugar and nucleic bases (A, T, C, and G). They provide good sources of information needed to classify living species. Such intuition has been confirmed by many experimental results. Species classification with DNA Barcode sequences has been studied by several researchers. The classification problem assigns unknown species to known ones by analyzing their Barcode. This task has to be supported with reliable methods and algorithms. To analyze species regions or entire genomes, it becomes necessary to use similarity sequence methods. A large set of sequences can be simultaneously compared using Multiple Sequence Alignment which is known to be NP-complete. To make this type of analysis feasible, heuristics, like progressive alignment, have been developed. Another tool for similarity search against a database of sequences is BLAST, which outputs shorter regions of high similarity between a query sequence and matched sequences in the database. However, all these methods are still computationally very expensive and require significant computational infrastructure. Our goal is to build predictive models that are highly accurate and interpretable. This method permits to avoid the complex problem of form and structure in different classes of organisms. On empirical data and their classification performances are compared with other methods. Our system consists of three phases. The first is called transformation, which is composed of three steps; Electron-Ion Interaction Pseudopotential (EIIP) for the codification of DNA Barcodes, Fourier Transform and Power Spectrum Signal Processing. The second is called approximation, which is empowered by the use of Multi Llibrary Wavelet Neural Networks (MLWNN).The third is called the classification of DNA Barcodes, which is realized by applying the algorithm of hierarchical classification.

Keywords: DNA barcode, electron-ion interaction pseudopotential, Multi Library Wavelet Neural Networks (MLWNN)

Procedia PDF Downloads 318
2129 Neural Correlates of Diminished Humor Comprehension in Schizophrenia: A Functional Magnetic Resonance Imaging Study

Authors: Przemysław Adamczyk, Mirosław Wyczesany, Aleksandra Domagalik, Artur Daren, Kamil Cepuch, Piotr Błądziński, Tadeusz Marek, Andrzej Cechnicki

Abstract:

The present study aimed at evaluation of neural correlates of humor comprehension impairments observed in schizophrenia. To investigate the nature of this deficit in schizophrenia and to localize cortical areas involved in humor processing we used functional magnetic resonance imaging (fMRI). The study included chronic schizophrenia outpatients (SCH; n=20), and sex, age and education level matched healthy controls (n=20). The task consisted of 60 stories (setup) of which 20 had funny, 20 nonsensical and 20 neutral (not funny) punchlines. After the punchlines were presented, the participants were asked to indicate whether the story was comprehensible (yes/no) and how funny it was (1-9 Likert-type scale). fMRI was performed on a 3T scanner (Magnetom Skyra, Siemens) using 32-channel head coil. Three contrasts in accordance with the three stages of humor processing were analyzed in both groups: abstract vs neutral stories - incongruity detection; funny vs abstract - incongruity resolution; funny vs neutral - elaboration. Additionally, parametric modulation analysis was performed using both subjective ratings separately in order to further differentiate the areas involved in incongruity resolution processing. Statistical analysis for behavioral data used U Mann-Whitney test and Bonferroni’s correction, fMRI data analysis utilized whole-brain voxel-wise t-tests with 10-voxel extent threshold and with Family Wise Error (FWE) correction at alpha = 0.05, or uncorrected at alpha = 0.001. Between group comparisons revealed that the SCH subjects had attenuated activation in: the right superior temporal gyrus in case of irresolvable incongruity processing of nonsensical puns (nonsensical > neutral); the left medial frontal gyrus in case of incongruity resolution processing of funny puns (funny > nonsensical) and the interhemispheric ACC in case of elaboration of funny puns (funny > neutral). Additionally, the SCH group revealed weaker activation during funniness ratings in the left ventro-medial prefrontal cortex, the medial frontal gyrus, the angular and the supramarginal gyrus, and the right temporal pole. In comprehension ratings the SCH group showed suppressed activity in the left superior and medial frontal gyri. Interestingly, these differences were accompanied by protraction of time in both types of rating responses in the SCH group, a lower level of comprehension for funny punchlines and a higher funniness for absurd punchlines. Presented results indicate that, in comparison to healthy controls, schizophrenia is characterized by difficulties in humor processing revealed by longer reaction times, impairments of understanding jokes and finding nonsensical punchlines more funny. This is accompanied by attenuated brain activations, especially in the left fronto-parietal and the right temporal cortices. Disturbances of the humor processing seem to be impaired at the all three stages of the humor comprehension process, from incongruity detection, through its resolution to elaboration. The neural correlates revealed diminished neural activity of the schizophrenia brain, as compared with the control group. The study was supported by the National Science Centre, Poland (grant no 2014/13/B/HS6/03091).

Keywords: communication skills, functional magnetic resonance imaging, humor, schizophrenia

Procedia PDF Downloads 213
2128 Preliminary Study of Hand Gesture Classification in Upper-Limb Prosthetics Using Machine Learning with EMG Signals

Authors: Linghui Meng, James Atlas, Deborah Munro

Abstract:

There is an increasing demand for prosthetics capable of mimicking natural limb movements and hand gestures, but precise movement control of prosthetics using only electrode signals continues to be challenging. This study considers the implementation of machine learning as a means of improving accuracy and presents an initial investigation into hand gesture recognition using models based on electromyographic (EMG) signals. EMG signals, which capture muscle activity, are used as inputs to machine learning algorithms to improve prosthetic control accuracy, functionality and adaptivity. Using logistic regression, a machine learning classifier, this study evaluates the accuracy of classifying two hand gestures from the publicly available Ninapro dataset using two-time series feature extraction algorithms: Time Series Feature Extraction (TSFE) and Convolutional Neural Networks (CNNs). Trials were conducted using varying numbers of EMG channels from one to eight to determine the impact of channel quantity on classification accuracy. The results suggest that although both algorithms can successfully distinguish between hand gesture EMG signals, CNNs outperform TSFE in extracting useful information for both accuracy and computational efficiency. In addition, although more channels of EMG signals provide more useful information, they also require more complex and computationally intensive feature extractors and consequently do not perform as well as lower numbers of channels. The findings also underscore the potential of machine learning techniques in developing more effective and adaptive prosthetic control systems.

Keywords: EMG, machine learning, prosthetic control, electromyographic prosthetics, hand gesture classification, CNN, computational neural networks, TSFE, time series feature extraction, channel count, logistic regression, ninapro, classifiers

Procedia PDF Downloads 31
2127 Quality Assessment of New Zealand Mānuka Honeys Using Hyperspectral Imaging Combined with Deep 1D-Convolutional Neural Networks

Authors: Hien Thi Dieu Truong, Mahmoud Al-Sarayreh, Pullanagari Reddy, Marlon M. Reis, Richard Archer

Abstract:

New Zealand mānuka honey is a honeybee product derived mainly from Leptospermum scoparium nectar. The potent antibacterial activity of mānuka honey derives principally from methylglyoxal (MGO), in addition to the hydrogen peroxide and other lesser activities present in all honey. MGO is formed from dihydroxyacetone (DHA) unique to L. scoparium nectar. Mānuka honey also has an idiosyncratic phenolic profile that is useful as a chemical maker. Authentic mānuka honey is highly valuable, but almost all honey is formed from natural mixtures of nectars harvested by a hive over a time period. Once diluted by other nectars, mānuka honey irrevocably loses value. We aimed to apply hyperspectral imaging to honey frames before bulk extraction to minimise the dilution of genuine mānuka by other honey and ensure authenticity at the source. This technology is non-destructive and suitable for an industrial setting. Chemometrics using linear Partial Least Squares (PLS) and Support Vector Machine (SVM) showed limited efficacy in interpreting chemical footprints due to large non-linear relationships between predictor and predictand in a large sample set, likely due to honey quality variability across geographic regions. Therefore, an advanced modelling approach, one-dimensional convolutional neural networks (1D-CNN), was investigated for analysing hyperspectral data for extraction of biochemical information from honey. The 1D-CNN model showed superior prediction of honey quality (R² = 0.73, RMSE = 2.346, RPD= 2.56) to PLS (R² = 0.66, RMSE = 2.607, RPD= 1.91) and SVM (R² = 0.67, RMSE = 2.559, RPD=1.98). Classification of mono-floral manuka honey from multi-floral and non-manuka honey exceeded 90% accuracy for all models tried. Overall, this study reveals the potential of HSI and deep learning modelling for automating the evaluation of honey quality in frames.

Keywords: mānuka honey, quality, purity, potency, deep learning, 1D-CNN, chemometrics

Procedia PDF Downloads 139
2126 Direct Current Electric Field Stimulation against PC12 Cells in 3D Bio-Reactor to Enhance Axonal Extension

Authors: E. Nakamachi, S. Tanaka, K. Yamamoto, Y. Morita

Abstract:

In this study, we developed a three-dimensional (3D) direct current electric field (DCEF) stimulation bio-reactor for axonal outgrowth enhancement to generate the neural network of the central nervous system (CNS). By using our newly developed 3D DCEF stimulation bio-reactor, we cultured the rat pheochromocytoma cells (PC12) and investigated the effects on the axonal extension enhancement and network generation. Firstly, we designed and fabricated a 3D bio-reactor, which can load DCEF stimulation on PC12 cells embedded in the collagen gel as extracellular environment. The connection between the electrolyte and the medium using salt bridges for DCEF stimulation was introduced to avoid the cell death by the toxicity of metal ion. The distance between the salt bridges was adopted as the design variable to optimize a structure for uniform DCEF stimulation, where the finite element (FE) analyses results were used. Uniform DCEF strength and electric flux vector direction in the PC12 cells embedded in collagen gel were examined through measurements of the fabricated 3D bio-reactor chamber. Measurement results of DCEF strength in the bio-reactor showed a good agreement with FE results. In addition, the perfusion system was attached to maintain pH 7.2 ~ 7.6 of the medium because pH change was caused by DCEF stimulation loading. Secondly, we disseminated PC12 cells in collagen gel and carried out 3D culture. Finally, we measured the morphology of PC12 cell bodies and neurites by the multiphoton excitation fluorescence microscope (MPM). The effectiveness of DCEF stimulation to enhance the axonal outgrowth and the neural network generation was investigated. We confirmed that both an increase of mean axonal length and axogenesis rate of PC12, which have been exposed 5 mV/mm for 6 hours a day for 4 days in the bioreactor. We found following conclusions in our study. 1) Design and fabrication of DCEF stimulation bio-reactor capable of 3D culture nerve cell were completed. A uniform electric field strength of average value of 17 mV/mm within the 1.2% error range was confirmed by using FE analyses, after the structure determination through the optimization process. In addition, we attached a perfusion system capable of suppressing the pH change of the culture solution due to DCEF stimulation loading. 2) Evaluation of DCEF stimulation effects on PC12 cell activity was executed. The 3D culture of PC 12 was carried out adopting the embedding culture method using collagen gel as a scaffold for four days under the condition of 5.0 mV/mm and 10mV/mm. There was a significant effect on the enhancement of axonal extension, as 11.3% increase in an average length, and the increase of axogenesis rate. On the other hand, no effects on the orientation of axon against the DCEF flux direction was observed. Further, the network generation was enhanced to connect longer distance between the target neighbor cells by DCEF stimulation.

Keywords: PC12, DCEF stimulation, 3D bio-reactor, axonal extension, neural network generation

Procedia PDF Downloads 184
2125 A Robust Visual Simultaneous Localization and Mapping for Indoor Dynamic Environment

Authors: Xiang Zhang, Daohong Yang, Ziyuan Wu, Lei Li, Wanting Zhou

Abstract:

Visual Simultaneous Localization and Mapping (VSLAM) uses cameras to collect information in unknown environments to realize simultaneous localization and environment map construction, which has a wide range of applications in autonomous driving, virtual reality and other related fields. At present, the related research achievements about VSLAM can maintain high accuracy in static environment. But in dynamic environment, due to the presence of moving objects in the scene, the movement of these objects will reduce the stability of VSLAM system, resulting in inaccurate localization and mapping, or even failure. In this paper, a robust VSLAM method was proposed to effectively deal with the problem in dynamic environment. We proposed a dynamic region removal scheme based on semantic segmentation neural networks and geometric constraints. Firstly, semantic extraction neural network is used to extract prior active motion region, prior static region and prior passive motion region in the environment. Then, the light weight frame tracking module initializes the transform pose between the previous frame and the current frame on the prior static region. A motion consistency detection module based on multi-view geometry and scene flow is used to divide the environment into static region and dynamic region. Thus, the dynamic object region was successfully eliminated. Finally, only the static region is used for tracking thread. Our research is based on the ORBSLAM3 system, which is one of the most effective VSLAM systems available. We evaluated our method on the TUM RGB-D benchmark and the results demonstrate that the proposed VSLAM method improves the accuracy of the original ORBSLAM3 by 70%˜98.5% under high dynamic environment.

Keywords: dynamic scene, dynamic visual SLAM, semantic segmentation, scene flow, VSLAM

Procedia PDF Downloads 116
2124 Good Governance Complementary to Corruption Abatement: A Cross-Country Analysis

Authors: Kamal Ray, Tapati Bhattacharya

Abstract:

Private use of public office for private gain could be a tentative definition of corruption and most distasteful event of corruption is that it is not there, nor that it is pervasive, but it is socially acknowledged in the global economy, especially in the developing nations. We attempted to assess the interrelationship between the Corruption perception index (CPI) and the principal components of governance indicators as per World Bank like Control of Corruption (CC), rule of law (RL), regulatory quality (RQ) and government effectiveness (GE). Our empirical investigation concentrates upon the degree of reflection of governance indicators upon the CPI in order to single out the most powerful corruption-generating indicator in the selected countries. We have collected time series data on above governance indicators such as CC, RL, RQ and GE of the selected eleven countries from the year of 1996 to 2012 from World Bank data set. The countries are USA, UK, France, Germany, Greece, China, India, Japan, Thailand, Brazil, and South Africa. Corruption Perception Index (CPI) of the countries mentioned above for the period of 1996 to 2012is also collected. Graphical method of simple line diagram against the time series data on CPI is applied for quick view for the relative positions of different trend lines of different nations. The correlation coefficient is enough to assess primarily the degree and direction of association between the variables as we get the numerical data on governance indicators of the selected countries. The tool of Granger Causality Test (1969) is taken into account for investigating causal relationships between the variables, cause and effect to speak of. We do not need to verify stationary test as length of time series is short. Linear regression is taken as a tool for quantification of a change in explained variables due to change in explanatory variable in respect of governance vis a vis corruption. A bilateral positive causal link between CPI and CC is noticed in UK, index-value of CC increases by 1.59 units as CPI increases by one unit and CPI rises by 0.39 units as CC rises by one unit, and hence it has a multiplier effect so far as reduction in corruption is concerned in UK. GE causes strongly to the reduction of corruption in UK. In France, RQ is observed to be a most powerful indicator in reducing corruption whereas it is second most powerful indicator after GE in reducing of corruption in Japan. Governance-indicator like GE plays an important role to push down the corruption in Japan. In China and India, GE is proactive as well as influencing indicator to curb corruption. The inverse relationship between RL and CPI in Thailand indicates that ongoing machineries related to RL is not complementary to the reduction of corruption. The state machineries of CC in S. Africa are highly relevant to reduce the volume of corruption. In Greece, the variations of CPI positively influence the variations of CC and the indicator like GE is effective in controlling corruption as reflected by CPI. All the governance-indicators selected so far have failed to arrest their state level corruptions in USA, Germany and Brazil.

Keywords: corruption perception index, governance indicators, granger causality test, regression

Procedia PDF Downloads 303
2123 The Library as a Metaphor: Perceptions, Evolution, and the Shifting Role in Society Through a Librarian's Lens

Authors: Nihar Kanta Patra, Akhtar Hussain

Abstract:

This comprehensive study, through the perspective of librarians, explores the library as a metaphor and its profound significance in representing knowledge and learning. It delves into how librarians perceive the library as a metaphor and the ways in which it symbolizes the acquisition, preservation, and dissemination of knowledge. The research investigates the most common metaphors used to describe libraries, as witnessed by librarians, and analyzes how these metaphors reflect the evolving role of libraries in society. Furthermore, the study examines how the library metaphor influences the perception of librarians regarding academic libraries as physical places and academic library websites as virtual spaces, exploring their potential for learning and exploration. It investigates the evolving nature of the library as a metaphor over time, as seen by librarians, considering the changing landscape of information and technology. The research explores the ways in which the library metaphor has expanded beyond its traditional representation, encompassing digital resources, online connectivity, and virtual realms, and provides insights into its potential evolution in the future. Drawing on the experiences of librarians in their interactions with library users, the study uncovers any specific cultural or generational differences in how people interpret or relate to the library as a metaphor. It sheds light on the diverse perspectives and interpretations of the metaphor based on cultural backgrounds, educational experiences, and technological familiarity. Lastly, the study investigates the evolving roles of libraries as observed by librarians and explores how these changing roles can influence the metaphors we use to represent them. It examines the dynamic nature of libraries as they adapt to societal needs, technological advancements, and new modes of information dissemination. By analyzing these various dimensions, this research provides a comprehensive understanding of the library as a metaphor through the lens of librarians, illuminating its significance, evolution, and its transformative impact on knowledge, learning, and the changing role of libraries in society.

Keywords: library, librarians, metaphor, perception

Procedia PDF Downloads 95
2122 Using Industrial Service Quality to Assess Service Quality Perception in Television Advertisement: A Case Study

Authors: Ana L. Martins, Rita S. Saraiva, João C. Ferreira

Abstract:

Much effort has been placed on the assessment of perceived service quality. Several models can be found in literature, but these are mainly focused on business-to-consumer (B2C) relationships. Literature on how to assess perceived quality in business-to-business (B2B) contexts is scarce both conceptually and in terms of its application. This research aims at filling this gap in literature by applying INDSERV to a case study situation. Under this scope, this research aims at analyzing the adequacy of the proposed assessment tool to other context besides the one where it was developed and by doing so analyzing the perceive quality of the advertisement service provided by a specific television network to its B2B customers. The INDSERV scale was adopted and applied to a sample of 33 clients, via questionnaires adapted to interviews. Data was collected in person or phone. Both quantitative and qualitative data collection was performed. Qualitative data analysis followed content analysis protocol. Quantitative analysis used hypotheses testing. Findings allowed to conclude that the perceived quality of the television service provided by television network is very positive, being the Soft Process Quality the parameter that reveals the highest perceived quality of the service as opposed to Potential Quality. To this end, some comments and suggestions were made by the clients regarding each one of these service quality parameters. Based on the hypotheses testing, it was noticed that only advertisement clients that maintain a connection to the television network from 5 to 10 years do show a significant different perception of the TV advertisement service provided by the company in what the Hard Process Quality parameter is concerned. Through the collected data content analysis, it was possible to obtain the percentage of clients which share the same opinions and suggestions for improvement. Finally, based on one of the four service quality parameter in a B2B context, managerial suggestions were developed aiming at improving the television network advertisement perceived quality service.

Keywords: B2B, case study, INDSERV, perceived service quality

Procedia PDF Downloads 206
2121 How Leader's Language Framing Affects Employees’ Perceptions and Moral Judgment in Organizations

Authors: Cindy Carvalho

Abstract:

Leaders play a crucial role in shaping employee behavior through their communication. Language is a powerful tool used by leaders to influence perceptions, frame actions, and shape organizational culture. While euphemisms and metaphors are widely used, their impact on unethical behaviors in organizational settings remains underexplored. This study investigates how euphemistic and aggressive (military) language in leaders’ speeches can influence employees’ perceptions and encourage unethical behaviors. Two studies were conducted using a between-subjects design where 200 participants for the first study and 280 participants for the second study, recruited through Prolific, were exposed to either a euphemistic or aggressive (military) version of a hypothetical CEO’s speech. They evaluated their perception of the CEO and the company’s attractiveness. In the second part, participants were presented with three vignettes describing each different daily business situation tainted with ethical issues and they were asked how likely they would engage in such behavior. The type of speech impacted the perceptions of the CEO, with the military version leading to participants judging the CEO as less trustworthy, fair, and moral. However, no significant difference in moral judgment or organizational perception was observed. Interestingly, younger participants and female participants rated the CEO more negatively compared to older and male counterparts. The findings suggest that language framing influences perceptions of leadership but may have a limited immediate impact on ethical decision-making. The study's limitations include hypothetical context, isolated focus on language, and lack of incentives. Incentives push participants to consider their responses carefully and align them with perceived norms, reducing biases like social desirability. Future research should examine real-world settings and consider factors such as age, gender, and experience to understand unethical behavior in organizations better.

Keywords: leadership communication, language framing, ethical behavior, euphemism

Procedia PDF Downloads 6
2120 A Convolutional Neural Network Based Vehicle Theft Detection, Location, and Reporting System

Authors: Michael Moeti, Khuliso Sigama, Thapelo Samuel Matlala

Abstract:

One of the principal challenges that the world is confronted with is insecurity. The crime rate is increasing exponentially, and protecting our physical assets especially in the motorist industry, is becoming impossible when applying our own strength. The need to develop technological solutions that detect and report theft without any human interference is inevitable. This is critical, especially for vehicle owners, to ensure theft detection and speedy identification towards recovery efforts in cases where a vehicle is missing or attempted theft is taking place. The vehicle theft detection system uses Convolutional Neural Network (CNN) to recognize the driver's face captured using an installed mobile phone device. The location identification function uses a Global Positioning System (GPS) to determine the real-time location of the vehicle. Upon identification of the location, Global System for Mobile Communications (GSM) technology is used to report or notify the vehicle owner about the whereabouts of the vehicle. The installed mobile app was implemented by making use of python as it is undoubtedly the best choice in machine learning. It allows easy access to machine learning algorithms through its widely developed library ecosystem. The graphical user interface was developed by making use of JAVA as it is better suited for mobile development. Google's online database (Firebase) was used as a means of storage for the application. The system integration test was performed using a simple percentage analysis. Sixty (60) vehicle owners participated in this study as a sample, and questionnaires were used in order to establish the acceptability of the system developed. The result indicates the efficiency of the proposed system, and consequently, the paper proposes the use of the system can effectively monitor the vehicle at any given place, even if it is driven outside its normal jurisdiction. More so, the system can be used as a database to detect, locate and report missing vehicles to different security agencies.

Keywords: CNN, location identification, tracking, GPS, GSM

Procedia PDF Downloads 166
2119 Contextual Toxicity Detection with Data Augmentation

Authors: Julia Ive, Lucia Specia

Abstract:

Understanding and detecting toxicity is an important problem to support safer human interactions online. Our work focuses on the important problem of contextual toxicity detection, where automated classifiers are tasked with determining whether a short textual segment (usually a sentence) is toxic within its conversational context. We use “toxicity” as an umbrella term to denote a number of variants commonly named in the literature, including hate, abuse, offence, among others. Detecting toxicity in context is a non-trivial problem and has been addressed by very few previous studies. These previous studies have analysed the influence of conversational context in human perception of toxicity in controlled experiments and concluded that humans rarely change their judgements in the presence of context. They have also evaluated contextual detection models based on state-of-the-art Deep Learning and Natural Language Processing (NLP) techniques. Counterintuitively, they reached the general conclusion that computational models tend to suffer performance degradation in the presence of context. We challenge these empirical observations by devising better contextual predictive models that also rely on NLP data augmentation techniques to create larger and better data. In our study, we start by further analysing the human perception of toxicity in conversational data (i.e., tweets), in the absence versus presence of context, in this case, previous tweets in the same conversational thread. We observed that the conclusions of previous work on human perception are mainly due to data issues: The contextual data available does not provide sufficient evidence that context is indeed important (even for humans). The data problem is common in current toxicity datasets: cases labelled as toxic are either obviously toxic (i.e., overt toxicity with swear, racist, etc. words), and thus context does is not needed for a decision, or are ambiguous, vague or unclear even in the presence of context; in addition, the data contains labeling inconsistencies. To address this problem, we propose to automatically generate contextual samples where toxicity is not obvious (i.e., covert cases) without context or where different contexts can lead to different toxicity judgements for the same tweet. We generate toxic and non-toxic utterances conditioned on the context or on target tweets using a range of techniques for controlled text generation(e.g., Generative Adversarial Networks and steering techniques). On the contextual detection models, we posit that their poor performance is due to limitations on both of the data they are trained on (same problems stated above) and the architectures they use, which are not able to leverage context in effective ways. To improve on that, we propose text classification architectures that take the hierarchy of conversational utterances into account. In experiments benchmarking ours against previous models on existing and automatically generated data, we show that both data and architectural choices are very important. Our model achieves substantial performance improvements as compared to the baselines that are non-contextual or contextual but agnostic of the conversation structure.

Keywords: contextual toxicity detection, data augmentation, hierarchical text classification models, natural language processing

Procedia PDF Downloads 170
2118 Visitor's Perception toward Boating in Silver River, Florida

Authors: Hoda Manafian, Stephen Holland

Abstract:

Silver Springs are one of Florida's first tourist attractions. They are one of the largest artesian spring formations in the world, producing nearly 550 million gallons of crystal-clear water daily that is one of the most popular sites for water-based leisure activities. As part of managing the use of a state park, the state is interested in establishing a baseline count of number of boating users to compare this to the quality of the natural resources and environment in the park. Understanding the status of the environmental resources and also the human recreational experience is the main objective of the project. Two main goals of current study are 1) to identify the distribution of different types of watercrafts (kayak, canoe, motor boat, Jet Ski, paddleboard and pontoon). 2) To document the level of real crowdedness in the river during different seasons, months, and hours of each day based on the reliable information gained from camera versus self-reported method by tourists themselves in the past studies (the innovative achievement of this study). In line with these objectives, on-site surveys and also boat counting using a time-lapse camera at the Riverside launch was done during 12 months of 2015. 700 on-site surveys were conducted at three watercraft boat ramp sites (Rays Wayside, Riverside launch area, Ft. King Waterway) of recreational users. We used Virtualdub and ImageJ software for counting boats for meeting the first and second goals, since this two software can report even the hour of presence of watercraft in the water in addition to the number of users and the type of watercraft. The most crowded hours were between 9-11AM from February to May and kayak was the most popular watercraft. The findings of this research can make a good foundation for better management in this state park in future.

Keywords: eco-tourism, Florida state, visitors' perception, water-based recreation

Procedia PDF Downloads 247
2117 Caregiver’s Perception Regarding Diagnosis Disclosure to Children Living with Human Immunodeficiency Virus in Resource-Limited Settings: Observational Study from India

Authors: Ramesh Chand Chauhan, Sanjay Kumar Rai, Shashi kant, Rakesh Lodha, Nand Kumar

Abstract:

Background: With a better understanding of HIV pathogenesis and availability of antiretroviral therapy more children are growing and entering in teenage group; informing children of their own HIV status has become an important aspect of long-term disease management. There is little evidence of how and when this type of disclosure takes place in a resource-limited setting. Methods: A cross-sectional study was conducted from June 2010 to May 2011 among a dyads of 156 HIV-infected children and their caregivers, those were visiting pediatric clinic at a tertiary care hospital in Delhi, India. The study protocol was approved by the Institute Ethics Committee. After taking written informed consent; pretested structured questionnaire was administered to caregivers during routine clinic visits. Information regarding socio-demographic characteristics, awareness of HIV infection status among children and their perception regarding disclosure was collected. Mean and frequencies were calculated and chi-square and logistic regression test were applied. Results: The mean age of children was 8.4 ±3.45 years. Among them 73.7% were male and 39.1% were orphans. Among 156 enrolled children, 74.4% (n=116) were of ≥ 6 years and were assessed for disclosure. Only 18.1% (n=21) children had been informed of their HIV status. Of those under 9 years, 6.4% knew their status, whereas 18.4% of 9-11 years and 35.5% of 12-14 years children knew they had HIV. Awareness among males (23.3%) was higher than females (3.3%). Both age and sex of child were significantly (p<0.01) associated with disclosure status. Other factors favoring disclosure were orphan-hood, non-perinatal mode of transmission (OR = 4.32; 95% CI 1.01-7.12), ART initiation (OR = 4.21; 95% CI 1.03-6.98), and caregiver educated beyond primary level (OR = 1.89; 95% CI 1.03-3.26). Repeated enquiry regarding the visit to clinic was the most common reason (66.6%) for disclosure. In 52.4% children disclosure was done with the involvement of other family members. 82.5% caregivers felt the age of > 10 years is appropriate for disclosing the HIV infection status to the child. Conclusion: Detailed guidelines on disclosure are required focusing on children of school-going age with perinatal infection who are not on ART and with caregivers of low educational status.

Keywords: HIV, children, India, disclosure

Procedia PDF Downloads 635
2116 Optimization of Manufacturing Process Parameters: An Empirical Study from Taiwan's Tech Companies

Authors: Chao-Ton Su, Li-Fei Chen

Abstract:

The parameter design is crucial to improving the uniformity of a product or process. In the product design stage, parameter design aims to determine the optimal settings for the parameters of each element in the system, thereby minimizing the functional deviations of the product. In the process design stage, parameter design aims to determine the operating settings of the manufacturing processes so that non-uniformity in manufacturing processes can be minimized. The parameter design, trying to minimize the influence of noise on the manufacturing system, plays an important role in the high-tech companies. Taiwan has many well-known high-tech companies, which show key roles in the global economy. Quality remains the most important factor that enables these companies to sustain their competitive advantage. In Taiwan however, many high-tech companies face various quality problems. A common challenge is related to root causes and defect patterns. In the R&D stage, root causes are often unknown, and defect patterns are difficult to classify. Additionally, data collection is not easy. Even when high-volume data can be collected, data interpretation is difficult. To overcome these challenges, high-tech companies in Taiwan use more advanced quality improvement tools. In addition to traditional statistical methods and quality tools, the new trend is the application of powerful tools, such as neural network, fuzzy theory, data mining, industrial engineering, operations research, and innovation skills. In this study, several examples of optimizing the parameter settings for the manufacturing process in Taiwan’s tech companies will be presented to illustrate proposed approach’s effectiveness. Finally, a discussion of using traditional experimental design versus the proposed approach for process optimization will be made.

Keywords: quality engineering, parameter design, neural network, genetic algorithm, experimental design

Procedia PDF Downloads 145