Search results for: nano sensors
728 Robot Navigation and Localization Based on the Rat’s Brain Signals
Authors: Endri Rama, Genci Capi, Shigenori Kawahara
Abstract:
The mobile robot ability to navigate autonomously in its environment is very important. Even though the advances in technology, robot self-localization and goal directed navigation in complex environments are still challenging tasks. In this article, we propose a novel method for robot navigation based on rat’s brain signals (Local Field Potentials). It has been well known that rats accurately and rapidly navigate in a complex space by localizing themselves in reference to the surrounding environmental cues. As the first step to incorporate the rat’s navigation strategy into the robot control, we analyzed the rats’ strategies while it navigates in a multiple Y-maze, and recorded Local Field Potentials (LFPs) simultaneously from three brain regions. Next, we processed the LFPs, and the extracted features were used as an input in the artificial neural network to predict the rat’s next location, especially in the decision-making moment, in Y-junctions. We developed an algorithm by which the robot learned to imitate the rat’s decision-making by mapping the rat’s brain signals into its own actions. Finally, the robot learned to integrate the internal states as well as external sensors in order to localize and navigate in the complex environment.Keywords: brain-machine interface, decision-making, mobile robot, neural network
Procedia PDF Downloads 297727 Electronic Stability Control for a 7 DOF Vehicle Model Using Flex Ray and Neuro Fuzzy Techniques
Authors: Praveen Battula
Abstract:
Any high performance car has the tendency to over steer and Understeer under slippery conditions, An Electronic Stability Control System is needed under these conditions to regulate the steering of the car. It uses Anti-Lock Braking System (ABS) and Traction Control and Wheel Speed Sensor, Steering Angle Sensor, Rotational Speed Sensors to correct the problems. The focus of this paper is to improve the driving dynamics and safety by controlling the forces applied on each wheel. ESC Control the Yaw Stability, traction controls the Roll Stability, where actually the vehicle slip rate and lateral acceleration is controlled. ESC uses differential braking on all four brakes independently to control the vehicle’s motion. A mathematical model is developed in Simulink for the FlexRay based Electronic Stability Control. Vehicle steering is developed using Neuro Fuzzy Logic Controller. 7 Degrees of Freedom Vehicle Model is used as a Plant Model using dSpace autobox. The Performance of the system is assessed using two different road Scenarios, Vehicle Control under standard maneuvering conditions. The entire system is set using Dspace Control Desk. Results are provided by comparison of how a Vehicle with and without Electronic Stability Control which shows an improved performance in control.Keywords: ESC, flexray, chassis control, steering, neuro fuzzy, vehicle dynamics
Procedia PDF Downloads 448726 The Therapeutic Rise of Turmeric: From Spice to Medicine
Authors: Merzak Siham, Benguerine Zohra, Si Tayeb Fatima, Bouzian Chaimaa Affaf, Jou Siham, Belkessam Nafissa
Abstract:
Introduction: Medicinal plants, particularly spices, are essential for pharmacological research due to their health benefits. This study focuses on Curcuma longa, a spice recognized for its therapeutic properties. Materials and Methods: This study is based on a thorough search conducted on Google Scholar, PubMed, and ScienceDirect. From an initial selection of 25 articles, five were chosen to extract relevant information on Curcuma longa. Results and Discussions: Clinical studies have indicated that curcumin is well tolerated at doses up to 12 g/day. Its anti-rheumatic efficacy was compared to phenylbutazone in 18 individuals. Each participant received a daily dose of either 1200 mg of curcumin or 300 mg of phenylbutazone for 2 weeks. Curcumin was well tolerated at this dose and demonstrated activity comparable to phenylbutazone. Additionally, a study on 62 patients showed that curcumin sustainably relieved symptoms without toxicity. Its effects included reduced itching, lesions, and pain. In ten volunteers, administering 500 mg of curcumin for seven days resulted in a 33% decrease in lipid peroxidation, a 29% increase in HDL cholesterol, and a 12% decrease in total cholesterol. It is important to note that curcumin is a potent, selective inhibitor of phosphorylase kinase, an increased marker in psoriasis. Conclusion: Curcumin is promising as a future drug for various diseases, but its bioavailability must be improved through techniques such as nano encapsulation. Additionally, exploring chemical derivatives of curcumin could lead to more potent and targeted molecules.Keywords: turmeric, spice, medicinal plants, pharmacological activities.
Procedia PDF Downloads 34725 Bacterial Cellulose: A New Generation Antimicrobial Wound Dressing Biomaterial
Authors: Bhavana V. Mohite, Satish V. Patil
Abstract:
Bacterial cellulose (BC) is an alternative for plant cellulose (PC) that prevents global warming leads to preservation of nature. Although PC and BC have the same chemical structure, BC is superior with its properties like its size, purity, porosity, degree of polymerization, crystallinity and water holding capacity, thermal stability etc. On this background the present study focus production and applications of BC as antimicrobial wound dressing material. BC was produced by Gluconoacetobacter hansenii (strain NCIM 2529) under shaking condition and statistically enhanced upto 7.2 g/l from 3.0 g/l. BC was analyzed for its physico mechanical, structural and thermal characteristics. BC produced at shaking condition exhibits more suitable properties in support to its high performance applications. The potential of nano silver impregnated BC was determined for sustained release modern antimicrobial wound dressing material by swelling ratio, mechanical properties and antimicrobial activity against Staphylococcus aureus. BC in nanocomposite form with other synthetic polymer like PVA shows improvement in its properties such as swelling ratio (757% to 979%) and sustainable release of antibacterial agent. The high drug loading and release potential of BC was evidenced in support to its nature as antimicrobial wound dressing material. The nontoxic biocompatible nature of BC was confirmed by MTT assay on human epidermal cells with 90% cell viability that allows its application as a regenerative biomaterial. Thus, BC as a promising new generation antimicrobial wound dressing material was projected.Keywords: agitated culture, biopolymer, gluconoacetobacter hansenii, nanocomposite
Procedia PDF Downloads 301724 Mechanical and Optical Properties of Doped Aluminum Nitride Thin Films
Authors: Padmalochan Panda, R. Ramaseshan
Abstract:
Aluminum nitride (AlN) is a potential candidate for semiconductor industry due to its wide band gap (6.2 eV), high thermal conductivity and low thermal coefficient of expansion. A-plane oriented AlN film finds an important role in deep UV-LED with higher isotropic light extraction efficiency. Also, Cr-doped AlN films exhibit dilute magnetic semiconductor property with high Curie temperature (300 K), and thus compatible with modern day microelectronics. In this work, highly a-axis oriented wurtzite AlN and Al1-xMxN (M = Cr, Ti) films have synthesized by reactive co-sputtering technique at different concentration. Crystal structure of these films is studied by Grazing incidence X-ray diffraction (GIXRD) and Transmission electron microscopy (TEM). Identification of binding energy and concentration (x) in these films is carried out by X-ray photoelectron spectroscopy (XPS). Local crystal structure around the Cr and Ti atom of these films are investigated by X-ray absorption spectroscopy (XAS). It is found that Cr and Ti replace the Al atom in AlN lattice and the bond lengths in first and second coordination sphere with N and Al, respectively, decrease concerning doping concentration due to strong p-d hybridization. The nano-indentation hardness of Cr and Ti-doped AlN films seems to increase from 17.5 GPa (AlN) to around 23 and 27.5 GPa, respectively. An-isotropic optical properties of these films are studied by the Spectroscopic Ellipsometry technique. Refractive index and extinction coefficient of these films are enhanced in normal dispersion region as compared to the parent AlN film. The optical band gap energies also seem to vary between deep UV to UV regions with the addition of Cr, thus by bringing out the usefulness of these films in the area of optoelectronic device applications.Keywords: ellipsometry, GIXRD, hardness, XAS
Procedia PDF Downloads 113723 Synthesis and Characterization of SnO2: Ti Thin Films Spray-Deposited on Optical Glass
Authors: Demet Tatar, Bahattin Düzgün
Abstract:
In this study, we have newly developed titanium-tin oxide (TiSnO) thin films as the transparent conducting oxides materials by the spray pyrolysis technique. Tin oxide thin films doped with different Ti content were successfully grown by spray pyrolysis and they were characterized as a function of Ti content. The effect of Ti contents on the crystalline structure and optical properties of the as-deposited SnO2:Ti films was systematically investigated by X-ray diffraction (XRD), scanning electronic microscopy (SEM), atomic force microscopy (AFM), UV-vis spectrometer and photoluminecenc spectrophotometer. The X-ray diffraction patterns taken at room temperature showed that the films are polycrystalline. The preferred directions of crystal growth appeared in the difractogram of SnO2: Ti (TiTO) films were correspond to the reflections from the (110), (200), (211) and (301) planes. The grain size varies from 21.8 to 27.8 nm for (110) preferred plane. SEM and AFM study reveals the surface of TiTO to be made of nanocrystalline particles. The highest visible transmittance (570 nm) of the deposited films is 80 % for 20 wt % titanium doped tin oxide films. The obtained results revealed that the structures and optical properties of the films were greatly affected by doping levels. These films are useful as conducting layers in electro chromic and photovoltaic devices.Keywords: transparent conducting oxide, gas sensors, SnO2, Ti, optoelectronic, spray pyrolysis
Procedia PDF Downloads 385722 Removal of Pharmaceuticals from Aquarius Solutions Using Hybrid Ceramic Membranes
Authors: Jenny Radeva, Anke-Gundula Roth, Christian Goebbert, Robert Niestroj-Pahl, Lars Daehne, Axel Wolfram, Juergen Wiese
Abstract:
The technological advantages of ceramic filtration elements were combined with polyelectrolyte films in the development process of hybrid membrane for the elimination of pharmaceuticals from Aquarius solutions. Previously extruded alumina ceramic membranes were coated with nanosized polyelectrolyte films using Layer-by-Layer technology. The polyelectrolyte chains form a network with nano-pores on the ceramic surface and promote the retention of small molecules like pharmaceuticals and microplastics, which cannot be eliminated using standard ultrafiltration methods. Additionally, the polyelectrolyte coat contributes with its adjustable (based on application) Zeta Potential for repulsion of contaminant molecules with opposite charges. Properties like permeability, bubble point, pore size distribution and Zeta Potential of ceramic and hybrid membranes were characterized using various laboratory and pilot tests and compared with each other. The most significant role for the membrane characterization played the filtration behavior investigation, during which retention against widely used pharmaceuticals like Diclofenac, Ibuprofen and Sulfamethoxazol was subjected to series of filtration tests. The presented study offers a new perspective on nanosized molecules removal from aqueous solutions and shows the importance of combined techniques application for the elimination of pharmaceutical contaminants from drinking water.Keywords: water treatment, hybrid membranes, layer-by-layer coating, filtration, polyelectrolytes
Procedia PDF Downloads 167721 A Comparison between Underwater Image Enhancement Techniques
Authors: Ouafa Benaida, Abdelhamid Loukil, Adda Ali Pacha
Abstract:
In recent years, the growing interest of scientists in the field of image processing and analysis of underwater images and videos has been strengthened following the emergence of new underwater exploration techniques, such as the emergence of autonomous underwater vehicles and the use of underwater image sensors facilitating the exploration of underwater mineral resources as well as the search for new species of aquatic life by biologists. Indeed, underwater images and videos have several defects and must be preprocessed before their analysis. Underwater landscapes are usually darkened due to the interaction of light with the marine environment: light is absorbed as it travels through deep waters depending on its wavelength. Additionally, light does not follow a linear direction but is scattered due to its interaction with microparticles in water, resulting in low contrast, low brightness, color distortion, and restricted visibility. The improvement of the underwater image is, therefore, more than necessary in order to facilitate its analysis. The research presented in this paper aims to implement and evaluate a set of classical techniques used in the field of improving the quality of underwater images in several color representation spaces. These methods have the particularity of being simple to implement and do not require prior knowledge of the physical model at the origin of the degradation.Keywords: underwater image enhancement, histogram normalization, histogram equalization, contrast limited adaptive histogram equalization, single-scale retinex
Procedia PDF Downloads 89720 Motion Detection Method for Clutter Rejection in the Bio-Radar Signal Processing
Authors: Carolina Gouveia, José Vieira, Pedro Pinho
Abstract:
The cardiopulmonary signal monitoring, without the usage of contact electrodes or any type of in-body sensors, has several applications such as sleeping monitoring and continuous monitoring of vital signals in bedridden patients. This system has also applications in the vehicular environment to monitor the driver, in order to avoid any possible accident in case of cardiac failure. Thus, the bio-radar system proposed in this paper, can measure vital signals accurately by using the Doppler effect principle that relates the received signal properties with the distance change between the radar antennas and the person’s chest-wall. Once the bio-radar aim is to monitor subjects in real-time and during long periods of time, it is impossible to guarantee the patient immobilization, hence their random motion will interfere in the acquired signals. In this paper, a mathematical model of the bio-radar is presented, as well as its simulation in MATLAB. The used algorithm for breath rate extraction is explained and a method for DC offsets removal based in a motion detection system is proposed. Furthermore, experimental tests were conducted with a view to prove that the unavoidable random motion can be used to estimate the DC offsets accurately and thus remove them successfully.Keywords: bio-signals, DC component, Doppler effect, ellipse fitting, radar, SDR
Procedia PDF Downloads 140719 Revealing of the Wave-Like Process in Kinetics of the Structural Steel Radiation Degradation
Authors: E. A. Krasikov
Abstract:
Dependence of the materials properties on neutron irradiation intensity (flux) is a key problem while usage data of the accelerated materials irradiation in test reactors for forecasting of their capacity for work in realistic (practical) circumstances of operation. Investigations of the reactor pressure vessel steel radiation degradation dependence on fast neutron fluence (embrittlement kinetics) at low flux reveal the instability in the form of the scatter of the experimental data and wave-like sections of embrittlement kinetics appearance. Disclosure of the steel degradation oscillating is a sign of the steel structure cyclic self-recovery transformation as it take place in self-organization processes. This assumption has received support through the discovery of the similar ‘anomalous’ data in scientific publications and by means of own additional experiments. Data obtained stimulate looking-for ways to management of the structural steel radiation stability (for example, by means of nano - structure modification for radiation defects annihilation intensification) for creation of the intelligent self-recovering material. Expected results: - radiation degradation theory and mechanisms development, - more adequate models of the radiation embrittlement elaboration, - surveillance specimen programs improvement, - methods and facility development for usage data of the accelerated materials irradiation for forecasting of their capacity for work in realistic (practical) circumstances of operation, - search of the ways for creating of the radiation stable self-recovery intelligent materials.Keywords: degradation, radiation, steel, wave-like kinetics
Procedia PDF Downloads 304718 Development of Colorimetric Based Microfluidic Platform for Quantification of Fluid Contaminants
Authors: Sangeeta Palekar, Mahima Rana, Jayu Kalambe
Abstract:
In this paper, a microfluidic-based platform for the quantification of contaminants in the water is proposed. The proposed system uses microfluidic channels with an embedded environment for contaminants detection in water. Microfluidics-based platforms present an evident stage of innovation for fluid analysis, with different applications advancing minimal efforts and simplicity of fabrication. Polydimethylsiloxane (PDMS)-based microfluidics channel is fabricated using a soft lithography technique. Vertical and horizontal connections for fluid dispensing with the microfluidic channel are explored. The principle of colorimetry, which incorporates the use of Griess reagent for the detection of nitrite, has been adopted. Nitrite has high water solubility and water retention, due to which it has a greater potential to stay in groundwater, endangering aquatic life along with human health, hence taken as a case study in this work. The developed platform also compares the detection methodology, containing photodetectors for measuring absorbance and image sensors for measuring color change for quantification of contaminants like nitrite in water. The utilization of image processing techniques offers the advantage of operational flexibility, as the same system can be used to identify other contaminants present in water by introducing minor software changes.Keywords: colorimetric, fluid contaminants, nitrite detection, microfluidics
Procedia PDF Downloads 198717 A Development of Portable Intrinsically Safe Explosion-Proof Type of Dual Gas Detector
Authors: Sangguk Ahn, Youngyu Kim, Jaheon Gu, Gyoutae Park
Abstract:
In this paper, we developed a dual gas leak instrument to detect Hydrocarbon (HC) and Monoxide (CO) gases. To two kinds of gases, it is necessary to design compact structure for sensors. And then it is important to draw sensing circuits such as measuring, amplifying and filtering. After that, it should be well programmed with robust, systematic and module coding methods. In center of them, improvement of accuracy and initial response time are a matter of vital importance. To manufacture distinguished gas leak detector, we applied intrinsically safe explosion-proof structure to lithium ion battery, main circuits, a pump with motor, color LCD interfaces and sensing circuits. On software, to enhance measuring accuracy we used numerical analysis such as Lagrange and Neville interpolation. Performance test result is conducted by using standard Methane with seven different concentrations with three other products. We want raise risk prevention and efficiency of gas safe management through distributing to the field of gas safety. Acknowledgment: This study was supported by Small and Medium Business Administration under the research theme of ‘Commercialized Development of a portable intrinsically safe explosion-proof type dual gas leak detector’, (task number S2456036).Keywords: gas leak, dual gas detector, intrinsically safe, explosion proof
Procedia PDF Downloads 228716 An Image Processing Based Approach for Assessing Wheelchair Cushions
Authors: B. Farahani, R. Fadil, A. Aboonabi, B. Hoffmann, J. Loscheider, K. Tavakolian, S. Arzanpour
Abstract:
Wheelchair users spend long hours in a sitting position, and selecting the right cushion is highly critical in preventing pressure ulcers in that demographic. Pressure mapping systems (PMS) are typically used in clinical settings by therapists to identify the sitting profile and pressure points in the sitting area to select the cushion that fits the best for the users. A PMS is a flexible mat composed of arrays of distributed networks of flexible sensors. The output of the PMS systems is a color-coded image that shows the intensity of the pressure concentration. Therapists use the PMS images to compare different cushions fit for each user. This process is highly subjective and requires good visual memory for the best outcome. This paper aims to develop an image processing technique to analyze the images of PMS and provide an objective measure to assess the cushions based on their pressure distribution mappings. In this paper, we first reviewed the skeletal anatomy of the human sitting area and its relation to the PMS image. This knowledge is then used to identify the important features that must be considered in image processing. We then developed an algorithm based on those features to analyze the images and rank them according to their fit to the users' needs.Keywords: dynamic cushion, image processing, pressure mapping system, wheelchair
Procedia PDF Downloads 170715 PDMS-Free Microfluidic Chips Fabrication and Utilisation for Pulsed Electric Fields Applications
Authors: Arunas Stirke, Neringa Bakute, Gatis Mozolevskis
Abstract:
A technology of microfluidics is an emerging tool in the field of biology, medicine and chemistry. Microfluidic device is also known as ‘lab-on-a-chip’ technology [1]. In moving from macro- to microscale, there is unprecedented control over spatial and temporal gradients and patterns that cannot be captured in conventional Petri dishes and well plates [2]. However, there is not a single standard microfluidic chip designated for all purposes – every different field of studies needs a specific microchip with certain geometries, inlet/outlet, channel depth and other parameters to precisely regulate the required function. Since our group is studying an effect of pulsed electric field (PEF) to the cells, we have manufactured a microfluidic chip designated for high-throughput electroporation of cells. In our microchip, a cell culture chamber is divided into two parallel channels by a membrane, meanwhile electrodes for electroporation are attached to the wall of the channels. Both microchannels have their own inlet and outlet, enabling injection of transfection material separately. Our perspective is to perform electroporation of mammalian cells in two different ways: (1) plasmid and cells are injected in the same microchannel and (2) injected into separate microchannels. Moreover, oxygen and pH sensors are integrated on order to analyse cell viability parameters after PEF treatment.Keywords: microfluidics, chip, fabrication, electroporation
Procedia PDF Downloads 83714 Solar Photocatalytic Hydrogen Production from Glycerol Reforming Using Ternary Cu/TiO2/Graphene
Authors: Tumelo W. P. Seadira, Thabang Ntho, Cornelius M. Masuku, Michael S. Scurrell
Abstract:
A ternary Cu/TiO2/rGO photocatalysts was prepared using solvothermal method. Firstly, pure anatase TiO2 hollow spheres were prepared with titanium butoxide, ethanol, ammonium sulphate, and urea via hydrothermal method; and Cu nanoparticles were subsequently loaded on the surface of the hollow spheres by wet impregnation. During the solvothermal process, the deposition and well dispersion of Cu-TiO2 hollow spheres composites onto the graphene oxide surface, as well as the reduction of graphene oxide to graphene were achieved. The morphological and structural properties of the prepared samples were characterized by Brunauer-Emmett-Tellet (BET), X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscopy (TEM), and UV-vis DRS, and photoelectrochemical. The activities of the prepared catalysts were tested for hydrogen production via simultaneous photocatalytic water-splitting and glycerol reforming under visible light irradiation. The excellent photocatalytic activity of the Cu-TiO2-hollow-spheres/rGO catalyst was attributed the rGO which acts as both storage and transferor of electrons generated at the Cu and TiO2 heterojunction, thus increasing the electron-hole pairs separation. This paper reports the preparation of photocatalyst which is highly active by coupling reduced graphene oxide with nano-structured TiO2 with high surface area that can efficiently harvest the visible light for effective water-splitting and glycerol photocatalytic reforming in order to achieve efficient hydrogen evolution.Keywords: glycerol reforming, hydrogen evolution, graphene oxide, Cu/TiO2-hollow-spheres/rGO
Procedia PDF Downloads 157713 Vapochromism of 3,3’,5,5’-Tetramethylbenzidine-Tetrasilisicfluormica Intercalation Compounds with High Selectivity for Water and Acetonitrile
Authors: Reira Kinoshita, Shin'ichi Ishimaru
Abstract:
Vapochromism is a type of chromism in which the color of a substance changes when it is exposed to the vapor of volatile materials, and has been investigated for the application of chemical sensors for volatile organic compounds causing sick building syndrome and health hazards in workspaces. We synthesized intercalation compounds of 3,3',5,5'-tetramethylbenzidine (TMB), and tetrasilisicfluormica (TSFM) by the commonly used cation-exchange method with the cation ratio TMB²⁺/CEC of TSFM = 1.0, 2.0, 2.7 and 5.4 to investigate the vapochromism of these materials. The obtained samples were characterized by powder XRD, XRF, TG-DTA, N₂ adsorption, and SEM. Vapochromism was measured for each sample under a controlled atmosphere by a handy reflectance spectrometer directly from the outside of the glass sample tubes. The color was yellow for all specimens vacuum-dried at 50 °C, but it turned green under H₂O vapor exposure for the samples with TMB²⁺/CEC = 2.0, 2.7, and 5.4 and blue under acetonitrile vapor for all cation ratios. Especially the sample TMB²⁺/CEC = 2.0 showed clear chromism both for water and acetonitrile. On the other hand, no clear color change was observed for vapors of alcohols, acetone, and non-polar solvents. From these results, this material can be expected to apply for easy detection of humidity and acetonitrile vapor in the environment.Keywords: chemical sensor, intercalation compound, tetramethylbenzidine, tetrasilisicfluormica, vapochromism, volatile organic compounds
Procedia PDF Downloads 117712 Implant Operation Guiding Device for Dental Surgeons
Authors: Daniel Hyun
Abstract:
Dental implants are one of the top 3 reasons to sue a dentist for malpractice. It involves dental implant complications, usually because of the angle of the implant from the surgery. At present, surgeons usually use a 3D-printed navigator that is customized for the patient’s teeth. However, those can’t be reused for other patients as they require time. Therefore, I made a guiding device to assist the surgeon in implant operations. The surgeon can input the objective of the operation, and the device constantly checks if the surgery is heading towards the objective within the set range, telling the surgeon by manipulating the LED. We tested the prototypes’ consistency and accuracy by checking the graph, average standard deviation, and the average change of the calculated angles. The accuracy of performance was also acquired by running the device and checking the outputs. My first prototype used accelerometer and gyroscope sensors from the Arduino MPU6050 sensor, getting a changeable graph, achieving 0.0295 of standard deviations, 0.25 of average change, and 66.6% accuracy of performance. The second prototype used only the gyroscope, and it got a constant graph, achieved 0.0062 of standard deviation, 0.075 of average change, and 100% accuracy of performance, indicating that the accelerometer sensor aggravated the functionality of the device. Using the gyroscope sensor allowed it to measure the orientations of separate axes without affecting each other and also increased the stability and accuracy of the measurements.Keywords: implant, guide, accelerometer, gyroscope, handpiece
Procedia PDF Downloads 43711 Investigation of Surface Electromyograph Signal Acquired from the around Shoulder Muscles of Upper Limb Amputees
Authors: Amanpreet Kaur, Ravinder Agarwal, Amod Kumar
Abstract:
Surface electromyography is a strategy to measure the muscle activity of the skin. Sensors placed on the skin recognize the electrical current or signal generated by active muscles. A lot of the research has focussed on the detection of signal from upper limb amputee with activity of triceps and biceps muscles. The purpose of this study was to correlate phantom movement and sEMG activity in residual stump muscles of transhumeral amputee from the shoulder muscles. Eight non- amputee and seven right hand amputees were recruited for this study. sEMG data were collected for the trapezius, pectoralis and teres muscles for elevation, protraction and retraction of shoulder. Contrast between the amputees and non-amputees muscles action have been investigated. Subsequently, to investigate the impact of class separability for different motions of shoulder, analysis of variance for experimental recorded data was carried out. Results were analyzed to recognize different shoulder movements and represent a step towards the surface electromyography controlled system for amputees. Difference in F ratio (p < 0.05) values indicates the distinction in mean therefore these analysis helps to determine the independent motion. The identified signal would be used to design more accurate and efficient controllers for the upper-limb amputee for researchers.Keywords: around shoulder amputation, surface electromyography, analysis of variance, features
Procedia PDF Downloads 433710 The Perspective of Smart Thermoregulation in Personal Protective Equipment
Authors: Alireza Saidi
Abstract:
Aside from injuries due to direct contact with hot or cold substances or objects, exposure to extreme temperatures in the workplace involves physical hazards to workers. On the other hand, a poorly acclimatized worker may have reduced performance and alertness and may, therefore, be more vulnerable to the risk of accidents and injuries. Due to the incompatibility of the standards put in place with certain workplaces and the lack of thermoregulation in many protective equipments, thermal strains remain among the physical risks most present in many work sectors. However, many of these problems can be overcome thanks to the potential of intelligent textile technologies allowing intelligent thermoregulation in protective equipment. Nowadays, technologies such as heating elements, cooling elements are applied in products intended for sport and leisure, and research work has been carried out in the integration of temperature sensors and thermal stress detectors in personal protective equipment. However, the usage of all of these technologies in personal protective equipment remains very marginal. This article presents a portrait of the current state of intelligent thermoregulation systems by carrying out a synthesis of technical developments, which is accompanied by a gap analysis of current developments. Thus, the research work necessary for the adaptation and integration of intelligent thermoregulation systems with personal protective equipment is discussed in order to offer a perspective of future developments.Keywords: personal protective equipment, smart textiles, thermoregulation, thermal strain
Procedia PDF Downloads 110709 Strategies to Synthesize Ambient Stable Ultrathin Ag Film Supported on Oxide Substrate
Authors: Allamula Ashok, Peela Lasya, Daljin Jacob, P. Muhammed Razi, Satyesh Kumar Yadav
Abstract:
We report zinc (Zn) as a seed layer material and a need for a specific disposition sequence to grow ultrathin silver (Ag) films on quartz (SiO₂). Ag films of thickness 4, 6, 8 and 10 nm were deposited by DC magnetron sputtering without and with Zn seed layer thickness of 1, 2 and 4 nm. The effect of Zn seed layer thickness and its annealing on the surface morphology, sheet resistance, and stability of ultrathin Ag films is investigated. We show that by increasing Zn seed layer thickness from 1 to 2 nm, there is a 5-order reduction in sheet resistance of 6 nm Ag films. We find that annealing of the seed layer is crucial to achieving stability of ultrathin Ag films. 6 nm Ag film with 2 nm Zn is unstable to 100 oC annealing, while the 6 nm Ag film with annealed 2 nm Zn seed layer is stable. 2 nm Zn seeded 8 nm Ag film maintained a constant sheet resistance of 7 Ω/□ for all 6 months of exposure to ambient conditions. Among the ultrathin film grown, 8nm Ag film with 2nm Zn seed layer had the best figure of merit with sheet resistance of 7 Ω/□, mean absolute surface roughness (Ra) ~1 nm, and optical transparency of 61 %. Such stable exposed ultrathin Ag films can find applications as catalysts, sensors, and transparent and conductive electrodes for solar cells, LEDs and plasmonic devices.Keywords: ultrathin Ag films, magnetron sputtering, thermal stability, seed layer, exposed silver, zinc.
Procedia PDF Downloads 39708 Embedded Hardware and Software Design of Omnidirectional Autonomous Robotic Platform Suitable for Advanced Driver Assistance Systems Testing with Focus on Modularity and Safety
Authors: Ondrej Lufinka, Jan Kaderabek, Juraj Prstek, Jiri Skala, Kamil Kosturik
Abstract:
This paper deals with the problem of using Autonomous Robotic Platforms (ARP) for the ADAS (Advanced Driver Assistance Systems) testing in automotive. There are different possibilities of the testing already in development, and lately, the autonomous robotic platforms are beginning to be used more and more widely. Autonomous Robotic Platform discussed in this paper explores the hardware and software design possibilities related to the field of embedded systems. The paper focuses on its chapters on the introduction of the problem in general; then, it describes the proposed prototype concept and its principles from the embedded HW and SW point of view. It talks about the key features that can be used for the innovation of these platforms (e.g., modularity, omnidirectional movement, common and non-traditional sensors used for localization, synchronization of more platforms and cars together, or safety mechanisms). In the end, the future possible development of the project is discussed as well.Keywords: advanced driver assistance systems, ADAS, autonomous robotic platform, embedded systems, hardware, localization, modularity, multiple robots synchronization, omnidirectional movement, safety mechanisms, software
Procedia PDF Downloads 143707 Design and Construction of Models of Sun Tracker or Sun Tracking System for Light Transmission
Authors: Mohsen Azarmjoo, Yasaman Azarmjoo, Zahra Alikhani Koopaei
Abstract:
This article introduces devices that can transfer sunlight to buildings that do not have access to direct sunlight during the day. The transmission and reflection of sunlight are done through the movement of movable mirrors. The focus of this article is on two models of sun tracker systems designed and built by the Macad team. In fact, this article will reveal the distinction between the two Macad devices and the previously built competitor device. What distinguishes the devices built by the Macad team from the competitor's device is the different mode of operation and the difference in the location of the sensors. Given that the devices have the same results, the Macad team has tried to reduce the defects of the competitor's device as much as possible. The special feature of the second type of device built by the Macad team has enabled buildings with different construction positions to use sun tracking systems. This article will also discuss diagrams of the path of sunlight transmission and more details of the device. It is worth mentioning that fixed mirrors are also placed next to the main devices. So that the light shining on the first device is reflected to these mirrors, this light is guided within the light receiver space and is transferred to the different parts around by steel sheets built in the light receiver space, and finally, these spaces benefit from sunlight.Keywords: design, construction, mechatronic device, sun tracker system, sun tracker, sunlight
Procedia PDF Downloads 84706 Evaluation of a Data Fusion Algorithm for Detecting and Locating a Radioactive Source through Monte Carlo N-Particle Code Simulation and Experimental Measurement
Authors: Hadi Ardiny, Amir Mohammad Beigzadeh
Abstract:
Through the utilization of a combination of various sensors and data fusion methods, the detection of potential nuclear threats can be significantly enhanced by extracting more information from different data. In this research, an experimental and modeling approach was employed to track a radioactive source by combining a surveillance camera and a radiation detector (NaI). To run this experiment, three mobile robots were utilized, with one of them equipped with a radioactive source. An algorithm was developed in identifying the contaminated robot through correlation between camera images and camera data. The computer vision method extracts the movements of all robots in the XY plane coordinate system, and the detector system records the gamma-ray count. The position of the robots and the corresponding count of the moving source were modeled using the MCNPX simulation code while considering the experimental geometry. The results demonstrated a high level of accuracy in finding and locating the target in both the simulation model and experimental measurement. The modeling techniques prove to be valuable in designing different scenarios and intelligent systems before initiating any experiments.Keywords: nuclear threats, radiation detector, MCNPX simulation, modeling techniques, intelligent systems
Procedia PDF Downloads 123705 Superamolecular Chemistry and Packing of FAMEs in the Liquid Phase for Optimization of Combustion and Emission
Authors: Zeev Wiesman, Paula Berman, Nitzan Meiri, Charles Linder
Abstract:
Supramolecular chemistry refers to the domain of chemistry beyond that of molecules and focuses on the chemical systems made up of a discrete number of assembled molecular sub units or components. Biodiesel components self arrangements is closely related/affect their physical properties in combustion systems and emission. Due to technological difficulties, knowledge regarding the molecular packing of FAMEs (biodiesel) in the liquid phase is limited. Spectral tools such as X-ray and NMR are known to provide evidences related to molecular structure organization. Recently, it was reported by our research group that using 1H Time Domain NMR methodology based on relaxation time and self diffusion coefficients, FAMEs clusters with different motilities can be accurately studied in the liquid phase. Head to head dimarization with quasi-smectic clusters organization, based on molecular motion analysis, was clearly demonstrated. These findings about the assembly/packing of the FAME components are directly associated with fluidity/viscosity of the biodiesel. Furthermore, these findings may provide information of micro/nano-particles that are formed in the delivery and injection system of various combustion systems (affected by thermodynamic conditions). Various relevant parameters to combustion such as: distillation/Liquid Gas phase transition, cetane number/ignition delay, shoot, oxidation/NOX emission maybe predicted. These data may open the window for further optimization of FAME/diesel mixture in terms of combustion and emission.Keywords: supermolecular chemistry, FAMEs, liquid phase, fluidity, LF-NMR
Procedia PDF Downloads 340704 Stem Cell Fate Decision Depending on TiO2 Nanotubular Geometry
Authors: Jung Park, Anca Mazare, Klaus Von Der Mark, Patrik Schmuki
Abstract:
In clinical application of TiO2 implants on tooth and hip replacement, migration, adhesion and differentiation of neighboring mesenchymal stem cells onto implant surfaces are critical steps for successful bone regeneration. In a recent decade, accumulated attention has been paid on nanoscale electrochemical surface modifications on TiO2 layer for improving bone-TiO2 surface integration. We generated, on titanium surfaces, self-assembled layers of vertically oriented TiO2 nanotubes with defined diameters between 15 and 100 nm and here we show that mesenchymal stem cells finely sense TiO2 nanotubular geometry and quickly decide their cell fate either to differentiation into osteoblasts or to programmed cell death (apoptosis) on TiO2 nanotube layers. These cell fate decisions are critically dependent on nanotube size differences (15-100nm in diameters) of TiO2 nanotubes sensing by integrin clustering. We further demonstrate that nanoscale topography-sensing is feasible not only in mesenchymal stem cells but rather seems as generalized nanoscale microenvironment-cell interaction mechanism in several cell types composing bone tissue network including osteoblasts, osteoclast, endothelial cells and hematopoietic stem cells. Additionally we discuss the synergistic effect of simultaneous stimulation by nanotube-bound growth factor and nanoscale topographic cues on enhanced bone regeneration.Keywords: TiO2 nanotube, stem cell fate decision, nano-scale microenvironment, bone regeneration
Procedia PDF Downloads 431703 Development of an Energy Independant DC Building Demonstrator for Insulated Island Site
Authors: Olivia Bory Devisme, Denis Genon-Catalot, Frederic Alicalapa, Pierre-Olivier Lucas De Peslouan, Jean-Pierre Chabriat
Abstract:
In the context of climate change, it is essential that island territories gain energy autonomy. Currently mostly dependent on fossil fuels, the island of Reunion lo- cated in the Indian Ocean nevertheless has a high potential for solar energy. As the market for photovoltaic panels has been growing in recent years, the issues of energy losses linked to the multiple conversions from direct current to alternating current are emerging. In order to quantify these advantages and disadvantages by a comparative study, this document present the measurements carried out on a direct current test bench, particularly for lighting, ventilation, air condi- tioning and office equipment for the tertiary sector. All equipment is supplied with DC power from energy produced by photovoltaic panels. A weather sta- tion, environmental indoor sensors, and drivers are also used to control energy. Self-consumption is encouraged in order to manage different priorities between user consumption and energy storage in a lithium iron phosphate battery. The measurements are compared to a conventional electrical architecture (DC-AC- DC) for energy consumption, equipment overheating, cost, and life cycle analysis.Keywords: DC microgrids, solar energy, smart buildings, storage
Procedia PDF Downloads 162702 Nonreciprocal Optical Effects in Plasmonic Nanoparticle Aggregates
Authors: Ward Brullot, Thierry Verbiest
Abstract:
Nonreciprocal optical effects, such as Faraday rotation or magnetic circular dichroism, are very useful both for fundamental studies as for applications such as magnetic field sensors or optical isolators. In this study, we developed layer-by-layer deposited 20nm thick plasmonic nanoparticle aggregates consisting of gold, silver and magnetite nanoparticles that show broadband nonreciprocal asymmetric transmission. As such, the optical transmittance, or absorbance, depends on the direction of light propagation in the material, which means that looking from one direction or the other, more or less light passes through the sample. Theoretical analysis showed that strong electric quadrupole fields, which are electric field gradients, occur in the aggregates and that these quadrupole fields are responsible for the observed asymmetric transmission and the nonreciprocity of the effect. Apart from nonreciprocal asymmetric transmission, also other effects such as, but not limited to, optical rotation, circular dichroism or nonlinear optical responses were measured in the plasmonic nanoparticle aggregates and the influences of the intense electric quadrupole fields determined. In conclusion, the presence of strong electric quadrupole fields make the developed plasmonic nanoparticle aggregates ideal candidates for the study and application of various nonreciprocal optical effects.Keywords: asymmetric transmission, electric quadrupoles, nanoparticle aggregates, nonreciprocity
Procedia PDF Downloads 424701 Investigating the Minimum RVE Size to Simulate Poly (Propylene carbonate) Composites Reinforced with Cellulose Nanocrystals as a Bio-Nanocomposite
Authors: Hamed Nazeri, Pierre Mertiny, Yongsheng Ma, Kajsa Duke
Abstract:
The background of the present study is the use of environment-friendly biopolymer and biocomposite materials. Among the recently introduced biopolymers, poly (propylene carbonate) (PPC) has been gaining attention. This study focuses on the size of representative volume elements (RVE) in order to simulate PPC composites reinforced by cellulose nanocrystals (CNCs) as a bio-nanocomposite. Before manufacturing nanocomposites, numerical modeling should be implemented to explore and predict mechanical properties, which may be accomplished by creating and studying a suitable RVE. In other studies, modeling of composites with rod shaped fillers has been reported assuming that fillers are unidirectionally aligned. But, modeling of non-aligned filler dispersions is considerably more difficult. This study investigates the minimum RVE size to enable subsequent FEA modeling. The matrix and nano-fillers were modeled using the finite element software ABAQUS, assuming randomly dispersed fillers with a filler mass fraction of 1.5%. To simulate filler dispersion, a Monte Carlo technique was employed. The numerical simulation was implemented to find composite elastic moduli. After commencing the simulation with a single filler particle, the number of particles was increased to assess the minimum number of filler particles that satisfies the requirements for an RVE, providing the composite elastic modulus in a reliable fashion.Keywords: biocomposite, Monte Carlo method, nanocomposite, representative volume element
Procedia PDF Downloads 442700 3D Human Reconstruction over Cloud Based Image Data via AI and Machine Learning
Authors: Kaushik Sathupadi, Sandesh Achar
Abstract:
Human action recognition modeling is a critical task in machine learning. These systems require better techniques for recognizing body parts and selecting optimal features based on vision sensors to identify complex action patterns efficiently. Still, there is a considerable gap and challenges between images and videos, such as brightness, motion variation, and random clutters. This paper proposes a robust approach for classifying human actions over cloud-based image data. First, we apply pre-processing and detection, human and outer shape detection techniques. Next, we extract valuable information in terms of cues. We extract two distinct features: fuzzy local binary patterns and sequence representation. Then, we applied a greedy, randomized adaptive search procedure for data optimization and dimension reduction, and for classification, we used a random forest. We tested our model on two benchmark datasets, AAMAZ and the KTH Multi-view football datasets. Our HMR framework significantly outperforms the other state-of-the-art approaches and achieves a better recognition rate of 91% and 89.6% over the AAMAZ and KTH multi-view football datasets, respectively.Keywords: computer vision, human motion analysis, random forest, machine learning
Procedia PDF Downloads 36699 Investigation of Shear Thickening Fluid Isolator with Vibration Isolation Performance
Authors: M. C. Yu, Z. L. Niu, L. G. Zhang, W. W. Cui, Y. L. Zhang
Abstract:
According to the theory of the vibration isolation for linear systems, linear damping can reduce the transmissibility at the resonant frequency, but inescapably increase the transmissibility of the isolation frequency region. To resolve this problem, nonlinear vibration isolation technology has recently received increasing attentions. Shear thickening fluid (STF) is a special colloidal material. When STF is subject to high shear rate, it rheological property changes from a flowable behavior into a rigid behavior, i.e., it presents shear thickening effect. STF isolator is a vibration isolator using STF as working material. Because of shear thickening effect, STF isolator is a variable-damped isolator. It exhibits small damping under high vibration frequency and strong damping at resonance frequency due to shearing rate increasing. So its special inherent character is very favorable for vibration isolation, especially for restraining resonance. In this paper, firstly, STF was prepared by dispersing nano-particles of silica into polyethylene glycol 200 fluid, followed by rheological properties test. After that, an STF isolator was designed. The vibration isolation system supported by STF isolator was modeled, and the numerical simulation was conducted to study the vibration isolation properties of STF. And finally, the effect factors on vibrations isolation performance was also researched quantitatively. The research suggests that owing to its variable damping, STF vibration isolator can effetely restrain resonance without bringing unfavorable effect at high frequency, which meets the need of ideal damping properties and resolves the problem of traditional isolators.Keywords: shear thickening fluid, variable-damped isolator, vibration isolation, restrain resonance
Procedia PDF Downloads 178