Search results for: conventional extraction
3784 Degradation of Diclofenac in Water Using FeO-Based Catalytic Ozonation in a Modified Flotation Cell
Authors: Miguel A. Figueroa, José A. Lara-Ramos, Miguel A. Mueses
Abstract:
Pharmaceutical residues are a section of emerging contaminants of anthropogenic origin that are present in a myriad of waters with which human beings interact daily and are starting to affect the ecosystem directly. Conventional waste-water treatment systems are not capable of degrading these pharmaceutical effluents because their designs cannot handle the intermediate products and biological effects occurring during its treatment. That is why it is necessary to hybridize conventional waste-water systems with non-conventional processes. In the specific case of an ozonation process, its efficiency highly depends on a perfect dispersion of ozone, long times of interaction of the gas-liquid phases and the size of the ozone bubbles formed through-out the reaction system. In order to increase the efficiency of these parameters, the use of a modified flotation cell has been proposed recently as a reactive system, which is used at an industrial level to facilitate the suspension of particles and spreading gas bubbles through the reactor volume at a high rate. The objective of the present work is the development of a mathematical model that can closely predict the kinetic rates of reactions taking place in the flotation cell at an experimental scale by means of identifying proper reaction mechanisms that take into account the modified chemical and hydrodynamic factors in the FeO-catalyzed Ozonation of Diclofenac aqueous solutions in a flotation cell. The methodology is comprised of three steps: an experimental phase where a modified flotation cell reactor is used to analyze the effects of ozone concentration and loading catalyst over the degradation of Diclofenac aqueous solutions. The performance is evaluated through an index of utilized ozone, which relates the amount of ozone supplied to the system per milligram of degraded pollutant. Next, a theoretical phase where the reaction mechanisms taking place during the experiments must be identified and proposed that details the multiple direct and indirect reactions the system goes through. Finally, a kinetic model is obtained that can mathematically represent the reaction mechanisms with adjustable parameters that can be fitted to the experimental results and give the model a proper physical meaning. The expected results are a robust reaction rate law that can simulate the improved results of Diclofenac mineralization on water using the modified flotation cell reactor. By means of this methodology, the following results were obtained: A robust reaction pathways mechanism showcasing the intermediates, free-radicals and products of the reaction, Optimal values of reaction rate constants that simulated Hatta numbers lower than 3 for the system modeled, degradation percentages of 100%, TOC (Total organic carbon) removal percentage of 69.9 only requiring an optimal value of FeO catalyst of 0.3 g/L. These results showed that a flotation cell could be used as a reactor in ozonation, catalytic ozonation and photocatalytic ozonation processes, since it produces high reaction rate constants and reduces mass transfer limitations (Ha > 3) by producing microbubbles and maintaining a good catalyst distribution.Keywords: advanced oxidation technologies, iron oxide, emergent contaminants, AOTS intensification
Procedia PDF Downloads 1123783 A Novel Design of a Low Cost Wideband Wilkinson Power Divider
Authors: A. Sardi, J. Zbitou, A. Errkik, L. El Abdellaoui, A. Tajmouati, M. Latrach
Abstract:
This paper presents analysis and design of a wideband Wilkinson power divider for wireless applications. The design is accomplished by transforming the lengths and impedances of the quarter wavelength sections of the conventional Wilkinson power divider into U-shaped sections. The designed power divider is simulated by using ADS Agilent technologies and CST microwave studio software. It is shown that the proposed power divider has simple topology and good performances in terms of insertion loss, port matching and isolation at all operating frequencies (1.8 GHz, 2.45 GHz and 3.55 GHz).Keywords: ADS agilent technologies, CST microwave studio, microstrip, wideband, wilkinson power divider
Procedia PDF Downloads 3703782 A Mutually Exclusive Task Generation Method Based on Data Augmentation
Authors: Haojie Wang, Xun Li, Rui Yin
Abstract:
In order to solve the memorization overfitting in the meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels, so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to exponential growth of computation, this paper also proposes a key data extraction method, that only extracts part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.Keywords: data augmentation, mutex task generation, meta-learning, text classification.
Procedia PDF Downloads 933781 A Modified Diminishing Partnership for Home Financing
Authors: N. Yachou, R. Aboulaich
Abstract:
Home is a basic necessity for human life, that why home financing takes a large chunk of people’s income. Therefore, Islamic and Conventional Banks try to offer new product in order to respond to customer needs related to home financing. Basing on this fact, we propose a Modified Diminishing Partnership model based on profit and loss sharing to reduce the duration of getting the full shares in the house property. Our proposition will be represented by the rental that customer has to give every month to the bank with redemption to increase his shares on the property of the house.Keywords: home financing, interest rate, rental rate, modified diminishing partnership
Procedia PDF Downloads 3483780 Design of Identification Based Adaptive Control for Fermentation Process in Bioreactor
Authors: J. Ritonja
Abstract:
The biochemical technology has been developing extremely fast since the middle of the last century. The main reason for such development represents a requirement for large production of high-quality biologically manufactured products such as pharmaceuticals, foods, and beverages. The impact of the biochemical industry on the world economy is enormous. The great importance of this industry also results in intensive development in scientific disciplines relevant to the development of biochemical technology. In addition to developments in the fields of biology and chemistry, which enable to understand complex biochemical processes, development in the field of control theory and applications is also very important. In the paper, the control for the biochemical reactor for the milk fermentation was studied. During the fermentation process, the biophysical quantities must be precisely controlled to obtain the high-quality product. To control these quantities, the bioreactor’s stirring drive and/or heating system can be used. Available commercial biochemical reactors are equipped with open loop or conventional linear closed loop control system. Due to the outstanding parameters variations and the partial nonlinearity of the biochemical process, the results obtained with these control systems are not satisfactory. To improve the fermentation process, the self-tuning adaptive control system was proposed. The use of the self-tuning adaptive control is suggested because the parameters’ variations of the studied biochemical process are very slow in most cases. To determine the linearized mathematical model of the fermentation process, the recursive least square identification method was used. Based on the obtained mathematical model the linear quadratic regulator was tuned. The parameters’ identification and the controller’s synthesis are executed on-line and adapt the controller’s parameters to the fermentation process’ dynamics during the operation. The use of the proposed combination represents the original solution for the control of the milk fermentation process. The purpose of the paper is to contribute to the progress of the control systems for the biochemical reactors. The proposed adaptive control system was tested thoroughly. From the obtained results it is obvious that the proposed adaptive control system assures much better following of the reference signal as a conventional linear control system with fixed control parameters.Keywords: adaptive control, biochemical reactor, linear quadratic regulator, recursive least square identification
Procedia PDF Downloads 1243779 Resume Ranking Using Custom Word2vec and Rule-Based Natural Language Processing Techniques
Authors: Subodh Chandra Shakya, Rajendra Sapkota, Aakash Tamang, Shushant Pudasaini, Sujan Adhikari, Sajjan Adhikari
Abstract:
Lots of efforts have been made in order to measure the semantic similarity between the text corpora in the documents. Techniques have been evolved to measure the similarity of two documents. One such state-of-art technique in the field of Natural Language Processing (NLP) is word to vector models, which converts the words into their word-embedding and measures the similarity between the vectors. We found this to be quite useful for the task of resume ranking. So, this research paper is the implementation of the word2vec model along with other Natural Language Processing techniques in order to rank the resumes for the particular job description so as to automate the process of hiring. The research paper proposes the system and the findings that were made during the process of building the system.Keywords: chunking, document similarity, information extraction, natural language processing, word2vec, word embedding
Procedia PDF Downloads 1583778 SCR-Based Advanced ESD Protection Device for Low Voltage Application
Authors: Bo Bae Song, Byung Seok Lee, Hyun young Kim, Chung Kwang Lee, Yong Seo Koo
Abstract:
This paper proposed a silicon controller rectifier (SCR) based ESD protection device to protect low voltage ESD for integrated circuit. The proposed ESD protection device has low trigger voltage and high holding voltage compared with conventional SCR-based ESD protection devices. The proposed ESD protection circuit is verified and compared by TCAD simulation. This paper verified effective low voltage ESD characteristics with low trigger voltage of 5.79V and high holding voltage of 3.5V through optimization depending on design variables (D1, D2, D3, and D4).Keywords: ESD, SCR, holding voltage, latch-up
Procedia PDF Downloads 5753777 Development and Evaluation of Removable Shear Link with Perforated Web
Authors: Daniel Y. Abebe, Jaehyouk Choi
Abstract:
The objective of this paper is to investigate, through an analytical study, the behavior of both stiffened and un-stiffened removable shear link with perforated web considering different number and size of web openings. Removable shear link with perforated web is a novel shear link beam proposed to be used in eccentrically braced frame (EBF). The proposed link overcomes the difficulties during construction slab due to less cross-sectional areas of the link to control the plastic deformation on the conventional EBF with removable shear link. Finite element analyses were conducted under both cyclic and monotonic loading and from the results obtained design equations are developed.Keywords: eccentrically braced frame, removable shear link, perforated web, non-linear FE analysis
Procedia PDF Downloads 3633776 Production and Characterization of Al-BN Composite Materials by Using Powder Metallurgy
Authors: Ahmet Yonetken, Ayhan Erol
Abstract:
Aluminum matrix composites containing 3, 6, 9, 12 and 15% BN has been fabricated by conventional microwave sintering at 550°C temperature. Compounds formation between Al and BN powders is observed after sintering under Ar shroud. XRD, SEM (Scanning Electron Microscope), mechanical testing and measurements were employed to characterize the properties of Al + BN composite. Experimental results suggest that the best properties as hardness 42,62 HV were obtained for Al+12% BN composite. In this study, the powder metallurgy method was used. It is aimed to produce a light composite with Al matrix BN powders. It has been increased in strength and hardness besides its lightness. Ceramic powders are added to improve mechanical properties.Keywords: ceramic-metal composites, proporties, powder metallurgy, sintering
Procedia PDF Downloads 1953775 Application of Phenol Degrading Microorganisms for the Treatment of Olive Mill Waste (OMW)
Authors: M. A. El-Khateeb
Abstract:
The growth of the olive oil production in Saudi Arabia peculiarly in Al Jouf region in recent years has been accompanied by an increase in the discharge of associated processing waste. Olive mill waste is produced throughout the extraction of oil from the olive fruit using the traditional mill and press process. Deterioration of the environment due to olive mill disposal wastes is a serious problem. When olive mill waste disposed into the soil, it affects soil quality, soil micro flora, and also toxic to plants. The aim of this work is to isolate microorganism (bacterial or fungal strains) from OMW capable of degrading phenols. Olive mill wastewater, olive mill waste and soil (beside oil production mill) contaminated with olive waste were used for isolation of phenol tolerant microorganisms. Four strains (two fungal and two bacterial) were isolated from olive mill waste. The isolated strains were Candida tropicalis and Phanerochaete chrysosporium (fungal strains) and Bacillus sp. and Rhodococcus sp. (bacterial strains). These strains were able to degrade phenols and could be used for bioremediation of olive mill waste.Keywords: bioremediation, bacteria, fungi, Sakaka
Procedia PDF Downloads 3633774 Flipped Learning in Interpreter Training: Technologies, Activities and Student Perceptions
Authors: Dohun Kim
Abstract:
Technological innovations have stimulated flipped learning in many disciplines, including language teaching. It is a specific type of blended learning, which combines onsite (i.e. face-to-face) with online experiences to produce effective, efficient and flexible learning. Flipped learning literally ‘flips’ conventional teaching and learning activities upside down: it leverages technologies to deliver a lecture and direct instruction—other asynchronous activities as well—outside the classroom to reserve onsite time for interaction and activities in the upper cognitive realms: applying, analysing, evaluating and creating. Unlike the conventional flipped approaches, which focused on video lecture, followed by face-to-face or on-site session, new innovative methods incorporate various means and structures to serve the needs of different academic disciplines and classrooms. In the light of such innovations, this study adopted ‘student-engaged’ approaches to interpreter training and contrasts them with traditional classrooms. To this end, students were also encouraged to engage in asynchronous activities online, and innovative technologies, such as Telepresence, were employed. Based on the class implementation, a thorough examination was conducted to examine how we can structure and implement flipped classrooms for language and interpreting training while actively engaging learners. This study adopted a quantitative research method, while complementing it with a qualitative one. The key findings suggest that the significance of the instructor’s role does not dwindle, but his/her role changes to a moderator and a facilitator. Second, we can apply flipped learning to both theory- and practice-oriented modules. Third, students’ integration into the community of inquiry is of significant importance to foster active and higher-order learning. Fourth, cognitive presence and competence can be enhanced through strengthened and integrated teaching and social presences. Well-orchestrated teaching presence stimulates students to find out the problems and voices the convergences and divergences, while fluid social presence facilitates the exchanges of knowledge and the adjustment of solutions, which eventually contributes to consolidating cognitive presence—a key ingredient that enables the application and testing of the solutions and reflection thereon.Keywords: blended learning, Community of Inquiry, flipped learning, interpreter training, student-centred learning
Procedia PDF Downloads 1963773 Direct Torque Control of Induction Motor Employing Differential Evolution Algorithm
Authors: T. Vamsee Kiran, A. Gopi
Abstract:
The undesired torque and flux ripple may occur in conventional direct torque control (DTC) induction motor drive. DTC can improve the system performance at low speeds by continuously tuning the regulator by adjusting the Kp, Ki values. In this differential evolution (DE) is proposed to adjust the parameters (Kp, Ki) of the speed controller in order to minimize torque ripple, flux ripple, and stator current distortion.The DE based PI controller has resulted is maintaining a constant speed of the motor irrespective of the load torque fluctuations.Keywords: differential evolution, direct torque control, PI controller
Procedia PDF Downloads 4323772 Inter-Complex Dependence of Production Technique and Preforms Construction on the Failure Pattern of Multilayer Homo-Polymer Composites
Authors: Ashraf Nawaz Khan, R. Alagirusamy, Apurba Das, Puneet Mahajan
Abstract:
The thermoplastic-based fibre composites are acquiring a market sector of conventional as well as thermoset composites. However, replacing the thermoset with a thermoplastic composite has never been an easy task. The inherent high viscosity of thermoplastic resin reveals poor interface properties. In this work, a homo-polymer towpreg is produced through an electrostatic powder spray coating methodology. The produced flexible towpreg offers a low melt-flow distance during the consolidation of the laminate. The reduced melt-flow distance demonstrates a homogeneous fibre/matrix distribution (and low void content) on consolidation. The composite laminate has been fabricated with two manufacturing techniques such as conventional film stack (FS) and powder-coated (PC) technique. This helps in understanding the distinct response of produced laminates on applying load since the laminates produced through the two techniques are comprised of the same constituent fibre and matrix (constant fibre volume fraction). The changed behaviour is observed mainly due to the different fibre/matrix configurations within the laminate. The interface adhesion influences the load transfer between the fibre and matrix. Therefore, it influences the elastic, plastic, and failure patterns of the laminates. Moreover, the effect of preform geometries (plain weave and satin weave structure) are also studied for corresponding composite laminates in terms of various mechanical properties. The fracture analysis is carried out to study the effect of resin at the interlacement points through micro-CT analysis. The PC laminate reveals a considerably small matrix-rich and deficient zone in comparison to the FS laminate. The different load tensile, shear, fracture toughness, and drop weight impact test) is applied to the laminates, and corresponding damage behaviour is analysed in the successive stage of failure. The PC composite has shown superior mechanical properties in comparison to the FS composite. The damage that occurs in the laminate is captured through the SEM analysis to identify the prominent mode of failure, such as matrix cracking, fibre breakage, delamination, debonding, and other phenomena.Keywords: composite, damage, fibre, manufacturing
Procedia PDF Downloads 1373771 AI Predictive Modeling of Excited State Dynamics in OPV Materials
Authors: Pranav Gunhal., Krish Jhurani
Abstract:
This study tackles the significant computational challenge of predicting excited state dynamics in organic photovoltaic (OPV) materials—a pivotal factor in the performance of solar energy solutions. Time-dependent density functional theory (TDDFT), though effective, is computationally prohibitive for larger and more complex molecules. As a solution, the research explores the application of transformer neural networks, a type of artificial intelligence (AI) model known for its superior performance in natural language processing, to predict excited state dynamics in OPV materials. The methodology involves a two-fold process. First, the transformer model is trained on an extensive dataset comprising over 10,000 TDDFT calculations of excited state dynamics from a diverse set of OPV materials. Each training example includes a molecular structure and the corresponding TDDFT-calculated excited state lifetimes and key electronic transitions. Second, the trained model is tested on a separate set of molecules, and its predictions are rigorously compared to independent TDDFT calculations. The results indicate a remarkable degree of predictive accuracy. Specifically, for a test set of 1,000 OPV materials, the transformer model predicted excited state lifetimes with a mean absolute error of 0.15 picoseconds, a negligible deviation from TDDFT-calculated values. The model also correctly identified key electronic transitions contributing to the excited state dynamics in 92% of the test cases, signifying a substantial concordance with the results obtained via conventional quantum chemistry calculations. The practical integration of the transformer model with existing quantum chemistry software was also realized, demonstrating its potential as a powerful tool in the arsenal of materials scientists and chemists. The implementation of this AI model is estimated to reduce the computational cost of predicting excited state dynamics by two orders of magnitude compared to conventional TDDFT calculations. The successful utilization of transformer neural networks to accurately predict excited state dynamics provides an efficient computational pathway for the accelerated discovery and design of new OPV materials, potentially catalyzing advancements in the realm of sustainable energy solutions.Keywords: transformer neural networks, organic photovoltaic materials, excited state dynamics, time-dependent density functional theory, predictive modeling
Procedia PDF Downloads 1183770 Advances in Machine Learning and Deep Learning Techniques for Image Classification and Clustering
Authors: R. Nandhini, Gaurab Mudbhari
Abstract:
Ranging from the field of health care to self-driving cars, machine learning and deep learning algorithms have revolutionized the field with the proper utilization of images and visual-oriented data. Segmentation, regression, classification, clustering, dimensionality reduction, etc., are some of the Machine Learning tasks that helped Machine Learning and Deep Learning models to become state-of-the-art models for the field where images are key datasets. Among these tasks, classification and clustering are essential but difficult because of the intricate and high-dimensional characteristics of image data. This finding examines and assesses advanced techniques in supervised classification and unsupervised clustering for image datasets, emphasizing the relative efficiency of Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), Deep Embedded Clustering (DEC), and self-supervised learning approaches. Due to the distinctive structural attributes present in images, conventional methods often fail to effectively capture spatial patterns, resulting in the development of models that utilize more advanced architectures and attention mechanisms. In image classification, we investigated both CNNs and ViTs. One of the most promising models, which is very much known for its ability to detect spatial hierarchies, is CNN, and it serves as a core model in our study. On the other hand, ViT is another model that also serves as a core model, reflecting a modern classification method that uses a self-attention mechanism which makes them more robust as this self-attention mechanism allows them to lean global dependencies in images without relying on convolutional layers. This paper evaluates the performance of these two architectures based on accuracy, precision, recall, and F1-score across different image datasets, analyzing their appropriateness for various categories of images. In the domain of clustering, we assess DEC, Variational Autoencoders (VAEs), and conventional clustering techniques like k-means, which are used on embeddings derived from CNN models. DEC, a prominent model in the field of clustering, has gained the attention of many ML engineers because of its ability to combine feature learning and clustering into a single framework and its main goal is to improve clustering quality through better feature representation. VAEs, on the other hand, are pretty well known for using latent embeddings for grouping similar images without requiring for prior label by utilizing the probabilistic clustering method.Keywords: machine learning, deep learning, image classification, image clustering
Procedia PDF Downloads 103769 A Mutually Exclusive Task Generation Method Based on Data Augmentation
Authors: Haojie Wang, Xun Li, Rui Yin
Abstract:
In order to solve the memorization overfitting in the model-agnostic meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to an exponential growth of computation, this paper also proposes a key data extraction method that only extract part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.Keywords: mutex task generation, data augmentation, meta-learning, text classification.
Procedia PDF Downloads 1433768 The Used of Ceramic Stove Cover and It’s Gap to the Efficiency of Water Boiling System
Authors: Agung Sugeng Widodo
Abstract:
Water boiling system (WBS) using conventional gas stove (CGS) is relatively inefficient unless its mechanism being considered. In this study, an addition of ceramic stove cover (CSC) to a CGS and the gap between CSC and pan have been assessed. Parameters as energy produced by fuel, CSC temperature and water temperature were used to analyze the performance of a CGS. The gaps were varied by 1 – 7 mm in a step of 1 mm. The results showed that a CSC able to increase the performance of a CGS significantly. In certain fuel rate of 0.75 l/m, the efficiency of a CGS obtained in a gap of 4 mm. The best efficiency obtained in this study was 46.4 % due to the optimum condition that achieved simultaneously in convection and radiation heat transfer processes of the heating system. CSC also indicated a good characteristic for covering heat release at the initially of WBS.Keywords: WBS, CSC, CGS, efficiency, gap
Procedia PDF Downloads 2683767 An in vitro Study on Synergetic Antifungal Activity of Garlic Extract with Honey and Lemon Juice against Candida sp.
Authors: P. Karpagam, Babu Joseph, P. Ashok Kumar
Abstract:
The incidence of Candida infections is increasing worldwide. The serious nature of these infections is compounded by increasing levels of drug resistance. Pure cultures of the Candida sp. were obtained from clinical isolates and fresh garlic extracts were obtained by extraction techniques. The antifungal activity of garlic extract was investigated in an in vitro system. The extract (100%, 75% and 50%) showed significant antifungal activity against Candida, whereas, low concentration (25%) of the extract showed less antifungal activity against the test organism. Antifungal activities of honey and lemon juice were tested against the Candida; however, the growth was not inhibited by these extracts. On the other hand honey and lemon when combined with garlic exhibited a good antifungal activity. The study thus confirms the antifungal properties of garlic extract along with additives like honey and lemon have significant antifungal activity against isolates of Candida species.Keywords: Candida, garlic extract, lemon, synergitic antifungal activity
Procedia PDF Downloads 2503766 Attention-based Adaptive Convolution with Progressive Learning in Speech Enhancement
Authors: Tian Lan, Yixiang Wang, Wenxin Tai, Yilan Lyu, Zufeng Wu
Abstract:
The monaural speech enhancement task in the time-frequencydomain has a myriad of approaches, with the stacked con-volutional neural network (CNN) demonstrating superiorability in feature extraction and selection. However, usingstacked single convolutions method limits feature represen-tation capability and generalization ability. In order to solvethe aforementioned problem, we propose an attention-basedadaptive convolutional network that integrates the multi-scale convolutional operations into a operation-specific blockvia input dependent attention to adapt to complex auditoryscenes. In addition, we introduce a two-stage progressivelearning method to enlarge the receptive field without a dra-matic increase in computation burden. We conduct a series ofexperiments based on the TIMIT corpus, and the experimen-tal results prove that our proposed model is better than thestate-of-art models on all metrics.Keywords: speech enhancement, adaptive convolu-tion, progressive learning, time-frequency domain
Procedia PDF Downloads 1223765 Analysis and Rule Extraction of Coronary Artery Disease Data Using Data Mining
Authors: Rezaei Hachesu Peyman, Oliyaee Azadeh, Salahzadeh Zahra, Alizadeh Somayyeh, Safaei Naser
Abstract:
Coronary Artery Disease (CAD) is one major cause of disability in adults and one main cause of death in developed. In this study, data mining techniques including Decision Trees, Artificial neural networks (ANNs), and Support Vector Machine (SVM) analyze CAD data. Data of 4948 patients who had suffered from heart diseases were included in the analysis. CAD is the target variable, and 24 inputs or predictor variables are used for the classification. The performance of these techniques is compared in terms of sensitivity, specificity, and accuracy. The most significant factor influencing CAD is chest pain. Elderly males (age > 53) have a high probability to be diagnosed with CAD. SVM algorithm is the most useful way for evaluation and prediction of CAD patients as compared to non-CAD ones. Application of data mining techniques in analyzing coronary artery diseases is a good method for investigating the existing relationships between variables.Keywords: classification, coronary artery disease, data-mining, knowledge discovery, extract
Procedia PDF Downloads 6573764 Characterisation, Extraction of Secondary Metabolite from Perilla frutescens for Therapeutic Additives: A Phytogenic Approach
Authors: B. M. Vishal, Monamie Basu, Gopinath M., Rose Havilah Pulla
Abstract:
Though there are several methods of synthesizing silver nano particles, Green synthesis always has its own dignity. Ranging from the cost-effectiveness to the ease of synthesis, the process is simplified in the best possible way and is one of the most explored topics. This study of extracting secondary metabolites from Perilla frutescens and using them for therapeutic additives has its own significance. Unlike the other researches that have been done so far, this study aims to synthesize Silver nano particles from Perilla frutescens using three available forms of the plant: leaves, seed, and commercial leaf extract powder. Perilla frutescens, commonly known as 'Beefsteak Plant', is a perennial plant and belongs to the mint family. The plant has two varieties classed within itself. They are frutescens crispa and frutescens frutescens. The species, frutescens crispa (commonly known as 'Shisho' in Japanese), is generally used for edible purposes. Its leaves occur in two forms, varying on the colors. It is found in two different colors of red with purple streaks and green with crinkly pattern on it. This species is aromatic due to the presence of two major compounds: polyphenols and perillaldehyde. The red (purple streak) variety of this plant is due to the presence of a pigment, Perilla anthocyanin. The species, frutescens frutescens (commonly known as 'Egoma' in Japanese), is the main source for perilla oil. This species is also aromatic, but in this case, the major compound which gives the aroma is Perilla ketone or egoma ketone. Shisho grows short as compared with Wild Sesame and both produce seeds. The seeds of Wild Sesame are large and soft whereas that of Shisho is small and hard. The seeds have a large proportion of lipids, ranging about 38-45 percent. Excluding those, the seeds have a large quantity of Omega-3 fatty acids, linoleic acid, and an Omega-6 fatty acid. Other than these, Perilla leaf extract has gold and silver nano particles in it. The yield comparison in all the cases have been done, and the process’ optimal conditions were modified, keeping in mind the efficiencies. The characterization of secondary metabolites includes GC-MS and FTIR which can be used to identify the components of purpose that actually helps in synthesizing silver nano particles. The analysis of silver was done through a series of characterization tests that include XRD, UV-Vis, EDAX, and SEM. After the synthesis, for being used as therapeutic additives, the toxin analysis was done, and the results were tabulated. The synthesis of silver nano particles was done in a series of multiple cycles of extraction from leaves, seeds and commercially purchased leaf extract. The yield and efficiency comparison were done to bring out the best and the cheapest possible way of synthesizing silver nano particles using Perilla frutescens. The synthesized nano particles can be used in therapeutic drugs, which has a wide range of application from burn treatment to cancer treatment. This will, in turn, replace the traditional processes of synthesizing nano particles, as this method will prove effective in terms of cost and the environmental implications.Keywords: nanoparticles, green synthesis, Perilla frutescens, characterisation, toxin analysis
Procedia PDF Downloads 2333763 A Comprehensive Review on Structural Properties and Erection Benefits of Large Span Stressed-Arch Steel Truss Industrial Buildings
Authors: Anoush Saadatmehr
Abstract:
Design and build of large clear span structures have always been demanding in the construction industry targeting industrial and commercial buildings around the world. The function of these spectacular structures encompasses distinguished types of building such as aircraft and airship hangars, warehouses, bulk storage buildings, sports and recreation facilities. From an engineering point of view, there are various types of steel structure systems that are often adopted in large-span buildings like conventional trusses, space frames and cable-supported roofs. However, this paper intends to investigate and review an innovative light, economic and quickly erected large span steel structure renowned as “Stressed-Arch,” which has several advantages over the other common types of structures. This patented system integrates the use of cold-formed hollow section steel material with high-strength pre-stressing strands and concrete grout to establish an arch shape truss frame anywhere there is a requirement to construct a cost-effective column-free space for spans within the range of 60m to 180m. In this study and firstly, the main structural properties of the stressed-arch system and its components are discussed technically. These features include nonlinear behavior of truss chords during stress-erection, the effect of erection method on member’s compressive strength, the rigidity of pre-stressed trusses to overcome strict deflection criteria for cases with roof suspended cranes or specialized front doors and more importantly, the prominent lightness of steel structure. Then, the effects of utilizing pre-stressing strands to safeguard a smooth process of installation of main steel members and roof components and cladding are investigated. In conclusion, it is shown that the Stressed-Arch system not only provides an optimized light steel structure up to 30% lighter than its conventional competitors but also streamlines the process of building erection and minimizes the construction time while preventing the risks of working at height.Keywords: large span structure, pre-stressed steel truss, stressed-arch building, stress-erection, steel structure
Procedia PDF Downloads 1633762 Difference Expansion Based Reversible Data Hiding Scheme Using Edge Directions
Authors: Toshanlal Meenpal, Ankita Meenpal
Abstract:
A very important technique in reversible data hiding field is Difference expansion. Secret message as well as the cover image may be completely recovered without any distortion after data extraction process due to reversibility feature. In general, in any difference expansion scheme embedding is performed by integer transform in the difference image acquired by grouping two neighboring pixel values. This paper proposes an improved reversible difference expansion embedding scheme. We mainly consider edge direction for embedding by modifying the difference of two neighboring pixels values. In general, the larger difference tends to bring a degraded stego image quality than the smaller difference. Image quality in the range of 0.5 to 3.7 dB in average is achieved by the proposed scheme, which is shown through the experimental results. However payload wise it achieves almost similar capacity in comparisons with previous method.Keywords: information hiding, wedge direction, difference expansion, integer transform
Procedia PDF Downloads 4843761 Analysis of Ancient Bone DNA Samples From Excavations at St Peter’s Burial Ground, Blackburn
Authors: Shakhawan K. Mawlood, Catriona Pickard, Benjamin Pickard
Abstract:
In summer 2015 the remains of 800 children are among 1,967 bodies were exhumed by archaeologists at St Peter's Burial Ground in Blackburn, Lancashire. One hundred samples from these 19th century ancient bones were selected for DNA analysis. These comprised samples biased for those which prior osteological evidence indicated a potential for microbial infection by Mycobacterium tuberculosis (causing tuberculosis, TB) or Treponema pallidum (causing Syphilis) species, as well a random selection of other bones for which visual inspection suggested good preservation (and, therefore, likely DNA retrieval).They were subject to polymerase chain reaction (PCR) assays aimed at detecting traces of DNA from infecting mycobacteria, with the purpose both of confirming the palaeopathological diagnosis of tuberculosis and determining in individual cases whether disease and death was due to M. tuberculosis or other reasons. Our secondary goal was to determine sex determination and age prediction. The results demonstrated that extraction of vast majority ancient bones DNA samples succeeded.Keywords: ancient bone, DNA, tuberculosis, age prediction
Procedia PDF Downloads 1033760 Dependence of the Electro-Stimulation of Saccharomyces cerevisiae by Pulsed Electric Field at the Yeast Growth Phase
Authors: Jessy Mattar, Mohamad Turk, Maurice Nonus, Nikolai Lebovka, Henri El Zakhem, Eugene Vorobiev
Abstract:
The effects of electro-stimulation of S. cerevisiae cells in colloidal suspension by Pulsed Electric Fields (PEF) with electric field strength E = 20 – 2000 V.cm-1 and effective PEF treatment time tPEF = 10^−5 – 1 s were investigated. The applied experimental procedure includes variations in the preliminary fermentation time and electro-stimulation by PEF-treatment. Plate counting was performed. At relatively high electric fields (E ≥ 1000 V.cm-1) and moderate PEF treatment time (tPEF > 100 µs), the extraction of ionic components from yeast was observed by conductivity measurements, which can be related to electroporation of cell membranes. Cell counting revealed a dependency of the colonies’ size on the time of preliminary fermentation tf and the power consumption W, however no dependencies were noticeable by varying the initial yeast concentration in the treated suspensions.Keywords: intensification, yeast, fermentation, electroporation, biotechnology
Procedia PDF Downloads 4693759 Impact of Flavor on Food Product Quality, A Case Study of Vanillin Stability during Biscuit Preparation
Authors: N. Yang, R. Linforth, I. Fisk
Abstract:
The influence of food processing and choice of flavour solvent was investigated using biscuits prepared with vanillin flavour as an example. Powder vanillin either was added directly into the dough or dissolved into flavour solvent then mixed into the dough. The impact of two commonly used flavour solvents on food quality was compared: propylene glycol (PG) or triacetin (TA). The analytical approach for vanillin detection was developed by chromatography (HPLC-PDA), and the standard extraction method for vanillin was also established. The results indicated the impact of solvent choice on vanillin level during biscuit preparation. After baking, TA as a more heat resistant solvent retained more vanillin than PG, so TA is a better solvent for products that undergo a heating process. The results also illustrated the impact of mixing and baking on vanillin stability in the matrices. The average loss of vanillin was 33% during mixing and 13% during baking, which indicated that the binding of vanillin to fat or flour before baking might cause larger loss than evaporation loss during baking.Keywords: biscuit, flavour stability, food quality, vanillin
Procedia PDF Downloads 5083758 Identification of the Alkaloids of the Belladone (Atropa belladonna L.) and Evaluation of Their Inhibitory Effects Against Some Microbial Strains
Authors: Ait Slimane-Ait Kaki Sabrina, Foudi Lamia
Abstract:
The present work consists of the study of the bio-ecology and the therapeutic effects of the belladone (Atropa belladonna L.). It is a medicinal plant of the Solanacées family, herbaceous, robust 0.5 up to 1.50 m high. The phytochemical analysis of leaves revealed alkaloids, tannins, catechin, coumarins, mucilages, saponins, starch, and reducing compounds. The experimental study concerns the extraction and characterization of belladonna alkaloids. Analysis of the purified extract by staining tests confirmed the presence of tropane alkaloids. The dosage chromatography revealed the presence of components that have been identified atropine, scopolamine and hyoscyamine. Evaluation of antimicrobial and antifungal alkaloids from the methanol extract and aqueous extract of belladonna on pathogenic germs showed a positive bactericidal against strains of Escherichia coli and Staphylococcus aureus. Our preliminary results allow us an overall assessment of the medicinal value of Atropa belladonna.Keywords: belladone, alkaloid, antibacterial activity, antifungal activity
Procedia PDF Downloads 4933757 An Efficient Strategy for Relay Selection in Multi-Hop Communication
Authors: Jung-In Baik, Seung-Jun Yu, Young-Min Ko, Hyoung-Kyu Song
Abstract:
This paper proposes an efficient relaying algorithm to obtain diversity for improving the reliability of a signal. The algorithm achieves time or space diversity gain by multiple versions of the same signal through two routes. Relays are separated between a source and destination. The routes between the source and destination are set adaptive in order to deal with different channels and noises. The routes consist of one or more relays and the source transmits its signal to the destination through the routes. The signals from the relays are combined and detected at the destination. The proposed algorithm provides a better performance than the conventional algorithms in bit error rate (BER).Keywords: multi-hop, OFDM, relay, relaying selection
Procedia PDF Downloads 4453756 Optimization of Leaching Properties of a Low-Grade Copper Ore Using Central Composite Design (CCD)
Authors: Lawrence Koech, Hilary Rutto, Olga Mothibedi
Abstract:
Worldwide demand for copper has led to intensive search for methods of extraction and recovery of copper from different sources. The study investigates the leaching properties of a low-grade copper ore by optimizing the leaching variables using response surface methodology. The effects of key parameters, i.e., temperature, solid to liquid ratio, stirring speed and pH, on the leaching rate constant was investigated using a pH stat apparatus. A Central Composite Design (CCD) of experiments was used to develop a quadratic model which specifically correlates the leaching variables and the rate constant. The results indicated that the model is in good agreement with the experimental data with a correlation coefficient (R2) of 0.93. The temperature and solid to liquid ratio were found to have the most substantial influence on the leaching rate constant. The optimum operating conditions for copper leaching from the ore were identified as temperature at 65C, solid to liquid ratio at 1.625 and stirring speed of 325 rpm which yielded an average leaching efficiency of 93.16%.Keywords: copper, leaching, CCD, rate constant
Procedia PDF Downloads 2423755 Study and Experimental Analysis of a Photovoltaic Pumping System under Three Operating Modes
Authors: Rekioua D., Mohammedi A., Rekioua T., Mehleb Z.
Abstract:
Photovoltaic water pumping systems is considered as one of the most promising areas in photovoltaic applications, the economy and reliability of solar electric power made it an excellent choice for remote water pumping. Two conventional techniques are currently in use; the first is the directly coupled technique and the second is the battery buffered photovoltaic pumping system. In this paper, we present different performances of a three operation modes of photovoltaic pumping system. The aim of this work is to determine the effect of different parameters influencing the photovoltaic pumping system performances, such as pumping head, System configuration and climatic conditions. The obtained results are presented and discussed.Keywords: batteries charge mode, photovoltaic pumping system, pumping head, submersible pump
Procedia PDF Downloads 509