Search results for: computational accuracy
3832 A Three-modal Authentication Method for Industrial Robots
Authors: Luo Jiaoyang, Yu Hongyang
Abstract:
In this paper, we explore a method that can be used in the working scene of intelligent industrial robots to confirm the identity information of operators to ensure that the robot executes instructions in a sufficiently safe environment. This approach uses three information modalities, namely visible light, depth, and sound. We explored a variety of fusion modes for the three modalities and finally used the joint feature learning method to improve the performance of the model in the case of noise compared with the single-modal case, making the maximum noise in the experiment. It can also maintain an accuracy rate of more than 90%.Keywords: multimodal, kinect, machine learning, distance image
Procedia PDF Downloads 793831 Exploring Pre-Trained Automatic Speech Recognition Model HuBERT for Early Alzheimer’s Disease and Mild Cognitive Impairment Detection in Speech
Authors: Monica Gonzalez Machorro
Abstract:
Dementia is hard to diagnose because of the lack of early physical symptoms. Early dementia recognition is key to improving the living condition of patients. Speech technology is considered a valuable biomarker for this challenge. Recent works have utilized conventional acoustic features and machine learning methods to detect dementia in speech. BERT-like classifiers have reported the most promising performance. One constraint, nonetheless, is that these studies are either based on human transcripts or on transcripts produced by automatic speech recognition (ASR) systems. This research contribution is to explore a method that does not require transcriptions to detect early Alzheimer’s disease (AD) and mild cognitive impairment (MCI). This is achieved by fine-tuning a pre-trained ASR model for the downstream early AD and MCI tasks. To do so, a subset of the thoroughly studied Pitt Corpus is customized. The subset is balanced for class, age, and gender. Data processing also involves cropping the samples into 10-second segments. For comparison purposes, a baseline model is defined by training and testing a Random Forest with 20 extracted acoustic features using the librosa library implemented in Python. These are: zero-crossing rate, MFCCs, spectral bandwidth, spectral centroid, root mean square, and short-time Fourier transform. The baseline model achieved a 58% accuracy. To fine-tune HuBERT as a classifier, an average pooling strategy is employed to merge the 3D representations from audio into 2D representations, and a linear layer is added. The pre-trained model used is ‘hubert-large-ls960-ft’. Empirically, the number of epochs selected is 5, and the batch size defined is 1. Experiments show that our proposed method reaches a 69% balanced accuracy. This suggests that the linguistic and speech information encoded in the self-supervised ASR-based model is able to learn acoustic cues of AD and MCI.Keywords: automatic speech recognition, early Alzheimer’s recognition, mild cognitive impairment, speech impairment
Procedia PDF Downloads 1273830 A New Criterion Using Pose and Shape of Objects for Collision Risk Estimation
Authors: DoHyeung Kim, DaeHee Seo, ByungDoo Kim, ByungGil Lee
Abstract:
As many recent researches being implemented in aviation and maritime aspects, strong doubts have been raised concerning the reliability of the estimation of collision risk. It is shown that using position and velocity of objects can lead to imprecise results. In this paper, therefore, a new approach to the estimation of collision risks using pose and shape of objects is proposed. Simulation results are presented validating the accuracy of the new criterion to adapt to collision risk algorithm based on fuzzy logic.Keywords: collision risk, pose, shape, fuzzy logic
Procedia PDF Downloads 5303829 Satellite Photogrammetry for DEM Generation Using Stereo Pair and Automatic Extraction of Terrain Parameters
Authors: Tridipa Biswas, Kamal Pandey
Abstract:
A Digital Elevation Model (DEM) is a simple representation of a surface in 3 dimensional space with elevation as the third dimension along with X (horizontal coordinates) and Y (vertical coordinates) in rectangular coordinates. DEM has wide applications in various fields like disaster management, hydrology and watershed management, geomorphology, urban development, map creation and resource management etc. Cartosat-1 or IRS P5 (Indian Remote Sensing Satellite) is a state-of-the-art remote sensing satellite built by ISRO (May 5, 2005) which is mainly intended for cartographic applications.Cartosat-1 is equipped with two panchromatic cameras capable of simultaneous acquiring images of 2.5 meters spatial resolution. One camera is looking at +26 degrees forward while another looks at –5 degrees backward to acquire stereoscopic imagery with base to height ratio of 0.62. The time difference between acquiring of the stereopair images is approximately 52 seconds. The high resolution stereo data have great potential to produce high-quality DEM. The high-resolution Cartosat-1 stereo image data is expected to have significant impact in topographic mapping and watershed applications. The objective of the present study is to generate high-resolution DEM, quality evaluation in different elevation strata, generation of ortho-rectified image and associated accuracy assessment from CARTOSAT-1 data based Ground Control Points (GCPs) for Aglar watershed (Tehri-Garhwal and Dehradun district, Uttarakhand, India). The present study reveals that generated DEMs (10m and 30m) derived from the CARTOSAT-1 stereo pair is much better and accurate when compared with existing DEMs (ASTER and CARTO DEM) also for different terrain parameters like slope, aspect, drainage, watershed boundaries etc., which are derived from the generated DEMs, have better accuracy and results when compared with the other two (ASTER and CARTO) DEMs derived terrain parameters.Keywords: ASTER-DEM, CARTO-DEM, CARTOSAT-1, digital elevation model (DEM), ortho-rectified image, photogrammetry, RPC, stereo pair, terrain parameters
Procedia PDF Downloads 3113828 Comparing SVM and Naïve Bayes Classifier for Automatic Microaneurysm Detections
Authors: A. Sopharak, B. Uyyanonvara, S. Barman
Abstract:
Diabetic retinopathy is characterized by the development of retinal microaneurysms. The damage can be prevented if disease is treated in its early stages. In this paper, we are comparing Support Vector Machine (SVM) and Naïve Bayes (NB) classifiers for automatic microaneurysm detection in images acquired through non-dilated pupils. The Nearest Neighbor classifier is used as a baseline for comparison. Detected microaneurysms are validated with expert ophthalmologists’ hand-drawn ground-truths. The sensitivity, specificity, precision and accuracy of each method are also compared.Keywords: diabetic retinopathy, microaneurysm, naive Bayes classifier, SVM classifier
Procedia PDF Downloads 3293827 An Experimental Modeling of Steel Surfaces Wear in Injection of Plastic Materials with SGF
Authors: L. Capitanu, V. Floresci, L. L. Badita
Abstract:
Starting from the idea that the greatest pressure and velocity of composite melted is in the die nozzle, was an experimental nozzle with wear samples of sizes and weights which can be measured with precision as good. For a larger accuracy of measurements, we used a method for radiometric measuring, extremely accurate. Different nitriding steels have been studied as nitriding treatments, as well as some special steels and alloyed steels. Besides these, there have been preliminary attempts made to describe and checking corrosive action of thermoplastics on metals.Keywords: plastics, composites with short glass fibres, moulding, wear, experimental modelling, glass fibres content influence
Procedia PDF Downloads 2663826 Microstructures of Si Surfaces Fabricated by Electrochemical Anodic Oxidation with Agarose Stamps
Abstract:
This paper investigates the fabrication of microstructures on Si surfaces by using electrochemical anodic oxidation with agarose stamps. The fabricating process is based on a selective anodic oxidation reaction that occurs in the contact area between a stamp and a Si substrate. The stamp which is soaked in electrolyte previously acts as a current flow channel. After forming the oxide patterns as an etching mask, a KOH aqueous is used for the wet etching of Si. A complicated microstructure array of 1 cm2 was fabricated by the method with high accuracy.Keywords: microstructures, anodic oxidation, silicon, agarose stamps
Procedia PDF Downloads 3083825 Detecting Covid-19 Fake News Using Deep Learning Technique
Authors: AnjalI A. Prasad
Abstract:
Nowadays, social media played an important role in spreading misinformation or fake news. This study analyzes the fake news related to the COVID-19 pandemic spread in social media. This paper aims at evaluating and comparing different approaches that are used to mitigate this issue, including popular deep learning approaches, such as CNN, RNN, LSTM, and BERT algorithm for classification. To evaluate models’ performance, we used accuracy, precision, recall, and F1-score as the evaluation metrics. And finally, compare which algorithm shows better result among the four algorithms.Keywords: BERT, CNN, LSTM, RNN
Procedia PDF Downloads 2063824 Fatigue of Multiscale Nanoreinforced Composites: 3D Modelling
Authors: Leon Mishnaevsky Jr., Gaoming Dai
Abstract:
3D numerical simulations of fatigue damage of multiscale fiber reinforced polymer composites with secondary nanoclay reinforcement are carried out. Macro-micro FE models of the multiscale composites are generated automatically using Python based software. The effect of the nanoclay reinforcement (localized in the fiber/matrix interface (fiber sizing) and distributed throughout the matrix) on the crack path, damage mechanisms and fatigue behavior is investigated in numerical experiments.Keywords: computational mechanics, fatigue, nanocomposites, composites
Procedia PDF Downloads 6073823 Affective Transparency in Compound Word Processing
Authors: Jordan Gallant
Abstract:
In the compound word processing literature, much attention has been paid to the relationship between a compound’s denotational meaning and that of its morphological whole-word constituents, which is referred to as ‘semantic transparency’. However, the parallel relationship between a compound’s connotation and that of its constituents has not been addressed at all. For instance, while a compound like ‘painkiller’ might be semantically transparent, it is not ‘affectively transparent’. That is, both constituents have primarily negative connotations, while the whole compound has a positive one. This paper investigates the role of affective transparency on compound processing using two methodologies commonly employed in this field: a lexical decision task and a typing task. The critical stimuli used were 112 English bi-constituent compounds that differed in terms of the effective transparency of their constituents. Of these, 36 stimuli contained constituents with similar connotations to the compound (e.g., ‘dreamland’), 36 contained constituents with more positive connotations (e.g. ‘bedpan’), and 36 contained constituents with more negative connotations (e.g. ‘painkiller’). Connotation of whole-word constituents and compounds were operationalized via valence ratings taken from an off-line ratings database. In Experiment 1, compound stimuli and matched non-word controls were presented visually to participants, who were then asked to indicate whether it was a real word in English. Response times and accuracy were recorded. In Experiment 2, participants typed compound stimuli presented to them visually. Individual keystroke response times and typing accuracy were recorded. The results of both experiments provided positive evidence that compound processing is influenced by effective transparency. In Experiment 1, compounds in which both constituents had more negative connotations than the compound itself were responded to significantly more slowly than compounds in which the constituents had similar or more positive connotations. Typed responses from Experiment 2 showed that inter-keystroke intervals at the morphological constituent boundary were significantly longer when the connotation of the head constituent was either more positive or more negative than that of the compound. The interpretation of this finding is discussed in the context of previous compound typing research. Taken together, these findings suggest that affective transparency plays a role in the recognition, storage, and production of English compound words. This study provides a promising first step in a new direction for research on compound words.Keywords: compound processing, semantic transparency, typed production, valence
Procedia PDF Downloads 1283822 Efficiency of Geocell Reinforcement for Using in Expanded Polystyrene Embankments via Numerical Analysis
Authors: S. N. Moghaddas Tafreshi, S. M. Amin Ghotbi
Abstract:
This paper presents a numerical study for investigating the effectiveness of geocell reinforcement in reducing pressure and settlement over EPS geofoam blocks in road embankments. A 3-D FEM model of soil and geofoam was created in ABAQUS, and geocell was also modeled realistically using membrane elements. The accuracy of the model was tested by comparing its results with previous works. Sensitivity analyses showed that reinforcing the soil cover with geocell has a significant influence on the reduction of imposed stresses over geofoam and consequently decreasing its deformation.Keywords: EPS geofoam, geocell, reinforcement, road embankments, lightweight fill
Procedia PDF Downloads 2743821 Wearable Antenna for Diagnosis of Parkinson’s Disease Using a Deep Learning Pipeline on Accelerated Hardware
Authors: Subham Ghosh, Banani Basu, Marami Das
Abstract:
Background: The development of compact, low-power antenna sensors has resulted in hardware restructuring, allowing for wireless ubiquitous sensing. The antenna sensors can create wireless body-area networks (WBAN) by linking various wireless nodes across the human body. WBAN and IoT applications, such as remote health and fitness monitoring and rehabilitation, are becoming increasingly important. In particular, Parkinson’s disease (PD), a common neurodegenerative disorder, presents clinical features that can be easily misdiagnosed. As a mobility disease, it may greatly benefit from the antenna’s nearfield approach with a variety of activities that can use WBAN and IoT technologies to increase diagnosis accuracy and patient monitoring. Methodology: This study investigates the feasibility of leveraging a single patch antenna mounted (using cloth) on the wrist dorsal to differentiate actual Parkinson's disease (PD) from false PD using a small hardware platform. The semi-flexible antenna operates at the 2.4 GHz ISM band and collects reflection coefficient (Γ) data from patients performing five exercises designed for the classification of PD and other disorders such as essential tremor (ET) or those physiological disorders caused by anxiety or stress. The obtained data is normalized and converted into 2-D representations using the Gabor wavelet transform (GWT). Data augmentation is then used to expand the dataset size. A lightweight deep-learning (DL) model is developed to run on the GPU-enabled NVIDIA Jetson Nano platform. The DL model processes the 2-D images for feature extraction and classification. Findings: The DL model was trained and tested on both the original and augmented datasets, thus doubling the dataset size. To ensure robustness, a 5-fold stratified cross-validation (5-FSCV) method was used. The proposed framework, utilizing a DL model with 1.356 million parameters on the NVIDIA Jetson Nano, achieved optimal performance in terms of accuracy of 88.64%, F1-score of 88.54, and recall of 90.46%, with a latency of 33 seconds per epoch.Keywords: antenna, deep-learning, GPU-hardware, Parkinson’s disease
Procedia PDF Downloads 103820 Topography Effects on Wind Turbines Wake Flow
Authors: H. Daaou Nedjari, O. Guerri, M. Saighi
Abstract:
A numerical study was conducted to optimize the positioning of wind turbines over complex terrains. Thus, a two-dimensional disk model was used to calculate the flow velocity deficit in wind farms for both flat and complex configurations. The wind turbine wake was assessed using the hybrid methods that combine CFD (Computational Fluid Dynamics) with the actuator disc model. The wind turbine rotor has been defined with a thrust force, coupled with the Navier-Stokes equations that were resolved by an open source computational code (Code_Saturne V3.0 developed by EDF) The simulations were conducted in atmospheric boundary layer condition considering a two-dimensional region located at the north of Algeria at 36.74°N longitude, 02.97°E latitude. The topography elevation values were collected according to a longitudinal direction of 1km downwind. The wind turbine sited over topography was simulated for different elevation variations. The main of this study is to determine the topography effect on the behavior of wind farm wake flow. For this, the wake model applied in complex terrain needs to selects the singularity effects of topography on the vertical wind flow without rotor disc first. This step allows to determine the existence of mixing scales and friction forces zone near the ground. So, according to the ground relief the wind flow waS disturbed by turbulence and a significant speed variation. Thus, the singularities of the velocity field were thoroughly collected and thrust coefficient Ct was calculated using the specific speed. In addition, to evaluate the land effect on the wake shape, the flow field was also simulated considering different rotor hub heights. Indeed, the distance between the ground and the hub height of turbine (Hhub) was tested in a flat terrain for different locations as Hhub=1.125D, Hhub = 1.5D and Hhub=2D (D is rotor diameter) considering a roughness value of z0=0.01m. This study has demonstrated that topographical farm induce a significant effect on wind turbines wakes, compared to that on flat terrain.Keywords: CFD, wind turbine wake, k-epsilon model, turbulence, complex topography
Procedia PDF Downloads 5643819 Investigation of External Pressure Coefficients on Large Antenna Parabolic Reflector Using Computational Fluid Dynamics
Authors: Varun K, Pramod B. Balareddy
Abstract:
Estimation of wind forces plays a significant role in the in the design of large antenna parabolic reflectors. Reflector surface accuracies are very sensitive to the gain of the antenna system at higher frequencies. Hence accurate estimation of wind forces becomes important, which is primary input for design and analysis of the reflector system. In the present work, numerical simulation of wind flow using Computational Fluid Dynamics (CFD) software is used to investigate the external pressure coefficients. An extensive comparative study has been made between the CFD results and the published wind tunnel data for different wind angle of attacks (α) acting over concave to convex surfaces respectively. Flow simulations using CFD are carried out to estimate the coefficients of Drag, Lift and Moment for the parabolic reflector. Coefficients of pressures (Cp) over the front and the rear face of the reflector are extracted over surface of the reflector to study the net pressure variations. These resultant pressure variations are compared with the published wind tunnel data for different angle of attacks. It was observed from the CFD simulations, both convex and concave face of reflector system experience a band of pressure variations for the positive and negative angle of attacks respectively. In the published wind tunnel data, Pressure variations over convex surfaces are assumed to be uniform and vice versa. Chordwise and spanwise pressure variations were calculated and compared with the published experimental data. In the present work, it was observed that the maximum pressure coefficients for α ranging from +30° to -90° and α=+90° was lower. For α ranging from +45° to +75°, maximum pressure coefficients were higher as compared to wind tunnel data. This variation is due to non-uniform pressure distribution observed over front and back faces of reflector. Variations in Cd, Cl and Cm over α=+90° to α=-90° was in close resemblance with the experimental data.Keywords: angle of attack, drag coefficient, lift coefficient, pressure coefficient
Procedia PDF Downloads 2583818 Cannabis Sativa L as Natural Source of Promising Anti-Alzheimer Drug Candidates: A Comprehensive Computational Approach Including Molecular Docking, Molecular Dynamics, ADMET and MM-PBSA Studies
Authors: Hassan Nour, Nouh Mounadi, Oussama Abchir, Belaidi Salah, Samir Chtita
Abstract:
Cholinesterase enzymes are biological catalysts essential for the transformation of acetylcholine, which is a neurotransmitter implicated in memory and learning, into acetic acid and choline, altering the neurotransmission process in Alzheimer’s disease patients. Therefore, inhibition of cholinesterase enzymes is a relevant strategy for the symptomatic treatment of Alzheimer’s disease. The current investigation aims to explore potential cholinesterase (ChE) inhibitors through a comprehensive computational approach. Forty-nine phytoconstituents extracted from Cannabis sativa L. were in-silico screened using molecular docking and pharmacokinetic and toxicological analysis to evaluate their possible inhibitory effect on the cholinesterase enzymes. Two phytoconstituents belonging to cannabinoid derivatives were revealed to be promising candidates for Alzheimer's therapy by acting as cholinesterase inhibitors. They have exhibited high binding affinities towards the cholinesterase enzymes and showed their ability to interact with key residues involved in cholinesterase enzymatic activity. In addition, they presented good ADMET profiles allowing them to be promising oral drug candidates. Furthermore, molecular dynamics (MD) simulations were executed to explore their interaction stability under mimetic biological conditions and thus support our findings. To corroborate the docking results, the binding free energy corresponding to the more stable ligand-ChE complexes was re-estimated by applying the MM-PBSA method. MD and MM-PBSA studies affirmed that the ligand-ChE recognition is a spontaneous reaction leading to stable complexes. The conducted investigations have led to great findings that would strongly guide the pharmaceutical industries toward the rational development of potent anti-Alzheimer agents.Keywords: Alzheimer’s disease, molecular docking, Cannabis sativa L., cholinesterase inhibitors, molecular dynamics, ADMET, MM-PBSA
Procedia PDF Downloads 843817 The Use of a Novel Visual Kinetic Demonstration Technique in Student Skill Acquisition of the Sellick Cricoid Force Manoeuvre
Authors: L. Nathaniel-Wurie
Abstract:
The Sellick manoeuvre a.k.a the application of cricoid force (CF), was first described by Brian Sellick in 1961. CF is the application of digital pressure against the cricoid cartilage with the intention of posterior force causing oesophageal compression against the vertebrae. This is designed to prevent passive regurgitation of gastric contents, which is a major cause of morbidity and mortality during emergency airway management inside and outside of the hospital. To the authors knowledge, there is no universally standardised training modality and, therefore, no reliable way to examine if there are appropriate outcomes. If force is not measured during training, how can one surmise that appropriate, accurate, or precise amounts of force are being used routinely. Poor homogeneity in teaching and untested outcomes will correlate with reduced efficacy and increased adverse effects. For this study, the accuracy of force delivery in trained professionals was tested, and outcomes contrasted against a novice control and a novice study group. In this study, 20 operating department practitioners were tested (with a mean experience of 5.3years of performing CF). Subsequent contrast with 40 novice students who were randomised into one of two arms. ‘Arm A’ were explained the procedure, then shown the procedure then asked to perform CF with the corresponding force measurement being taken three times. Arm B had the same process as arm A then before being tested, they had 10, and 30 Newtons applied to their hands to increase intuitive understanding of what the required force equated to, then were asked to apply the equivalent amount of force against a visible force metre and asked to hold that force for 20 seconds which allowed direct visualisation and correction of any over or under estimation. Following this, Arm B were then asked to perform the manoeuvre, and the force generated measured three times. This study shows that there is a wide distribution of force produced by trained professionals and novices performing the procedure for the first time. Our methodology for teaching the manoeuvre shows an improved accuracy, precision, and homogeneity within the group when compared to novices and even outperforms trained practitioners. In conclusion, if this methodology is adopted, it may correlate with higher clinical outcomes, less adverse events, and more successful airway management in critical medical scenarios.Keywords: airway, cricoid, medical education, sellick
Procedia PDF Downloads 793816 Reacting Numerical Simulation of Axisymmetric Trapped Vortex Combustors for Methane, Propane and Hydrogen
Authors: Heval Serhat Uluk, Sam M. Dakka, Kuldeep Singh, Richard Jefferson-Loveday
Abstract:
The carbon footprint of the aviation sector in total measured 3.8% in 2017, and it is expected to triple by 2050. New combustion approaches and fuel types are necessary to prevent this. This paper will focus on using propane, methane, and hydrogen as fuel replacements for kerosene and implement a trapped vortex combustor design to increase efficiency. Reacting simulations were conducted for axisymmetric trapped vortex combustor to investigate the static pressure drop, combustion efficiency and pattern factor for various cavity aspect ratios for 0.3, 0.6 and 1 and air mass flow rates for 14 m/s, 28 m/s and 42 m/s. Propane, methane and hydrogen are used as alternative fuels. The combustion model was anchored based on swirl flame configuration with an emphasis on high fidelity of boundary conditions with favorable results of eddy dissipation model implementation. Reynolds Averaged Navier Stokes (RANS) k-ε model turbulence model for the validation effort was used for turbulence modelling. A grid independence study was conducted for the three-dimensional model to reduce computational time. Preliminary results for 24 m/s air mass flow rate provided a close temperature profile inside the cavity relative to the experimental study. The investigation will be carried out on the effect of air mass flow rates and cavity aspect ratio on the combustion efficiency, pattern factor and static pressure drop in the combustor. A comparison study among pure methane, propane and hydrogen will be conducted to investigate their suitability for trapped vortex combustors and conclude their advantages and disadvantages as a fuel replacement. Therefore, the study will be one of the milestones to achieving 2050 zero carbon emissions or reducing carbon emissions.Keywords: computational fluid dynamics, aerodynamic, aerospace, propulsion, trapped vortex combustor
Procedia PDF Downloads 913815 Scar Removal Stretegy for Fingerprint Using Diffusion
Authors: Mohammad A. U. Khan, Tariq M. Khan, Yinan Kong
Abstract:
Fingerprint image enhancement is one of the most important step in an automatic fingerprint identification recognition (AFIS) system which directly affects the overall efficiency of AFIS. The conventional fingerprint enhancement like Gabor and Anisotropic filters do fill the gaps in ridge lines but they fail to tackle scar lines. To deal with this problem we are proposing a method for enhancing the ridges and valleys with scar so that true minutia points can be extracted with accuracy. Our results have shown an improved performance in terms of enhancement.Keywords: fingerprint image enhancement, removing noise, coherence, enhanced diffusion
Procedia PDF Downloads 5173814 A Case Study Comparing the Effect of Computer Assisted Task-Based Language Teaching and Computer-Assisted Form Focused Language Instruction on Language Production of Students Learning Arabic as a Foreign Language
Authors: Hanan K. Hassanein
Abstract:
Task-based language teaching (TBLT) and focus on form instruction (FFI) methods were proven to improve quality and quantity of immediate language production. However, studies that compare between the effectiveness of the language production when using TBLT versus FFI are very little with results that are not consistent. Moreover, teaching Arabic using TBLT is a new field with few research that has investigated its application inside classrooms. Furthermore, to the best knowledge of the researcher, there are no prior studies that compared teaching Arabic as a foreign language in a classroom setting using computer-assisted task-based language teaching (CATBLT) with computer-assisted form focused language instruction (CAFFI). Accordingly, the focus of this presentation is to display CATBLT and CAFFI tools when teaching Arabic as a foreign language as well as demonstrate an experimental study that aims to identify whether or not CATBLT is a more effective instruction method. The effectiveness will be determined through comparing CATBLT and CAFFI in terms of accuracy, lexical complexity, and fluency of language produced by students. The participants of the study are 20 students enrolled in two intermediate-level Arabic as a foreign language classes. The experiment will take place over the course of 7 days. Based on a study conducted by Abdurrahman Arslanyilmaz for teaching Turkish as a second language, an in-house computer assisted tool for the TBLT and another one for FFI will be designed for the experiment. The experimental group will be instructed using the in-house CATBLT tool and the control group will be taught through the in-house CAFFI tool. The data that will be analyzed are the dialogues produced by students in both the experimental and control groups when completing a task or communicating in conversational activities. The dialogues of both groups will be analyzed to understand the effect of the type of instruction (CATBLT or CAFFI) on accuracy, lexical complexity, and fluency. Thus, the study aims to demonstrate whether or not there is an instruction method that positively affects the language produced by students learning Arabic as a foreign language more than the other.Keywords: computer assisted language teaching, foreign language teaching, form-focused instruction, task based language teaching
Procedia PDF Downloads 2523813 Short Life Cycle Time Series Forecasting
Authors: Shalaka Kadam, Dinesh Apte, Sagar Mainkar
Abstract:
The life cycle of products is becoming shorter and shorter due to increased competition in market, shorter product development time and increased product diversity. Short life cycles are normal in retail industry, style business, entertainment media, and telecom and semiconductor industry. The subject of accurate forecasting for demand of short lifecycle products is of special enthusiasm for many researchers and organizations. Due to short life cycle of products the amount of historical data that is available for forecasting is very minimal or even absent when new or modified products are launched in market. The companies dealing with such products want to increase the accuracy in demand forecasting so that they can utilize the full potential of the market at the same time do not oversupply. This provides the challenge to develop a forecasting model that can forecast accurately while handling large variations in data and consider the complex relationships between various parameters of data. Many statistical models have been proposed in literature for forecasting time series data. Traditional time series forecasting models do not work well for short life cycles due to lack of historical data. Also artificial neural networks (ANN) models are very time consuming to perform forecasting. We have studied the existing models that are used for forecasting and their limitations. This work proposes an effective and powerful forecasting approach for short life cycle time series forecasting. We have proposed an approach which takes into consideration different scenarios related to data availability for short lifecycle products. We then suggest a methodology which combines statistical analysis with structured judgement. Also the defined approach can be applied across domains. We then describe the method of creating a profile from analogous products. This profile can then be used for forecasting products with historical data of analogous products. We have designed an application which combines data, analytics and domain knowledge using point-and-click technology. The forecasting results generated are compared using MAPE, MSE and RMSE error scores. Conclusion: Based on the results it is observed that no one approach is sufficient for short life-cycle forecasting and we need to combine two or more approaches for achieving the desired accuracy.Keywords: forecast, short life cycle product, structured judgement, time series
Procedia PDF Downloads 3593812 Development of Adaptive Proportional-Integral-Derivative Feeding Mechanism for Robotic Additive Manufacturing System
Authors: Andy Alubaidy
Abstract:
In this work, a robotic additive manufacturing system (RAMS) that is capable of three-dimensional (3D) printing in six degrees of freedom (DOF) with very high accuracy and virtually on any surface has been designed and built. One of the major shortcomings in existing 3D printer technology is the limitation to three DOF, which results in prolonged fabrication time. Depending on the techniques used, it usually takes at least two hours to print small objects and several hours for larger objects. Another drawback is the size of the printed objects, which is constrained by the physical dimensions of most low-cost 3D printers, which are typically small. In such cases, large objects are produced by dividing them into smaller components that fit the printer’s workable area. They are then glued, bonded or otherwise attached to create the required object. Another shortcoming is material constraints and the need to fabricate a single part using different materials. With the flexibility of a six-DOF robot, the RAMS has been designed to overcome these problems. A feeding mechanism using an adaptive Proportional-Integral-Derivative (PID) controller is utilized along with a national instrument compactRIO (NI cRIO), an ABB robot, and off-the-shelf sensors. The RAMS have the ability to 3D print virtually anywhere in six degrees of freedom with very high accuracy. It is equipped with an ABB IRB 120 robot to achieve this level of accuracy. In order to convert computer-aided design (CAD) files to digital format that is acceptable to the robot, Hypertherm Robotic Software Inc.’s state-of-the-art slicing software called “ADDMAN” is used. ADDMAN is capable of converting any CAD file into RAPID code (the programing language for ABB robots). The robot uses the generated code to perform the 3D printing. To control the entire process, National Instrument (NI) compactRIO (cRio 9074), is connected and communicated with the robot and a feeding mechanism that is designed and fabricated. The feeding mechanism consists of two major parts, cold-end and hot-end. The cold-end consists of what is conventionally known as an extruder. Typically, a stepper-motor is used to control the push on the material, however, for optimum control, a DC motor is used instead. The hot-end consists of a melt-zone, nozzle, and heat-brake. The melt zone ensures a thorough melting effect and consistent output from the nozzle. Nozzles are made of brass for thermo-conductivity while the melt-zone is comprised of a heating block and a ceramic heating cartridge to transfer heat to the block. The heat-brake ensures that there is no heat creep-up effect as this would swell the material and prevent consistent extrusion. A control system embedded in the cRio is developed using NI Labview which utilizes adaptive PID to govern the heating cartridge in conjunction with a thermistor. The thermistor sends temperature feedback to the cRio, which will issue heat increase or decrease based on the system output. Since different materials have different melting points, our system will allow us to adjust the temperature and vary the material.Keywords: robotic, additive manufacturing, PID controller, cRIO, 3D printing
Procedia PDF Downloads 2183811 Computational Fluid Dynamicsfd Simulations of Air Pollutant Dispersion: Validation of Fire Dynamic Simulator Against the Cute Experiments of the Cost ES1006 Action
Authors: Virginie Hergault, Siham Chebbah, Bertrand Frere
Abstract:
Following in-house objectives, Central laboratory of Paris police Prefecture conducted a general review on models and Computational Fluid Dynamics (CFD) codes used to simulate pollutant dispersion in the atmosphere. Starting from that review and considering main features of Large Eddy Simulation, Central Laboratory Of Paris Police Prefecture (LCPP) postulates that the Fire Dynamics Simulator (FDS) model, from National Institute of Standards and Technology (NIST), should be well suited for air pollutant dispersion modeling. This paper focuses on the implementation and the evaluation of FDS in the frame of the European COST ES1006 Action. This action aimed at quantifying the performance of modeling approaches. In this paper, the CUTE dataset carried out in the city of Hamburg, and its mock-up has been used. We have performed a comparison of FDS results with wind tunnel measurements from CUTE trials on the one hand, and, on the other, with the models results involved in the COST Action. The most time-consuming part of creating input data for simulations is the transfer of obstacle geometry information to the format required by SDS. Thus, we have developed Python codes to convert automatically building and topographic data to the FDS input file. In order to evaluate the predictions of FDS with observations, statistical performance measures have been used. These metrics include the fractional bias (FB), the normalized mean square error (NMSE) and the fraction of predictions within a factor of two of observations (FAC2). As well as the CFD models tested in the COST Action, FDS results demonstrate a good agreement with measured concentrations. Furthermore, the metrics assessment indicate that FB and NMSE meet the tolerance acceptable.Keywords: numerical simulations, atmospheric dispersion, cost ES1006 action, CFD model, cute experiments, wind tunnel data, numerical results
Procedia PDF Downloads 1363810 Numerical Analysis of NOₓ Emission in Staged Combustion for the Optimization of Once-Through-Steam-Generators
Authors: Adrien Chatel, Ehsan Askari Mahvelati, Laurent Fitschy
Abstract:
Once-Through-Steam-Generators are commonly used in the oil-sand industry in the heavy fuel oil extraction process. They are composed of three main parts: the burner, the radiant and convective sections. Natural gas is burned through staged diffusive flames stabilized by the burner. The heat generated by the combustion is transferred to the water flowing through the piping system in the radiant and convective sections. The steam produced within the pipes is then directed to the ground to reduce the oil viscosity and allow its pumping. With the rapid development of the oil-sand industry, the number of OTSG in operation has increased as well as the associated emissions of environmental pollutants, especially the Nitrous Oxides (NOₓ). To limit the environmental degradation, various international environmental agencies have established regulations on the pollutant discharge and pushed to reduce the NOₓ release. To meet these constraints, OTSG constructors have to rely on more and more advanced tools to study and predict the NOₓ emission. With the increase of the computational resources, Computational Fluid Dynamics (CFD) has emerged as a flexible tool to analyze the combustion and pollutant formation process. Moreover, to optimize the burner operating condition regarding the NOx emission, field characterization and measurements are usually accomplished. However, these kinds of experimental campaigns are particularly time-consuming and sometimes even impossible for industrial plants with strict operation schedule constraints. Therefore, the application of CFD seems to be more adequate in order to provide guidelines on the NOₓ emission and reduction problem. In the present work, two different software are employed to simulate the combustion process in an OTSG, namely the commercial software ANSYS Fluent and the open source software OpenFOAM. RANS (Reynolds-Averaged Navier–Stokes) equations combined with the Eddy Dissipation Concept to model the combustion and closed by the k-epsilon model are solved. A mesh sensitivity analysis is performed to assess the independence of the solution on the mesh. In the first part, the results given by the two software are compared and confronted with experimental data as a mean to assess the numerical modelling. Flame temperatures and chemical composition are used as reference fields to perform this validation. Results show a fair agreement between experimental and numerical data. In the last part, OpenFOAM is employed to simulate several operating conditions, and an Emission Characteristic Map of the combustion system is generated. The sources of high NOₓ production inside the OTSG are pointed and correlated to the physics of the flow. CFD is, therefore, a useful tool for providing an insight into the NOₓ emission phenomena in OTSG. Sources of high NOₓ production can be identified, and operating conditions can be adjusted accordingly. With the help of RANS simulations, an Emission Characteristics Map can be produced and then be used as a guide for a field tune-up.Keywords: combustion, computational fluid dynamics, nitrous oxides emission, once-through-steam-generators
Procedia PDF Downloads 1133809 Block Implicit Adams Type Algorithms for Solution of First Order Differential Equation
Authors: Asabe Ahmad Tijani, Y. A. Yahaya
Abstract:
The paper considers the derivation of implicit Adams-Moulton type method, with k=4 and 5. We adopted the method of interpolation and collocation of power series approximation to generate the continuous formula which was evaluated at off-grid and some grid points within the step length to generate the proposed block schemes, the schemes were investigated and found to be consistent and zero stable. Finally, the methods were tested with numerical experiments to ascertain their level of accuracy.Keywords: Adam-Moulton Type (AMT), off-grid, block method, consistent and zero stable
Procedia PDF Downloads 4823808 The Optimization of Decision Rules in Multimodal Decision-Level Fusion Scheme
Authors: Andrey V. Timofeev, Dmitry V. Egorov
Abstract:
This paper introduces an original method of parametric optimization of the structure for multimodal decision-level fusion scheme which combines the results of the partial solution of the classification task obtained from assembly of the mono-modal classifiers. As a result, a multimodal fusion classifier which has the minimum value of the total error rate has been obtained.Keywords: classification accuracy, fusion solution, total error rate, multimodal fusion classifier
Procedia PDF Downloads 4673807 Portfolio Risk Management Using Quantum Annealing
Authors: Thomas Doutre, Emmanuel De Meric De Bellefon
Abstract:
This paper describes the application of local-search metaheuristic quantum annealing to portfolio opti- mization. Heuristic technics are particularly handy when Markowitz’ classical Mean-Variance problem is enriched with additional realistic constraints. Once tailored to the problem, computational experiments on real collected data have shown the superiority of quantum annealing over simulated annealing for this constrained optimization problem, taking advantages of quantum effects such as tunnelling.Keywords: optimization, portfolio risk management, quantum annealing, metaheuristic
Procedia PDF Downloads 3843806 A Novel Approach of Secret Communication Using Douglas-Peucker Algorithm
Authors: R. Kiruthika, A. Kannan
Abstract:
Steganography is the problem of hiding secret messages in 'innocent – looking' public communication so that the presence of the secret message cannot be detected. This paper introduces a steganographic security in terms of computational in-distinguishability from a channel of probability distributions on cover messages. This method first splits the cover image into two separate blocks using Douglas – Peucker algorithm. The text message and the image will be hided in the Least Significant Bit (LSB) of the cover image.Keywords: steganography, lsb, embedding, Douglas-Peucker algorithm
Procedia PDF Downloads 3643805 A Fast Multi-Scale Finite Element Method for Geophysical Resistivity Measurements
Authors: Mostafa Shahriari, Sergio Rojas, David Pardo, Angel Rodriguez- Rozas, Shaaban A. Bakr, Victor M. Calo, Ignacio Muga
Abstract:
Logging-While Drilling (LWD) is a technique to record down-hole logging measurements while drilling the well. Nowadays, LWD devices (e.g., nuclear, sonic, resistivity) are mostly used commercially for geo-steering applications. Modern borehole resistivity tools are able to measure all components of the magnetic field by incorporating tilted coils. The depth of investigation of LWD tools is limited compared to the thickness of the geological layers. Thus, it is a common practice to approximate the Earth’s subsurface with a sequence of 1D models. For a 1D model, we can reduce the dimensionality of the problem using a Hankel transform. We can solve the resulting system of ordinary differential equations (ODEs) either (a) analytically, which results in a so-called semi-analytic method after performing a numerical inverse Hankel transform, or (b) numerically. Semi-analytic methods are used by the industry due to their high performance. However, they have major limitations, namely: -The analytical solution of the aforementioned system of ODEs exists only for piecewise constant resistivity distributions. For arbitrary resistivity distributions, the solution of the system of ODEs is unknown by today’s knowledge. -In geo-steering, we need to solve inverse problems with respect to the inversion variables (e.g., the constant resistivity value of each layer and bed boundary positions) using a gradient-based inversion method. Thus, we need to compute the corresponding derivatives. However, the analytical derivatives of cross-bedded formation and the analytical derivatives with respect to the bed boundary positions have not been published to the best of our knowledge. The main contribution of this work is to overcome the aforementioned limitations of semi-analytic methods by solving each 1D model (associated with each Hankel mode) using an efficient multi-scale finite element method. The main idea is to divide our computations into two parts: (a) offline computations, which are independent of the tool positions and we precompute only once and use them for all logging positions, and (b) online computations, which depend upon the logging position. With the above method, (a) we can consider arbitrary resistivity distributions along the 1D model, and (b) we can easily and rapidly compute the derivatives with respect to any inversion variable at a negligible additional cost by using an adjoint state formulation. Although the proposed method is slower than semi-analytic methods, its computational efficiency is still high. In the presentation, we shall derive the mathematical variational formulation, describe the proposed multi-scale finite element method, and verify the accuracy and efficiency of our method by performing a wide range of numerical experiments and comparing the numerical solutions to semi-analytic ones when the latest are available.Keywords: logging-While-Drilling, resistivity measurements, multi-scale finite elements, Hankel transform
Procedia PDF Downloads 3863804 A Review of Optomechatronic Ecosystem
Authors: Sam Zhang
Abstract:
The landscape of Opto mechatronics is viewed along the line of light vs. matter, photonics vs. semiconductors, and optics vs. mechatronics. Optomechatronics is redefined as the integration of light and matter from the atom, device, and system to the application. The markets and megatrends in Opto mechatronics are further listed. The author then focuses on Opto mechatronic technology in the semiconductor industry as an example and reviews the practical systems, characteristics, and trends. Opto mechatronics, together with photonics and semiconductor, will continue producing the computational and smart infrastructure required for the 4th industrial revolution.Keywords: photonics, semiconductor, optomechatronics, 4th industrial revolution
Procedia PDF Downloads 1303803 Automated Feature Extraction and Object-Based Detection from High-Resolution Aerial Photos Based on Machine Learning and Artificial Intelligence
Authors: Mohammed Al Sulaimani, Hamad Al Manhi
Abstract:
With the development of Remote Sensing technology, the resolution of optical Remote Sensing images has greatly improved, and images have become largely available. Numerous detectors have been developed for detecting different types of objects. In the past few years, Remote Sensing has benefited a lot from deep learning, particularly Deep Convolution Neural Networks (CNNs). Deep learning holds great promise to fulfill the challenging needs of Remote Sensing and solving various problems within different fields and applications. The use of Unmanned Aerial Systems in acquiring Aerial Photos has become highly used and preferred by most organizations to support their activities because of their high resolution and accuracy, which make the identification and detection of very small features much easier than Satellite Images. And this has opened an extreme era of Deep Learning in different applications not only in feature extraction and prediction but also in analysis. This work addresses the capacity of Machine Learning and Deep Learning in detecting and extracting Oil Leaks from Flowlines (Onshore) using High-Resolution Aerial Photos which have been acquired by UAS fixed with RGB Sensor to support early detection of these leaks and prevent the company from the leak’s losses and the most important thing environmental damage. Here, there are two different approaches and different methods of DL have been demonstrated. The first approach focuses on detecting the Oil Leaks from the RAW Aerial Photos (not processed) using a Deep Learning called Single Shoot Detector (SSD). The model draws bounding boxes around the leaks, and the results were extremely good. The second approach focuses on detecting the Oil Leaks from the Ortho-mosaiced Images (Georeferenced Images) by developing three Deep Learning Models using (MaskRCNN, U-Net and PSP-Net Classifier). Then, post-processing is performed to combine the results of these three Deep Learning Models to achieve a better detection result and improved accuracy. Although there is a relatively small amount of datasets available for training purposes, the Trained DL Models have shown good results in extracting the extent of the Oil Leaks and obtaining excellent and accurate detection.Keywords: GIS, remote sensing, oil leak detection, machine learning, aerial photos, unmanned aerial systems
Procedia PDF Downloads 34