Search results for: battery electric bus
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1838

Search results for: battery electric bus

188 Artificial Neural Network Based Model for Detecting Attacks in Smart Grid Cloud

Authors: Sandeep Mehmi, Harsh Verma, A. L. Sangal

Abstract:

Ever since the idea of using computing services as commodity that can be delivered like other utilities e.g. electric and telephone has been floated, the scientific fraternity has diverted their research towards a new area called utility computing. New paradigms like cluster computing and grid computing came into existence while edging closer to utility computing. With the advent of internet the demand of anytime, anywhere access of the resources that could be provisioned dynamically as a service, gave rise to the next generation computing paradigm known as cloud computing. Today, cloud computing has become one of the most aggressively growing computer paradigm, resulting in growing rate of applications in area of IT outsourcing. Besides catering the computational and storage demands, cloud computing has economically benefitted almost all the fields, education, research, entertainment, medical, banking, military operations, weather forecasting, business and finance to name a few. Smart grid is another discipline that direly needs to be benefitted from the cloud computing advantages. Smart grid system is a new technology that has revolutionized the power sector by automating the transmission and distribution system and integration of smart devices. Cloud based smart grid can fulfill the storage requirement of unstructured and uncorrelated data generated by smart sensors as well as computational needs for self-healing, load balancing and demand response features. But, security issues such as confidentiality, integrity, availability, accountability and privacy need to be resolved for the development of smart grid cloud. In recent years, a number of intrusion prevention techniques have been proposed in the cloud, but hackers/intruders still manage to bypass the security of the cloud. Therefore, precise intrusion detection systems need to be developed in order to secure the critical information infrastructure like smart grid cloud. Considering the success of artificial neural networks in building robust intrusion detection, this research proposes an artificial neural network based model for detecting attacks in smart grid cloud.

Keywords: artificial neural networks, cloud computing, intrusion detection systems, security issues, smart grid

Procedia PDF Downloads 296
187 Environmental Conditions Simulation Device for Evaluating Fungal Growth on Wooden Surfaces

Authors: Riccardo Cacciotti, Jiri Frankl, Benjamin Wolf, Michael Machacek

Abstract:

Moisture fluctuations govern the occurrence of fungi-related problems in buildings, which may impose significant health risks for users and even lead to structural failures. Several numerical engineering models attempt to capture the complexity of mold growth on building materials. From real life observations, in cases with suppressed daily variations of boundary conditions, e.g. in crawlspaces, mold growth model predictions well correspond with the observed mold growth. On the other hand, in cases with substantial diurnal variations of boundary conditions, e.g. in the ventilated cavity of a cold flat roof, mold growth predicted by the models is significantly overestimated. This study, founded by the Grant Agency of the Czech Republic (GAČR 20-12941S), aims at gaining a better understanding of mold growth behavior on solid wood, under varying boundary conditions. In particular, the experimental investigation focuses on the response of mold to changing conditions in the boundary layer and its influence on heat and moisture transfer across the surface. The main results include the design and construction at the facilities of ITAM (Prague, Czech Republic) of an innovative device allowing for the simulation of changing environmental conditions in buildings. It consists of a square section closed circuit with rough dimensions 200 × 180 cm and cross section roughly 30 × 30 cm. The circuit is thermally insulated and equipped with an electric fan to control air flow inside the tunnel, a heat and humidity exchange unit to control the internal RH and variations in temperature. Several measuring points, including an anemometer, temperature and humidity sensor, a loading cell in the test section for recording mass changes, are provided to monitor the variations of parameters during the experiments. The research is ongoing and it is expected to provide the final results of the experimental investigation at the end of 2022.

Keywords: moisture, mold growth, testing, wood

Procedia PDF Downloads 107
186 Applications and Development of a Plug Load Management System That Automatically Identifies the Type and Location of Connected Devices

Authors: Amy Lebar, Kim L. Trenbath, Bennett Doherty, William Livingood

Abstract:

Plug and process loads (PPLs) account for 47% of U.S. commercial building energy use. There is a huge potential to reduce whole building consumption by targeting PPLs for energy savings measures or implementing some form of plug load management (PLM). Despite this potential, there has yet to be a widely adopted commercial PLM technology. This paper describes the Automatic Type and Location Identification System (ATLIS), a PLM system framework with automatic and dynamic load detection (ADLD). ADLD gives PLM systems the ability to automatically identify devices as they are plugged into the outlets of a building. The ATLIS framework takes advantage of smart, connected devices to identify device locations in a building, meter and control their power, and communicate this information to a central database. ATLIS includes five primary capabilities: location identification, communication, control, energy metering and data storage. A laboratory proof of concept (PoC) demonstrated all but the data storage capabilities and these capabilities were validated using an office building scenario. The PoC can identify when a device is plugged into an outlet and the location of the device in the building. When a device is moved, the PoC’s dashboard and database are automatically updated with the new location. The PoC implements controls to devices from the system dashboard so that devices maintain correct schedules regardless of where they are plugged in within a building. ATLIS’s primary technology application is improved PLM, but other applications include asset management, energy audits, and interoperability for grid-interactive efficient buildings. A system like ATLIS could also be used to direct power to critical devices, such as ventilators, during a brownout or blackout. Such a framework is an opportunity to make PLM more widespread and reduce the amount of energy consumed by PPLs in current and future commercial buildings.

Keywords: commercial buildings, grid-interactive efficient buildings (GEB), miscellaneous electric loads (MELs), plug loads, plug load management (PLM)

Procedia PDF Downloads 113
185 Effect of Roasting Temperature on the Proximate, Mineral and Antinutrient Content of Pigeon Pea (Cajanus cajan) Ready-to-Eat Snack

Authors: Olaide Ruth Aderibigbe, Oluwatoyin Oluwole

Abstract:

Pigeon pea is one of the minor leguminous plants; though underutilised, it is used traditionally by farmers to alleviate hunger and malnutrition. Pigeon pea is cultivated in Nigeria by subsistence farmers. It is rich in protein and minerals, however, its utilisation as food is only common among the poor and rural populace who cannot afford expensive sources of protein. One of the factors contributing to its limited use is the high antinutrient content which makes it indigestible, especially when eaten by children. The development of value-added products that can reduce the antinutrient content and make the nutrients more bioavailable will increase the utilisation of the crop and contribute to reduction of malnutrition. This research, therefore, determined the effects of different roasting temperatures (130 0C, 140 0C, and 150 0C) on the proximate, mineral and antinutrient component of a pigeon pea snack. The brown variety of pigeon pea seeds were purchased from a local market- Otto in Lagos, Nigeria. The seeds were cleaned, washed, and soaked in 50 ml of water containing sugar and salt (4:1) for 15 minutes, and thereafter the seeds were roasted at 130 0C, 140 0C, and 150 0C in an electric oven for 10 minutes. Proximate, minerals, phytate, tannin and alkaloid content analyses were carried out in triplicates following standard procedures. The results of the three replicates were polled and expressed as mean±standard deviation; a one-way analysis of variance (ANOVA) and the Least Significance Difference (LSD) were carried out. The roasting temperatures significantly (P<0.05) affected the protein, ash, fibre and carbohydrate content of the snack. Ready-to-eat snack prepared by roasting at 150 0C significantly had the highest protein (23.42±0.47%) compared the ones roasted at 130 0C and 140 0C (18.38±1.25% and 20.63±0.45%, respectively). The same trend was observed for the ash content (3.91±0.11 for 150 0C, 2.36±0.15 for 140 0C and 2.26±0.25 for 130 0C), while the fibre and carbohydrate contents were highest at roasting temperature of 130 0C. Iron, zinc, and calcium were not significantly (P<0.5) affected by the different roasting temperatures. Antinutrients decreased with increasing temperature. Phytate levels recorded were 0.02±0.00, 0.06±0.00, and 0.07±0.00 mg/g; tannin levels were 0.50±0.00, 0.57±0.00, and 0.68±0.00 mg/g, while alkaloids levels were 0.51±0.01, 0.78±0.01, and 0.82±0.01 mg/g for 150 0C, 140 0C, and 130 0C, respectively. These results show that roasting at high temperature (150 0C) can be utilised as a processing technique for increasing protein and decreasing antinutrient content of pigeon pea.

Keywords: antinutrients, pigeon pea, protein, roasting, underutilised species

Procedia PDF Downloads 114
184 Geological Structure Identification in Semilir Formation: An Correlated Geological and Geophysical (Very Low Frequency) Data for Zonation Disaster with Current Density Parameters and Geological Surface Information

Authors: E. M. Rifqi Wilda Pradana, Bagus Bayu Prabowo, Meida Riski Pujiyati, Efraim Maykhel Hagana Ginting, Virgiawan Arya Hangga Reksa

Abstract:

The VLF (Very Low Frequency) method is an electromagnetic method that uses low frequencies between 10-30 KHz which results in a fairly deep penetration. In this study, the VLF method was used for zonation of disaster-prone areas by identifying geological structures in the form of faults. Data acquisition was carried out in Trimulyo Region, Jetis District, Bantul Regency, Special Region of Yogyakarta, Indonesia with 8 measurement paths. This study uses wave transmitters from Japan and Australia to obtain Tilt and Elipt values that can be used to create RAE (Rapat Arus Ekuivalen or Current Density) sections that can be used to identify areas that are easily crossed by electric current. This section will indicate the existence of a geological structure in the form of faults in the study area which is characterized by a high RAE value. In data processing of VLF method, it is obtained Tilt vs Elliptical graph and Moving Average (MA) Tilt vs Moving Average (MA) Elipt graph of each path that shows a fluctuating pattern and does not show any intersection at all. Data processing uses Matlab software and obtained areas with low RAE values that are 0%-6% which shows medium with low conductivity and high resistivity and can be interpreted as sandstone, claystone, and tuff lithology which is part of the Semilir Formation. Whereas a high RAE value of 10% -16% which shows a medium with high conductivity and low resistivity can be interpreted as a fault zone filled with fluid. The existence of the fault zone is strengthened by the discovery of a normal fault on the surface with strike N550W and dip 630E at coordinates X= 433256 and Y= 9127722 so that the activities of residents in the zone such as housing, mining activities and other activities can be avoided to reduce the risk of natural disasters.

Keywords: current density, faults, very low frequency, zonation

Procedia PDF Downloads 151
183 Thermoelectric Cooler As A Heat Transfer Device For Thermal Conductivity Test

Authors: Abdul Murad Zainal Abidin, Azahar Mohd, Nor Idayu Arifin, Siti Nor Azila Khalid, Mohd Julzaha Zahari Mohamad Yusof

Abstract:

A thermoelectric cooler (TEC) is an electronic component that uses ‘peltier’ effect to create a temperature difference by transferring heat between two electrical junctions of two different types of materials. TEC can also be used for heating by reversing the electric current flow and even power generation. A heat flow meter (HFM) is an equipment for measuring thermal conductivity of building materials. During the test, water is used as heat transfer medium to cool the HFM. The existing re-circulating cooler in the market is very costly, and the alternative is to use piped tap water to extract heat from HFM. However, the tap water temperature is insufficiently low to enable heat transfer to take place. The operating temperature for isothermal plates in the HFM is 40°C with the range of ±0.02°C. When the temperature exceeds the operating range, the HFM stops working, and the test cannot be conducted. The aim of the research is to develop a low-cost but energy-efficient TEC prototype that enables heat transfer without compromising the function of the HFM. The objectives of the research are a) to identify potential of TEC as a cooling device by evaluating its cooling rate and b) to determine the amount of water savings using TEC compared to normal tap water. Four (4) peltier sets were used, with two (2) sets used as pre-cooler. The cooling water is re-circulated from the reservoir into HFM using a water pump. The thermal conductivity readings, the water flow rate, and the power consumption were measured while the HFM was operating. The measured data has shown decrease in average cooling temperature difference (ΔTave) of 2.42°C and average cooling rate of 0.031°C/min. The water savings accrued from using the TEC is projected to be 8,332.8 litres/year with the application of water re-circulation. The results suggest the prototype has achieved required objectives. Further research will include comparing the cooling rate of TEC prototype against conventional tap water and to optimize its design and performance in terms of size and portability. The possible application of the prototype could also be expanded to portable storage for medicine and beverages.

Keywords: energy efficiency, thermoelectric cooling, pre-cooling device, heat flow meter, sustainable technology, thermal conductivity

Procedia PDF Downloads 138
182 Renewable Energy and Hydrogen On-Site Generation for Drip Irrigation and Agricultural Machinery

Authors: Javier Carroquino, Nieves García-Casarejos, Pilar Gargallo, F. Javier García-Ramos

Abstract:

The energy used in agriculture is a source of global emissions of greenhouse gases. The two main types of this energy are electricity for pumping and diesel for agricultural machinery. In order to reduce these emissions, the European project LIFE REWIND addresses the supply of this demand from renewable sources. First of all, comprehensive data on energy demand and available renewable resources have been obtained in several case studies. Secondly, a set of simulations and optimizations have been performed, in search of the best configuration and sizing, both from an economic and emission reduction point of view. For this purpose, it was used software based on genetic algorithms. Thirdly, a prototype has been designed and installed, that it is being used for the validation in a real case. Finally, throughout a year of operation, various technical and economic parameters are being measured for further analysis. The prototype is not connected to the utility grid, avoiding the cost and environmental impact of a grid extension. The system includes three kinds of photovoltaic fields. One is located on a fixed structure on the terrain. Another one is floating on an irrigation raft. The last one is mounted on a two axis solar tracker. Each has its own solar inverter. The total amount of nominal power is 44 kW. A lead acid battery with 120 kWh of capacity carries out the energy storage. Three isolated inverters support a three phase, 400 V 50 Hz micro-grid, the same characteristics of the utility grid. An advanced control subsystem has been constructed, using free hardware and software. The electricity produced feeds a set of seven pumps used for purification, elevation and pressurization of water in a drip irrigation system located in a vineyard. Since the irrigation season does not include the whole year, as well as a small oversize of the generator, there is an amount of surplus energy. With this surplus, a hydrolyser produces on site hydrogen by electrolysis of water. An off-road vehicle with fuel cell feeds on that hydrogen and carries people in the vineyard. The only emission of the process is high purity water. On the one hand, the results show the technical and economic feasibility of stand-alone renewable energy systems to feed seasonal pumping. In this way, the economic costs, the environmental impacts and the landscape impacts of grid extensions are avoided. The use of diesel gensets and their associated emissions are also avoided. On the other hand, it is shown that it is possible to replace diesel in agricultural machinery, substituting it for electricity or hydrogen of 100% renewable origin and produced on the farm itself, without any external energy input. In addition, it is expected to obtain positive effects on the rural economy and employment, which will be quantified through interviews.

Keywords: drip irrigation, greenhouse gases, hydrogen, renewable energy, vineyard

Procedia PDF Downloads 323
181 A LED Warning Vest as Safety Smart Textile and Active Cooperation in a Working Group for Building a Normative Standard

Authors: Werner Grommes

Abstract:

The institute of occupational safety and health works in a working group for building a normative standard for illuminated warning vests and did a lot of experiments and measurements as basic work (cooperation). Intelligent car headlamps are able to suppress conventional warning vests with retro-reflective stripes as a disturbing light. Illuminated warning vests are therefore required for occupational safety. However, they must not pose any danger to the wearer or other persons. Here, the risks of the batteries (lithium types), the maximum brightness (glare) and possible interference radiation from the electronics on the implant carrier must be taken into account. The all-around visibility, as well as the required range, play an important role here. For the study, many luminance measurements of already commercially available LEDs and electroluminescent warning vests, as well as their electromagnetic interference fields and aspects of electrical safety, were measured. The results of this study showed that LED lighting is all far too bright and causes strong glare. The integrated controls with pulse modulation and switching regulators cause electromagnetic interference fields. Rechargeable lithium batteries can explode depending on the temperature range. Electroluminescence brings even more hazards. A test method was developed for the evaluation of visibility at distances of 50, 100, and 150 m, including the interview of test persons. A measuring method was developed for the detection of glare effects at close range with the assignment of the maximum permissible luminance. The electromagnetic interference fields were tested in the time and frequency ranges. A risk and hazard analysis were prepared for the use of lithium batteries. The range of values for luminance and risk analysis for lithium batteries were discussed in the standards working group. These will be integrated into the standard. This paper gives a brief overview of the topics of illuminated warning vests, which takes into account the risks and hazards for the vest wearer or others

Keywords: illuminated warning vest, optical tests and measurements, risks, hazards, optical glare effects, LED, E-light, electric luminescent

Procedia PDF Downloads 92
180 Life Cycle Assessment of Biogas Energy Production from a Small-Scale Wastewater Treatment Plant in Central Mexico

Authors: Joel Bonales, Venecia Solorzano, Carlos Garcia

Abstract:

A great percentage of the wastewater generated in developing countries don’t receive any treatment, which leads to numerous environmental impacts. In response to this, a paradigm change in the current wastewater treatment model based on large scale plants towards a small and medium scale based model has been proposed. Nevertheless, small scale wastewater treatment (SS-WTTP) with novel technologies such as anaerobic digesters, as well as the utilization of derivative co-products such as biogas, still presents diverse environmental impacts which must be assessed. This study consisted in a Life Cycle Assessment (LCA) performed to a SS-WWTP which treats wastewater from a small commercial block in the city of Morelia, Mexico. The treatment performed in the SS-WWTP consists in anaerobic and aerobic digesters with a daily capacity of 5,040 L. Two different scenarios were analyzed: the current plant conditions and a hypothetical energy use of biogas obtained in situ. Furthermore, two different allocation criteria were applied: full impact allocation to the system’s main product (treated water) and substitution credits for replacing Mexican grid electricity (biogas) and clean water pumping (treated water). The results showed that the analyzed plant had bigger impacts than what has been reported in the bibliography in the basis of wastewater volume treated, which may imply that this plant is currently operating inefficiently. The evaluated impacts appeared to be focused in the aerobic digestion and electric generation phases due to the plant’s particular configuration. Additional findings prove that the allocation criteria applied is crucial for the interpretation of impacts and that that the energy use of the biogas obtained in this plant can help mitigate associated climate change impacts. It is concluded that SS-WTTP is a environmentally sound alternative for wastewater treatment from a systemic perspective. However, this type of studies must be careful in the selection of the allocation criteria and replaced products, since these factors have a great influence in the results of the assessment.

Keywords: biogas, life cycle assessment, small scale treatment, wastewater treatment

Procedia PDF Downloads 101
179 Performance Assessment of Horizontal Axis Tidal Turbine with Variable Length Blades

Authors: Farhana Arzu, Roslan Hashim

Abstract:

Renewable energy is the only alternative sources of energy to meet the current energy demand, healthy environment and future growth which is considered essential for essential sustainable development. Marine renewable energy is one of the major means to meet this demand. Turbines (both horizontal and vertical) play a vital role for extraction of tidal energy. The influence of swept area on the performance improvement of tidal turbine is a vital factor to study for the reduction of relatively high power generation cost in marine industry. This study concentrates on performance investigation of variable length blade tidal turbine concept that has already been proved as an efficient way to improve energy extraction in the wind industry. The concept of variable blade length utilizes the idea of increasing swept area through the turbine blade extension when the tidal stream velocity falls below the rated condition to maximize energy capture while blade retracts above rated condition. A three bladed horizontal axis variable length blade horizontal axis tidal turbine was modelled by modifying a standard fixed length blade turbine. Classical blade element momentum theory based numerical investigation has been carried out using QBlade software to predict performance. The results obtained from QBlade were compared with the available published results and found very good agreement. Three major performance parameters (i.e., thrust, moment, and power coefficients) and power output for different blade extensions were studied and compared with a standard fixed bladed baseline turbine at certain operational conditions. Substantial improvement in performance coefficient is observed with the increase in swept area of the turbine rotor. Power generation is found to increase in great extent when operating at below rated tidal stream velocity reducing the associated cost per unit electric power generation.

Keywords: variable length blade, performance, tidal turbine, power generation

Procedia PDF Downloads 252
178 Computational Study of Composite Films

Authors: Rudolf Hrach, Stanislav Novak, Vera Hrachova

Abstract:

Composite and nanocomposite films represent the class of promising materials and are often objects of the study due to their mechanical, electrical and other properties. The most interesting ones are probably the composite metal/dielectric structures consisting of a metal component embedded in an oxide or polymer matrix. Behaviour of composite films varies with the amount of the metal component inside what is called filling factor. The structures contain individual metal particles or nanoparticles completely insulated by the dielectric matrix for small filling factors and the films have more or less dielectric properties. The conductivity of the films increases with increasing filling factor and finally a transition into metallic state occurs. The behaviour of composite films near a percolation threshold, where the change of charge transport mechanism from a thermally-activated tunnelling between individual metal objects to an ohmic conductivity is observed, is especially important. Physical properties of composite films are given not only by the concentration of metal component but also by the spatial and size distributions of metal objects which are influenced by a technology used. In our contribution, a study of composite structures with the help of methods of computational physics was performed. The study consists of two parts: -Generation of simulated composite and nanocomposite films. The techniques based on hard-sphere or soft-sphere models as well as on atomic modelling are used here. Characterizations of prepared composite structures by image analysis of their sections or projections follow then. However, the analysis of various morphological methods must be performed as the standard algorithms based on the theory of mathematical morphology lose their sensitivity when applied to composite films. -The charge transport in the composites was studied by the kinetic Monte Carlo method as there is a close connection between structural and electric properties of composite and nanocomposite films. It was found that near the percolation threshold the paths of tunnel current forms so-called fuzzy clusters. The main aim of the present study was to establish the correlation between morphological properties of composites/nanocomposites and structures of conducting paths in them in the dependence on the technology of composite films.

Keywords: composite films, computer modelling, image analysis, nanocomposite films

Procedia PDF Downloads 366
177 Assessment and Optimisation of Building Services Electrical Loads for Off-Grid or Hybrid Operation

Authors: Desmond Young

Abstract:

In building services electrical design, a key element of any project will be assessing the electrical load requirements. This needs to be done early in the design process to allow the selection of infrastructure that would be required to meet the electrical needs of the type of building. The type of building will define the type of assessment made, and the values applied in defining the maximum demand for the building, and ultimately the size of supply or infrastructure required, and the application that needs to be made to the distribution network operator, or alternatively to an independent network operator. The fact that this assessment needs to be undertaken early in the design process provides limits on the type of assessment that can be used, as different methods require different types of information, and sometimes this information is not available until the latter stages of a project. A common method applied in the earlier design stages of a project, typically during stages 1,2 & 3, is the use of benchmarks. It is a possibility that some of the benchmarks applied are excessive in relation to the current loads that exist in a modern installation. This lack of accuracy is based on information which does not correspond to the actual equipment loads that are used. This includes lighting and small power loads, where the use of more efficient equipment and lighting has reduced the maximum demand required. The electrical load can be used as part of the process to assess the heat generated from the equipment, with the heat gains from other sources, this feeds into the sizing of the infrastructure required to cool the building. Any overestimation of the loads would contribute to the increase in the design load for the heating and ventilation systems. Finally, with the new policies driving the industry to decarbonise buildings, a prime example being the recently introduced London Plan, loads are potentially going to increase. In addition, with the advent of the pandemic and changes to working practices, and the adoption of electric heating and vehicles, a better understanding of the loads that should be applied will aid in ensuring that infrastructure is not oversized, as a cost to the client, or undersized to the detriment of the building. In addition, more accurate benchmarks and methods will allow assessments to be made for the incorporation of energy storage and renewable technologies as these technologies become more common in buildings new or refurbished.

Keywords: energy, ADMD, electrical load assessment, energy benchmarks

Procedia PDF Downloads 83
176 A Simplified, Low-Cost Mechanical Design for an Automated Motorized Mechanism to Clean Large Diameter Pipes

Authors: Imad Khan, Imran Shafi, Sarmad Farooq

Abstract:

Large diameter pipes, barrels, tubes, and ducts are used in a variety of applications covering civil and defense-related technologies. This may include heating/cooling networks, sign poles, bracing, casing, and artillery and tank gun barrels. These large diameter assemblies require regular inspection and cleaning to increase their life and reduce replacement costs. This paper describes the design, development, and testing results of an efficient yet simplified, low maintenance mechanical design controlled with minimal essential electronics using an electric motor for a non-technical staff. The proposed solution provides a simplified user interface and an automated cleaning mechanism that requires a single user to optimally clean pipes and barrels in the range of 105 mm to 203 mm caliber. The proposed system employs linear motion of specially designed brush along the barrel using a chain of specific strength and a pulley anchor attached to both ends of the barrel. A specially designed and manufactured gearbox is coupled with an AC motor to allow movement of contact brush with high torque to allow efficient cleaning. A suitably powered AC motor is fixed to the front adapter mounted on the muzzle side whereas the rear adapter has a pulley-based anchor mounted towards the breach block in case of a gun barrel. A mix of soft nylon and hard copper bristles-based large surface brush is connected through a strong steel chain to motor and anchor pulley. The system is equipped with limit switches to auto switch the direction when one end is reached on its operation. The testing results based on carefully established performance indicators indicate the superiority of the proposed user-friendly cleaning mechanism vis-à-vis its life cycle cost.

Keywords: pipe cleaning mechanism, limiting switch, pipe cleaning robot, large pipes

Procedia PDF Downloads 85
175 Carbon Aerogels with Tailored Porosity as Cathode in Li-Ion Capacitors

Authors: María Canal-Rodríguez, María Arnaiz, Natalia Rey-Raap, Ana Arenillas, Jon Ajuria

Abstract:

The constant demand of electrical energy, as well as the increase in environmental concern, lead to the necessity of investing in clean and eco-friendly energy sources that implies the development of enhanced energy storage devices. Li-ion batteries (LIBs) and Electrical double layer capacitors (EDLCs) are the most widespread energy systems. Batteries are able to storage high energy densities contrary to capacitors, which main strength is the high-power density supply and the long cycle life. The combination of both technologies gave rise to Li-ion capacitors (LICs), which offers all these advantages in a single device. This is achieved combining a capacitive, supercapacitor-like positive electrode with a faradaic, battery-like negative electrode. Due to the abundance and affordability, dual carbon-based LICs are nowadays the common technology. Normally, an Active Carbon (AC) is used as the EDLC like electrode, while graphite is the material commonly employed as anode. LICs are potential systems to be used in applications in which high energy and power densities are required, such us kinetic energy recovery systems. Although these devices are already in the market, some drawbacks like the limited power delivered by graphite or the energy limiting nature of AC must be solved to trigger their used. Focusing on the anode, one possibility could be to replace graphite with Hard Carbon (HC). The better rate capability of the latter increases the power performance of the device. Moreover, the disordered carbonaceous structure of HCs enables storage twice the theoretical capacity of graphite. With respect to the cathode, the ACs are characterized for their high volume of micropores, in which the charge is storage. Nevertheless, they normally do not show mesoporous, which are really important mainly at high C-rates as they act as transport channels for the ions to reach the micropores. Usually, the porosity of ACs cannot be tailored, as it strongly depends on the precursor employed to get the final carbon. Moreover, they are not characterized for having a high electrical conductivity, which is an important characteristic to get a good performance in energy storage applications. A possible candidate to substitute ACs are carbon aerogels (CAs). CAs are materials that combine a high porosity with great electrical conductivity, opposite characteristics in carbon materials. Furthermore, its porous properties can be tailored quite accurately according to with the requirements of the application. In the present study, CAs with controlled porosity were obtained from polymerization of resorcinol and formaldehyde by microwave heating. Varying the synthesis conditions, mainly the amount of precursors and pH of the precursor solution, carbons with different textural properties were obtained. The way the porous characteristics affect the performance of the cathode was studied by means of a half-cell configuration. The material with the best performance was evaluated as cathode in a LIC versus a hard carbon as anode. An analogous full LIC made by a high microporous commercial cathode was also assembled for comparison purposes.

Keywords: li-ion capacitors, energy storage, tailored porosity, carbon aerogels

Procedia PDF Downloads 138
174 Modelling Tyre Rubber Materials for High Frequency FE Analysis

Authors: Bharath Anantharamaiah, Tomas Bouda, Elke Deckers, Stijn Jonckheere, Wim Desmet, Juan J. Garcia

Abstract:

Automotive tyres are gaining importance recently in terms of their noise emission, not only with respect to reduction in noise, but also their perception and detection. Tyres exhibit a mechanical noise generation mechanism up to 1 kHz. However, owing to the fact that tyre is a composite of several materials, it has been difficult to model it using finite elements to predict noise at high frequencies. The currently available FE models have a reliability of about 500 Hz, the limit which, however, is not enough to perceive the roughness or sharpness of noise from tyre. These noise components are important in order to alert pedestrians on the street about passing by slow, especially electric vehicles. In order to model tyre noise behaviour up to 1 kHz, its dynamic behaviour must be accurately developed up to a 1 kHz limit using finite elements. Materials play a vital role in modelling the dynamic tyre behaviour precisely. Since tyre is a composition of several components, their precise definition in finite element simulations is necessary. However, during the tyre manufacturing process, these components are subjected to various pressures and temperatures, due to which these properties could change. Hence, material definitions are better described based on the tyre responses. In this work, the hyperelasticity of tyre component rubbers is calibrated, using the design of experiments technique from the tyre characteristic responses that are measured on a stiffness measurement machine. The viscoelasticity of rubbers are defined by the Prony series for rubbers, which are determined from the loss factor relationship between the loss and storage moduli, assuming that the rubbers are excited within the linear viscoelasticity ranges. These values of loss factor are measured and theoretically expressed as a function of rubber shore hardness or hyperelasticities. From the results of the work, there exists a good correlation between test and simulation vibrational transfer function up to 1 kHz. The model also allows flexibility, i.e., the frequency limit can also be extended, if required, by calibrating the Prony parameters of rubbers corresponding to the frequency of interest. As future work, these tyre models are used for noise generation at high frequencies and thus for tyre noise perception.

Keywords: tyre dynamics, rubber materials, prony series, hyperelasticity

Procedia PDF Downloads 169
173 Neuropsychological Aspects in Adolescents Victims of Sexual Violence with Post-Traumatic Stress Disorder

Authors: Fernanda Mary R. G. Da Silva, Adriana C. F. Mozzambani, Marcelo F. Mello

Abstract:

Introduction: Sexual assault against children and adolescents is a public health problem with serious consequences on their quality of life, especially for those who develop post-traumatic stress disorder (PTSD). The broad literature in this research area points to greater losses in verbal learning, explicit memory, speed of information processing, attention and executive functioning in PTSD. Objective: To compare the neuropsychological functions of adolescents from 14 to 17 years of age, victims of sexual violence with PTSD with those of healthy controls. Methodology: Application of a neuropsychological battery composed of the following subtests: WASI vocabulary and matrix reasoning; Digit subtests (WISC-IV); verbal auditory learning test RAVLT; Spatial Span subtest of the WMS - III scale; abbreviated version of the Wisconsin test; concentrated attention test - D2; prospective memory subtest of the NEUPSILIN scale; five-digit test - FDT and the Stroop test (Trenerry version) in adolescents with a history of sexual violence in the previous six months, referred to the Prove (Violence Care and Research Program of the Federal University of São Paulo), for further treatment. Results: The results showed a deficit in the word coding process in the RAVLT test, with impairment in A3 (p = 0.004) and A4 (p = 0.016) measures, which compromises the verbal learning process (p = 0.010) and the verbal recognition memory (p = 0.012), seeming to present a worse performance in the acquisition of verbal information that depends on the support of the attentional system. A worse performance was found in list B (p = 0.047), a lower priming effect p = 0.026, that is, lower evocation index of the initial words presented and less perseveration (p = 0.002), repeated words. Therefore, there seems to be a failure in the creation of strategies that help the mnemonic process of retention of the verbal information necessary for learning. Sustained attention was found to be impaired, with greater loss of setting in the Wisconsin test (p = 0.023), a lower rate of correct responses in stage C of the Stroop test (p = 0.023) and, consequently, a higher index of erroneous responses in C of the Stroop test (p = 0.023), besides more type II errors in the D2 test (p = 0.008). A higher incidence of total errors was observed in the reading stage of the FDT test p = 0.002, which suggests fatigue in the execution of the task. Performance is compromised in executive functions in the cognitive flexibility ability, suggesting a higher index of total errors in the alternating step of the FDT test (p = 0.009), as well as a greater number of persevering errors in the Wisconsin test (p = 0.004). Conclusion: The data from this study suggest that sexual violence and PTSD cause significant impairment in the neuropsychological functions of adolescents, evidencing risk to quality of life in stages that are fundamental for the development of learning and cognition.

Keywords: adolescents, neuropsychological functions, PTSD, sexual violence

Procedia PDF Downloads 109
172 Simplified Modelling of Visco-Elastic Fluids for Use in Recoil Damping Systems

Authors: Prasad Pokkunuri

Abstract:

Visco-elastic materials combine the stress response properties of both solids and fluids and have found use in a variety of damping applications – both vibrational and acoustic. Defense and automotive applications, in particular, are subject to high impact and shock loading – for example: aircraft landing gear, firearms, and shock absorbers. Field responsive fluids – a class of smart materials – are the preferred choice of energy absorbents because of their controllability. These fluids’ stress response can be controlled by the application of a magnetic or electric field, in a closed loop. Their rheological properties – elasticity, plasticity, and viscosity – can be varied all the way from that of a liquid such as water to a hard solid. This work presents a simplified model to study the impulse response behavior of such fluids for use in recoil damping systems. The well-known Burger’s equation, in conjunction with various visco-elastic constitutive models, is used to represent fluid behavior. The Kelvin-Voigt, Upper Convected Maxwell (UCM), and Oldroyd-B constitutive models are implemented in this study. Using these models in a one-dimensional framework eliminates additional complexities due to geometry, pressure, body forces, and other source terms. Using a finite difference formulation to numerically solve the governing equation(s), the response to an initial impulse is studied. The disturbance is confined within the problem domain with no-inflow, no-outflow boundary conditions, and its decay characteristics studied. Visco-elastic fluids typically involve a time-dependent stress relaxation which gives rise to interesting behavior when subjected to an impulsive load. For particular values of viscous damping and elastic modulus, the fluid settles into a stable oscillatory state, absorbing and releasing energy without much decay. The simplified formulation enables a comprehensive study of different modes of system response, by varying relevant parameters. Using the insights gained from this study, extension to a more detailed multi-dimensional model is considered.

Keywords: Burgers Equation, Impulse Response, Recoil Damping Systems, Visco-elastic Fluids

Procedia PDF Downloads 272
171 Understanding the Lithiation/Delithiation Mechanism of Si₁₋ₓGeₓ Alloys

Authors: Laura C. Loaiza, Elodie Salager, Nicolas Louvain, Athmane Boulaoued, Antonella Iadecola, Patrik Johansson, Lorenzo Stievano, Vincent Seznec, Laure Monconduit

Abstract:

Lithium-ion batteries (LIBs) have an important place among energy storage devices due to their high capacity and good cyclability. However, the advancements in portable and transportation applications have extended the research towards new horizons, and today the development is hampered, e.g., by the capacity of the electrodes employed. Silicon and germanium are among the considered modern anode materials as they can undergo alloying reactions with lithium while delivering high capacities. It has been demonstrated that silicon in its highest lithiated state can deliver up to ten times more capacity than graphite (372 mAh/g): 4200 mAh/g for Li₂₂Si₅ and 3579 mAh/g for Li₁₅Si₄, respectively. On the other hand, germanium presents a capacity of 1384 mAh/g for Li₁₅Ge₄, and a better electronic conductivity and Li ion diffusivity as compared to Si. Nonetheless, the commercialization potential of Ge is limited by its cost. The synergetic effect of Si₁₋ₓGeₓ alloys has been proven, the capacity is increased compared to Ge-rich electrodes and the capacity retention is increased compared to Si-rich electrodes, but the exact performance of this type of electrodes will depend on factors like specific capacity, C-rates, cost, etc. There are several reports on various formulations of Si₁₋ₓGeₓ alloys with promising LIB anode performance with most work performed on complex nanostructures resulting from synthesis efforts implying high cost. In the present work, we studied the electrochemical mechanism of the Si₀.₅Ge₀.₅ alloy as a realistic micron-sized electrode formulation using carboxymethyl cellulose (CMC) as the binder. A combination of a large set of in situ and operando techniques were employed to investigate the structural evolution of Si₀.₅Ge₀.₅ during lithiation and delithiation processes: powder X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), Raman spectroscopy, and 7Li solid state nuclear magnetic resonance spectroscopy (NMR). The results have presented a whole view of the structural modifications induced by the lithiation/delithiation processes. The Si₀.₅Ge₀.₅ amorphization was observed at the beginning of discharge. Further lithiation induces the formation of a-Liₓ(Si/Ge) intermediates and the crystallization of Li₁₅(Si₀.₅Ge₀.₅)₄ at the end of the discharge. At really low voltages a reversible process of overlithiation and formation of Li₁₅₊δ(Si₀.₅Ge₀.₅)₄ was identified and related with a structural evolution of Li₁₅(Si₀.₅Ge₀.₅)₄. Upon charge, the c-Li₁₅(Si₀.₅Ge₀.₅)₄ was transformed into a-Liₓ(Si/Ge) intermediates. At the end of the process an amorphous phase assigned to a-SiₓGey was recovered. Thereby, it was demonstrated that Si and Ge are collectively active along the cycling process, upon discharge with the formation of a ternary Li₁₅(Si₀.₅Ge₀.₅)₄ phase (with a step of overlithiation) and upon charge with the rebuilding of the a-Si-Ge phase. This process is undoubtedly behind the enhanced performance of Si₀.₅Ge₀.₅ compared to a physical mixture of Si and Ge.

Keywords: lithium ion battery, silicon germanium anode, in situ characterization, X-Ray diffraction

Procedia PDF Downloads 260
170 The Estimation Method of Stress Distribution for Beam Structures Using the Terrestrial Laser Scanning

Authors: Sang Wook Park, Jun Su Park, Byung Kwan Oh, Yousok Kim, Hyo Seon Park

Abstract:

This study suggests the estimation method of stress distribution for the beam structures based on TLS (Terrestrial Laser Scanning). The main components of method are the creation of the lattices of raw data from TLS to satisfy the suitable condition and application of CSSI (Cubic Smoothing Spline Interpolation) for estimating stress distribution. Estimation of stress distribution for the structural member or the whole structure is one of the important factors for safety evaluation of the structure. Existing sensors which include ESG (Electric strain gauge) and LVDT (Linear Variable Differential Transformer) can be categorized as contact type sensor which should be installed on the structural members and also there are various limitations such as the need of separate space where the network cables are installed and the difficulty of access for sensor installation in real buildings. To overcome these problems inherent in the contact type sensors, TLS system of LiDAR (light detection and ranging), which can measure the displacement of a target in a long range without the influence of surrounding environment and also get the whole shape of the structure, has been applied to the field of structural health monitoring. The important characteristic of TLS measuring is a formation of point clouds which has many points including the local coordinate. Point clouds is not linear distribution but dispersed shape. Thus, to analyze point clouds, the interpolation is needed vitally. Through formation of averaged lattices and CSSI for the raw data, the method which can estimate the displacement of simple beam was developed. Also, the developed method can be extended to calculate the strain and finally applicable to estimate a stress distribution of a structural member. To verify the validity of the method, the loading test on a simple beam was conducted and TLS measured it. Through a comparison of the estimated stress and reference stress, the validity of the method is confirmed.

Keywords: structural healthcare monitoring, terrestrial laser scanning, estimation of stress distribution, coordinate transformation, cubic smoothing spline interpolation

Procedia PDF Downloads 409
169 Improving Fingerprinting-Based Localization System Using Generative AI

Authors: Getaneh Berie Tarekegn, Li-Chia Tai

Abstract:

With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarms, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 14
168 Material Handling Equipment Selection Using Fuzzy AHP Approach

Authors: Priyanka Verma, Vijaya Dixit, Rishabh Bajpai

Abstract:

This research paper is aimed at selecting appropriate material handling equipment among the given choices so that the automation level in material handling can be enhanced. This work is a practical case scenario of material handling systems in consumer electronic appliances manufacturing organization. The choices of material handling equipment among which the decision has to be made are Automated Guided Vehicle’s (AGV), Autonomous Mobile Robots (AMR), Overhead Conveyer’s (OC) and Battery Operated Trucks/Vehicle’s (BOT). There is a need of attaining a certain level of automation in order to reduce human interventions in the organization. This requirement of achieving certain degree of automation can be attained by material handling equipment’s mentioned above. The main motive for selecting above equipment’s for study was solely based on corporate financial strategy of investment and return obtained through that investment made in stipulated time framework. Since the low cost automation with respect to material handling devices has to be achieved hence these equipment’s were selected. Investment to be done on each unit of this equipment is less than 20 lakh rupees (INR) and the recovery period is less than that of five years. Fuzzy analytic hierarchic process (FAHP) is applied here for selecting equipment where the four choices are evaluated on basis of four major criteria’s and 13 sub criteria’s, and are prioritized on the basis of weight obtained. The FAHP used here make use of triangular fuzzy numbers (TFN). The inability of the traditional AHP in order to deal with the subjectiveness and impreciseness in the pair-wise comparison process has been improved in the FAHP. The range of values for general rating purposes for all decision making parameters is kept between 0 and 1 on the basis of expert opinions captured on shop floor. These experts were familiar with operating environment and shop floor activity control. Instead of generating exact value the FAHP generates the ranges of values to accommodate the uncertainty in decision-making process. The four major criteria’s selected for the evaluation of choices of material handling equipment’s available are materials, technical capabilities, cost and other features. The thirteen sub criteria’s listed under these following four major criteria’s are weighing capacity, load per hour, material compatibility, capital cost, operating cost and maintenance cost, speed, distance moved, space required, frequency of trips, control required, safety and reliability issues. The key finding shows that among the four major criteria selected, cost is emerged as the most important criteria and is one of the key decision making aspect on the basis of which material equipment selection is based on. While further evaluating the choices of equipment available for each sub criteria it is found that AGV scores the highest weight in most of the sub-criteria’s. On carrying out complete analysis the research shows that AGV is the best material handling equipment suiting all decision criteria’s selected in FAHP and therefore it is beneficial for the organization to carry out automated material handling in the facility using AGV’s.

Keywords: fuzzy analytic hierarchy process (FAHP), material handling equipment, subjectiveness, triangular fuzzy number (TFN)

Procedia PDF Downloads 413
167 A System for Preventing Inadvertent Exposition of Staff Present outside the Operating Theater: Description and Clinical Test

Authors: Aya Al Masri, Kamel Guerchouche, Youssef Laynaoui, Safoin Aktaou, Malorie Martin, Fouad Maaloul

Abstract:

Introduction: Mobile C-arms move throughout operating rooms of the operating theater. Being designed to move between rooms, they are not equipped with relays to retrieve the exposition information and export it outside the room. Therefore, no light signaling is available outside the room to warn the X-ray emission for staff. Inadvertent exposition of staff outside the operating theater is a real problem for radiation protection. The French standard NFC 15-160 require that: (1) access to any room containing an X-ray emitting device must be controlled by a light signage so that it cannot be inadvertently crossed, and (2) setting up an emergency button to stop the X-ray emission. This study presents a system that we developed to meet these requirements and the results of its clinical test. Materials and methods: The system is composed of two communicating boxes: o The "DetectBox" is to be installed inside the operating theater. It identifies the various operation states of the C-arm by analyzing its power supply signal. The DetectBox communicates (in wireless mode) with the second box (AlertBox). o The "AlertBox" can operate in socket or battery mode and is to be installed outside the operating theater. It detects and reports the state of the C-arm by emitting a real time light signal. This latter can have three different colors: red when the C-arm is emitting X-rays, orange when it is powered on but does not emit X-rays, and green when it is powered off. The two boxes communicate on a radiofrequency link exclusively carried out in the ‘Industrial, Scientific and Medical (ISM)’ frequency bands and allows the coexistence of several on-site warning systems without communication conflicts (interference). Taking into account the complexity of performing electrical works in the operating theater (for reasons of hygiene and continuity of medical care), this system (having a size <10 cm²) works in complete safety without any intrusion in the mobile C-arm and does not require specific electrical installation work. The system is equipped with emergency button that stops X-ray emission. The system has been clinically tested. Results: The clinical test of the system shows that: it detects X-rays having both high and low energy (50 – 150 kVp), high and low photon flow (0.5 – 200 mA: even when emitted for a very short time (<1 ms)), Probability of false detection < 10-5, it operates under all acquisition modes (continuous, pulsed, fluoroscopy mode, image mode, subtraction and movie mode), it is compatible with all C-arm models and brands. We have also tested the communication between the two boxes (DetectBox and AlertBox) in several conditions: (1) Unleaded room, (2) leaded room, and (3) rooms with particular configuration (sas, great distances, concrete walls, 3 mm of lead). The result of these last tests was positive. Conclusion: This system is a reliable tool to alert the staff present outside the operating room for X-ray emission and insure their radiation protection.

Keywords: Clinical test, Inadvertent staff exposition, Light signage, Operating theater

Procedia PDF Downloads 102
166 Central Energy Management for Optimizing Utility Grid Power Exchange with a Network of Smart Homes

Authors: Sima Aznavi, Poria Fajri, Hanif Livani

Abstract:

Smart homes are small energy systems which may be equipped with renewable energy sources, storage devices, and loads. Energy management strategy plays a main role in the efficient operation of smart homes. Effective energy scheduling of the renewable energy sources and storage devices guarantees efficient energy management in households while reducing the energy imports from the grid. Nevertheless, despite such strategies, independently day ahead energy schedules for multiple households can cause undesired effects such as high power exchange with the grid at certain times of the day. Therefore, the interactions between multiple smart home day ahead energy projections is a challenging issue in a smart grid system and if not managed appropriately, the imported energy from the power network can impose additional burden on the distribution grid. In this paper, a central energy management strategy for a network consisting of multiple households each equipped with renewable energy sources, storage devices, and Plug-in Electric Vehicles (PEV) is proposed. The decision-making strategy alongside the smart home energy management system, minimizes the energy purchase cost of the end users, while at the same time reducing the stress on the utility grid. In this approach, the smart home energy management system determines different operating scenarios based on the forecasted household daily load and the components connected to the household with the objective of minimizing the end user overall cost. Then, selected projections for each household that are within the same cost range are sent to the central decision-making system. The central controller then organizes the schedules to reduce the overall peak to average ratio of the total imported energy from the grid. To validate this approach simulations are carried out for a network of five smart homes with different load requirements and the results confirm that by applying the proposed central energy management strategy, the overall power demand from the grid can be significantly flattened. This is an effective approach to alleviate the stress on the network by distributing its energy to a network of multiple households over a 24- hour period.

Keywords: energy management, renewable energy sources, smart grid, smart home

Procedia PDF Downloads 220
165 Enhanced Performance of Supercapacitor Based on Boric Acid Doped Polyvinyl Alcohol-H₂SO₄ Gel Polymer Electrolyte System

Authors: Hamide Aydin, Banu Karaman, Ayhan Bozkurt, Umran Kurtan

Abstract:

Recently, Proton Conducting Gel Polymer Electrolytes (GPEs) have drawn much attention in supercapacitor applications due to their physical and electrochemical characteristics and stability conditions for low temperatures. In this research, PVA-H2SO4-H3BO3 GPE has been used for electric-double layer capacitor (EDLCs) application, in which electrospun free-standing carbon nanofibers are used as electrodes. Introduced PVA-H2SO4-H3BO3 GPE behaves as both separator and the electrolyte in the supercapacitor. Symmetric Swagelok cells including GPEs were assembled via using two electrode arrangements and the electrochemical properties were searched. Electrochemical performance studies demonstrated that PVA-H2SO4-H3BO3 GPE had a maximum specific capacitance (Cs) of 134 F g-1 and showed great capacitance retention (%100) after 1000 charge/discharge cycles. Furthermore, PVA-H2SO4-H3BO3 GPE yielded an energy density of 67 Wh kg-1 with a corresponding power density of 1000 W kg-1 at a current density of 1 A g-1. PVA-H2SO4 based polymer electrolyte was produced according to following procedure; Firstly, 1 g of commercial PVA was dissolved in distilled water at 90°C and stirred until getting transparent solution. This was followed by addition of the diluted H2SO4 (1 g of H2SO4 in a distilled water) to the solution to obtain PVA-H2SO4. PVA-H2SO4-H3BO3 based polymer electrolyte was produced by dissolving H3BO3 in hot distilled water and then inserted into the PVA-H2SO4 solution. The mole fraction was arranged to ¼ of the PVA repeating unit. After the stirring 2 h at RT, gel polymer electrolytes were obtained. The final electrolytes for supercapacitor testing included 20% of water in weight. Several blending combinations of PVA/H2SO4 and H3BO3 were studied to observe the optimized combination in terms of conductivity as well as electrolyte stability. As the amount of boric acid increased in the matrix, excess sulfuric acid was excluded due to cross linking, especially at lower solvent content. This resulted in the reduction of proton conductivity. Therefore, the mole fraction of H3BO3 was chosen as ¼ of PVA repeating unit. Within this optimized limits, the polymer electrolytes showed better conductivities as well as stability.

Keywords: electrical double layer capacitor, energy density, gel polymer electrolyte, ultracapacitor

Procedia PDF Downloads 187
164 Treating Complex Pain and Addictions with Bioelectrode Therapy: An Acupuncture Point Stimulus Method for Relieving Human Suffering

Authors: Les Moncrieff

Abstract:

In a world awash with potent opioids flaming an international crisis, the need to explore safe alternatives has never been more urgent. Bio-electrode Therapy is a novel adjunctive treatment method for relieving acute opioid withdrawal symptoms and many types of complex acute and chronic pain (often the underlying cause of opioid dependence). By combining the science of developmental bioelectricity with Traditional Chinese Medicine’s theory of meridians, rapid relief from pain is routinely being achieved in the clinical setting. Human body functions are dependent on electrical factors, and acupuncture points on the body are known to have higher electrical conductivity than surrounding skin tissue. When tiny gold- and silver-plated electrodes are secured to the skin at specific acupuncture points using established Chinese Medicine principles and protocols, an enhanced microcurrent and electrical field are created between the electrodes, influencing the entire meridian and connecting meridians. No external power source or electrical devices are required. Endogenous DC electric fields are an essential fundamental component for development, regeneration, and wound healing. Disruptions in the normal ion-charge in the meridians and circulation of blood will manifest as pain and development of disease. With the application of these simple electrodes (gold acting as cathode and silver as anode) according to protocols, the resulting microcurrent is directed along the selected meridians to target injured or diseased organs and tissues. When injured or diseased cells have been stimulated by the microcurrent and electrical fields, the permeability of the cell membrane is affected, resulting in an immediate relief of pain, a rapid balancing of positive and negative ions (sodium, potassium, etc.) in the cells, the restoration of intracellular fluid levels, replenishment of electrolyte levels, pH balance, removal of toxins, and a re-establishment of homeostasis.

Keywords: bioelectricity, electrodes, electrical fields, acupuncture meridians, complex pain, opioid withdrawal management

Procedia PDF Downloads 46
163 Improving Fingerprinting-Based Localization (FPL) System Using Generative Artificial Intelligence (GAI)

Authors: Getaneh Berie Tarekegn, Li-Chia Tai

Abstract:

With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 18
162 Seismic Response of Structure Using a Three Degree of Freedom Shake Table

Authors: Ketan N. Bajad, Manisha V. Waghmare

Abstract:

Earthquakes are the biggest threat to the civil engineering structures as every year it cost billions of dollars and thousands of deaths, around the world. There are various experimental techniques such as pseudo-dynamic tests – nonlinear structural dynamic technique, real time pseudo dynamic test and shaking table test method that can be employed to verify the seismic performance of structures. Shake table is a device that is used for shaking structural models or building components which are mounted on it. It is a device that simulates a seismic event using existing seismic data and nearly truly reproducing earthquake inputs. This paper deals with the use of shaking table test method to check the response of structure subjected to earthquake. The various types of shake table are vertical shake table, horizontal shake table, servo hydraulic shake table and servo electric shake table. The goal of this experiment is to perform seismic analysis of a civil engineering structure with the help of 3 degree of freedom (i.e. in X Y Z direction) shake table. Three (3) DOF shaking table is a useful experimental apparatus as it imitates a real time desired acceleration vibration signal for evaluating and assessing the seismic performance of structure. This study proceeds with the proper designing and erection of 3 DOF shake table by trial and error method. The table is designed to have a capacity up to 981 Newton. Further, to study the seismic response of a steel industrial building, a proportionately scaled down model is fabricated and tested on the shake table. The accelerometer is mounted on the model, which is used for recording the data. The experimental results obtained are further validated with the results obtained from software. It is found that model can be used to determine how the structure behaves in response to an applied earthquake motion, but the model cannot be used for direct numerical conclusions (such as of stiffness, deflection, etc.) as many uncertainties involved while scaling a small-scale model. The model shows modal forms and gives the rough deflection values. The experimental results demonstrate shake table as the most effective and the best of all methods available for seismic assessment of structure.

Keywords: accelerometer, three degree of freedom shake table, seismic analysis, steel industrial shed

Procedia PDF Downloads 109
161 Effects of Magnetic Field on 4H-SiC P-N Junctions

Authors: Khimmatali Nomozovich Juraev

Abstract:

Silicon carbide is one of the promising materials with potential applications in electronic devices using high power, high frequency and high electric field. Currently, silicon carbide is used to manufacture high power and frequency diodes, transistors, radiation detectors, light emitting diodes (LEDs) and other functional devices. In this work, the effects of magnetic field on p-n junctions based on 4H-SiC were experimentally studied. As a research material, monocrystalline silicon carbide wafers (Cree Research, Inc., USA) with relatively few growth defects grown by physical vapor transport (PVT) method were used: Nd dislocations 104 cm², Nm micropipes ~ 10–10² cm-², thickness ~ 300-600 μm, surface ~ 0.25 cm², resistivity ~ 3.6–20 Ωcm, the concentration of background impurities Nd − Na ~ (0.5–1.0)×1017cm-³. The initial parameters of the samples were determined on a Hall Effect Measurement System HMS-7000 (Ecopia) measuring device. Diffusing Ni nickel atoms were covered to the silicon surface of silicon carbide in a Universal Vacuum Post device at a vacuum of 10-⁵ -10-⁶ Torr by thermal sputtering and kept at a temperature of 600-650°C for 30 minutes. Then Ni atoms were diffused into the silicon carbide 4H-SiC sample at a temperature of 1150-1300°C by low temperature diffusion method in an air atmosphere, and the effects of the magnetic field on the I-V characteristics of the samples were studied. I-V characteristics of silicon carbide 4H-SiC p-n junction sample were measured in the magnetic field and in the absence of a magnetic field. The measurements were carried out under conditions where the magnitude of the magnetic field induction vector was 0.5 T. In the state, the direction of the current flowing through the diode is perpendicular to the direction of the magnetic field. From the obtained results, it can be seen that the magnetic field significantly affects the I-V characteristics of the p-n junction in the magnetic field when it is measured in the forward direction. Under the influence of the magnetic field, the change of the magnetic resistance of the sample of silicon carbide 4H-SiC p-n junction was determined. It was found that changing the magnetic field poles increases the direct forward current of the p-n junction or decreases it when the field direction changes. These unique electrical properties of the 4H-SiC p-n junction sample of silicon carbide, that is, the change of the sample's electrical properties in a magnetic field, makes it possible to fabricate magnetic field sensing devices based on silicon carbide to use at harsh environments in future. So far, the productions of silicon carbide magnetic detectors are not available in the industry.

Keywords: 4H-SiC, diffusion Ni, effects of magnetic field, I-V characteristics

Procedia PDF Downloads 66
160 Working Memory and Audio-Motor Synchronization in Children with Different Degrees of Central Nervous System's Lesions

Authors: Anastasia V. Kovaleva, Alena A. Ryabova, Vladimir N. Kasatkin

Abstract:

Background: The most simple form of entrainment to a sensory (typically auditory) rhythmic stimulus involves perceiving and synchronizing movements with an isochronous beat with one level of periodicity, such as that produced by a metronome. Children with pediatric cancer usually treated with chemo- and radiotherapy. Because of such treatment, psychologists and health professionals declare cognitive and motor abilities decline in cancer patients. The purpose of our study was to measure working memory characteristics with association with audio-motor synchronization tasks, also involved some memory resources, in children with different degrees of central nervous system lesions: posterior fossa tumors, acute lymphoblastic leukemia, and healthy controls. Methods: Our sample consisted of three groups of children: children treated for posterior fossa tumors (PFT-group, n=42, mean age 12.23), children treated for acute lymphoblastic leukemia (ALL-group, n=11, mean age 11.57) and neurologically healthy children (control group, n=36, mean age 11.67). Participants were tested for working memory characteristics with Cambridge Neuropsychological Test Automated Battery (CANTAB). Pattern recognition memory (PRM) and spatial working memory (SWM) tests were applied. Outcome measures of PRM test include the number and percentage of correct trials and latency (speed of participant’s response), and measures of SWM include errors, strategy, and latency. In the synchronization tests, the instruction was to tap out a regular beat (40, 60, 90 and 120 beats per minute) in synchrony with the rhythmic sequences that were played. This meant that for the sequences with an isochronous beat, participants were required to tap into every auditory event. Variations of inter-tap-intervals and deviations of children’s taps from the metronome were assessed. Results: Analysis of variance revealed the significant effect of group (ALL, PFT and control) on such parameters as short-term PRM, SWM strategy and errors. Healthy controls demonstrated more correctly retained elements, better working memory strategy, compared to cancer patients. Interestingly that ALL patients chose the bad strategy, but committed significantly less errors in SWM test then PFT and controls did. As to rhythmic ability, significant associations of working memory were found out only with 40 bpm rhythm: the less variable were inter-tap-intervals of the child, the more elements in memory he/she could retain. The ability to audio-motor synchronization may be related to working memory processes mediated by the prefrontal cortex whereby each sensory event is actively retrieved and monitored during rhythmic sequencing. Conclusion: Our results suggest that working memory, tested with appropriate cognitive methods, is associated with the ability to synchronize movements with rhythmic sounds, especially in sub-second intervals (40 per minute).

Keywords: acute lymphoblastic leukemia (ALL), audio-motor synchronization, posterior fossa tumor, working memory

Procedia PDF Downloads 282
159 Development of a Social Assistive Robot for Elderly Care

Authors: Edwin Foo, Woei Wen, Lui, Meijun Zhao, Shigeru Kuchii, Chin Sai Wong, Chung Sern Goh, Yi Hao He

Abstract:

This presentation presents an elderly care and assistive social robot development work. We named this robot JOS and he is restricted to table top operation. JOS is designed to have a maximum volume of 3600 cm3 with its base restricted to 250 mm and his mission is to provide companion, assist and help the elderly. In order for JOS to accomplish his mission, he will be equipped with perception, reaction and cognition capability. His appearance will be not human like but more towards cute and approachable type. JOS will also be designed to be neutral gender. However, the robot will still have eyes, eyelid and a mouth. For his eyes and eyelids, they will be built entirely with Robotis Dynamixel AX18 motor. To realize this complex task, JOS will be also be equipped with micro-phone array, vision camera and Intel i5 NUC computer and a powered by a 12 V lithium battery that will be self-charging. His face is constructed using 1 motor each for the eyelid, 2 motors for the eyeballs, 3 motors for the neck mechanism and 1 motor for the lips movement. The vision senor will be house on JOS forehead and the microphone array will be somewhere below the mouth. For the vision system, Omron latest OKAO vision sensor is used. It is a compact and versatile sensor that is only 60mm by 40mm in size and operates with only 5V supply. In addition, OKAO vision sensor is capable of identifying the user and recognizing the expression of the user. With these functions, JOS is able to track and identify the user. If he cannot recognize the user, JOS will ask the user if he would want him to remember the user. If yes, JOS will store the user information together with the capture face image into a database. This will allow JOS to recognize the user the next time the user is with JOS. In addition, JOS is also able to interpret the mood of the user through the facial expression of the user. This will allow the robot to understand the user mood and behavior and react according. Machine learning will be later incorporated to learn the behavior of the user so as to understand the mood of the user and requirement better. For the speech system, Microsoft speech and grammar engine is used for the speech recognition. In order to use the speech engine, we need to build up a speech grammar database that captures the commonly used words by the elderly. This database is built from research journals and literature on elderly speech and also interviewing elderly what do they want to robot to assist them with. Using the result from the interview and research from journal, we are able to derive a set of common words the elderly frequently used to request for the help. It is from this set that we build up our grammar database. In situation where there is more than one person near JOS, he is able to identify the person who is talking to him through an in-house developed microphone array structure. In order to make the robot more interacting, we have also included the capability for the robot to express his emotion to the user through the facial expressions by changing the position and movement of the eyelids and mouth. All robot emotions will be in response to the user mood and request. Lastly, we are expecting to complete this phase of project and test it with elderly and also delirium patient by Feb 2015.

Keywords: social robot, vision, elderly care, machine learning

Procedia PDF Downloads 420