Search results for: Socio-cultural context for learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12087

Search results for: Socio-cultural context for learning

10437 An Assessment of Digital Platforms, Student Online Learning, Teaching Pedagogies, Research and Training at Kenya College of Accounting University

Authors: Jasmine Renner, Alice Njuguna

Abstract:

The booming technological revolution is driving a change in the mode of delivery systems especially for e-learning and distance learning in higher education. The report and findings of the study; an assessment of digital platforms, student online learning, teaching pedagogies, research and training at Kenya College of Accounting University (hereinafter 'KCA') was undertaken as a joint collaboration project between the Carnegie African Diaspora Fellowship and input from the staff, students and faculty at KCA University. The participants in this assessment/research met for selected days during a six-week period during which, one-one consultations, surveys, questionnaires, foci groups, training, and seminars were conducted to ascertain 'online learning and teaching, curriculum development, research and training at KCA.' The project was organized into an eight-week project workflow with each week culminating in project activities designed to assess digital online teaching and learning at KCA. The project also included the training of distance learning instructors at KCA and the evaluation of KCA’s distance platforms and programs. Additionally, through a curriculum audit and redesign, the project sought to enhance the curriculum development activities related to of distance learning at KCA. The findings of this assessment/research represent the systematic deliberate process of gathering, analyzing and using data collected from DL students, DL staff and lecturers and a librarian personnel in charge of online learning resources and access at KCA. We engaged in one-on-one interviews and discussions with staff, students, and faculty and collated the findings to inform practices that are effective in the ongoing design and development of eLearning earning at KCA University. Overall findings of the project led to the following recommendations. First, there is a need to address infrastructural challenges that led to poor internet connectivity for online learning, training needs and content development for faculty and staff. Second, there is a need to manage cultural impediments within KCA; for example fears of vital change from one platform to another for effectiveness and Institutional goodwill as a vital promise of effective online learning. Third, at a practical and short-term level, the following recommendations based on systematic findings of the research conducted were as follows: there is a need for the following to be adopted at KCA University to promote the effective adoption of online learning: a) an eLearning compatible faculty lab, b) revision of policy to include an eLearn strategy or strategic management, c) faculty and staff recognitions engaged in the process of training for the adoption and implementation of eLearning and d) adequate website resources on eLearning. The report and findings represent a comprehensive approach to a systematic assessment of online teaching and learning, research and training at KCA.

Keywords: e-learning, digital platforms, student online learning, online teaching pedagogies

Procedia PDF Downloads 192
10436 Using Mining Methods of WEKA to Predict Quran Verb Tense and Aspect in Translations from Arabic to English: Experimental Results and Analysis

Authors: Jawharah Alasmari

Abstract:

In verb inflection, tense marks past/present/future action, and aspect marks progressive/continues perfect/completed actions. This usage and meaning of tense and aspect differ in Arabic and English. In this research, we applied data mining methods to test the predictive function of candidate features by using our dataset of Arabic verbs in-context, and their 7 translations. Weka machine learning classifiers is used in this experiment in order to examine the key features that can be used to provide guidance to enable a translator’s appropriate English translation of the Arabic verb tense and aspect.

Keywords: Arabic verb, English translations, mining methods, Weka software

Procedia PDF Downloads 272
10435 Evaluating and Supporting Student Engagement in Online Learning

Authors: Maria Hopkins

Abstract:

Research on student engagement is founded on a desire to improve the quality of online instruction in both course design and delivery. A high level of student engagement is associated with a wide range of educational practices including purposeful student-faculty contact, peer to peer contact, active and collaborative learning, and positive factors such as student satisfaction, persistence, achievement, and learning. By encouraging student engagement, institutions of higher education can have a positive impact on student success that leads to retention and degree completion. The current research presents the results of an online student engagement survey which support faculty teaching practices to maximize the learning experience for online students. The ‘Indicators of Engaged Learning Online’ provide a framework that measures level of student engagement. Social constructivism and collaborative learning form the theoretical basis of the framework. Social constructivist pedagogy acknowledges the social nature of knowledge and its creation in the minds of individual learners. Some important themes that flow from social constructivism involve the importance of collaboration among instructors and students, active learning vs passive consumption of information, a learning environment that is learner and learning centered, which promotes multiple perspectives, and the use of social tools in the online environment to construct knowledge. The results of the survey indicated themes that emphasized the importance of: Interaction among peers and faculty (collaboration); Timely feedback on assignment/assessments; Faculty participation and visibility; Relevance and real-world application (in terms of assignments, activities, and assessments); and Motivation/interest (the need for faculty to motivate students especially those that may not have an interest in the coursework per se). The qualitative aspect of this student engagement study revealed what instructors did well that made students feel engaged in the course, but also what instructors did not do well, which could inform recommendations to faculty when expectations for teaching a course are reviewed. Furthermore, this research provides evidence for the connection between higher student engagement and persistence and retention in online programs, which supports our rationale for encouraging student engagement, especially in the online environment because attrition rates are higher than in the face-to-face environment.

Keywords: instructional design, learning effectiveness, online learning, student engagement

Procedia PDF Downloads 290
10434 Unsupervised Echocardiogram View Detection via Autoencoder-Based Representation Learning

Authors: Andrea Treviño Gavito, Diego Klabjan, Sanjiv J. Shah

Abstract:

Echocardiograms serve as pivotal resources for clinicians in diagnosing cardiac conditions, offering non-invasive insights into a heart’s structure and function. When echocardiographic studies are conducted, no standardized labeling of the acquired views is performed. Employing machine learning algorithms for automated echocardiogram view detection has emerged as a promising solution to enhance efficiency in echocardiogram use for diagnosis. However, existing approaches predominantly rely on supervised learning, necessitating labor-intensive expert labeling. In this paper, we introduce a fully unsupervised echocardiographic view detection framework that leverages convolutional autoencoders to obtain lower dimensional representations and the K-means algorithm for clustering them into view-related groups. Our approach focuses on discriminative patches from echocardiographic frames. Additionally, we propose a trainable inverse average layer to optimize decoding of average operations. By integrating both public and proprietary datasets, we obtain a marked improvement in model performance when compared to utilizing a proprietary dataset alone. Our experiments show boosts of 15.5% in accuracy and 9.0% in the F-1 score for frame-based clustering, and 25.9% in accuracy and 19.8% in the F-1 score for view-based clustering. Our research highlights the potential of unsupervised learning methodologies and the utilization of open-sourced data in addressing the complexities of echocardiogram interpretation, paving the way for more accurate and efficient cardiac diagnoses.

Keywords: artificial intelligence, echocardiographic view detection, echocardiography, machine learning, self-supervised representation learning, unsupervised learning

Procedia PDF Downloads 33
10433 Noise Reduction in Web Data: A Learning Approach Based on Dynamic User Interests

Authors: Julius Onyancha, Valentina Plekhanova

Abstract:

One of the significant issues facing web users is the amount of noise in web data which hinders the process of finding useful information in relation to their dynamic interests. Current research works consider noise as any data that does not form part of the main web page and propose noise web data reduction tools which mainly focus on eliminating noise in relation to the content and layout of web data. This paper argues that not all data that form part of the main web page is of a user interest and not all noise data is actually noise to a given user. Therefore, learning of noise web data allocated to the user requests ensures not only reduction of noisiness level in a web user profile, but also a decrease in the loss of useful information hence improves the quality of a web user profile. Noise Web Data Learning (NWDL) tool/algorithm capable of learning noise web data in web user profile is proposed. The proposed work considers elimination of noise data in relation to dynamic user interest. In order to validate the performance of the proposed work, an experimental design setup is presented. The results obtained are compared with the current algorithms applied in noise web data reduction process. The experimental results show that the proposed work considers the dynamic change of user interest prior to elimination of noise data. The proposed work contributes towards improving the quality of a web user profile by reducing the amount of useful information eliminated as noise.

Keywords: web log data, web user profile, user interest, noise web data learning, machine learning

Procedia PDF Downloads 265
10432 Deep Learning Based, End-to-End Metaphor Detection in Greek with Recurrent and Convolutional Neural Networks

Authors: Konstantinos Perifanos, Eirini Florou, Dionysis Goutsos

Abstract:

This paper presents and benchmarks a number of end-to-end Deep Learning based models for metaphor detection in Greek. We combine Convolutional Neural Networks and Recurrent Neural Networks with representation learning to bear on the metaphor detection problem for the Greek language. The models presented achieve exceptional accuracy scores, significantly improving the previous state-of-the-art results, which had already achieved accuracy 0.82. Furthermore, no special preprocessing, feature engineering or linguistic knowledge is used in this work. The methods presented achieve accuracy of 0.92 and F-score 0.92 with Convolutional Neural Networks (CNNs) and bidirectional Long Short Term Memory networks (LSTMs). Comparable results of 0.91 accuracy and 0.91 F-score are also achieved with bidirectional Gated Recurrent Units (GRUs) and Convolutional Recurrent Neural Nets (CRNNs). The models are trained and evaluated only on the basis of training tuples, the related sentences and their labels. The outcome is a state-of-the-art collection of metaphor detection models, trained on limited labelled resources, which can be extended to other languages and similar tasks.

Keywords: metaphor detection, deep learning, representation learning, embeddings

Procedia PDF Downloads 153
10431 Face Tracking and Recognition Using Deep Learning Approach

Authors: Degale Desta, Cheng Jian

Abstract:

The most important factor in identifying a person is their face. Even identical twins have their own distinct faces. As a result, identification and face recognition are needed to tell one person from another. A face recognition system is a verification tool used to establish a person's identity using biometrics. Nowadays, face recognition is a common technique used in a variety of applications, including home security systems, criminal identification, and phone unlock systems. This system is more secure because it only requires a facial image instead of other dependencies like a key or card. Face detection and face identification are the two phases that typically make up a human recognition system.The idea behind designing and creating a face recognition system using deep learning with Azure ML Python's OpenCV is explained in this paper. Face recognition is a task that can be accomplished using deep learning, and given the accuracy of this method, it appears to be a suitable approach. To show how accurate the suggested face recognition system is, experimental results are given in 98.46% accuracy using Fast-RCNN Performance of algorithms under different training conditions.

Keywords: deep learning, face recognition, identification, fast-RCNN

Procedia PDF Downloads 140
10430 Adopt and Apply Research-Supported Standards and Practices to Ensure Quality for Online Education and Digital Learning at Course, Program and Institutional Levels

Authors: Yaping Gao

Abstract:

With the increasing globalization of education and the continued momentum and wider adoption of online and digital learning all over the world, post pandemic, how could best practices and extensive experience gained from the higher education community over the past few decades be adopted and adapted to benefit international communities, which can be vastly different culturally and pedagogically? How can schools and institutions adopt, adapt and apply these proven practices to develop strategic plans for digital transformation at institutional levels, and to improve or create quality online or digital learning environments at course and program levels to help all students succeed? The presenter will introduce the primary components of the US-based quality assurance process, including : 1) five sets of research-supported standards to guide the design, development and review of online and hybrid courses; 2) professional development offerings and pathways for administrators, faculty and instructional support staff; 3) a peer-review process for course/program reviews resulting in constructive recommendations for continuous improvement, certification of quality and international recognition; and 4) implementation of the quality assurance process on a continuum to program excellence, achievement of institutional goals, and facilitation of accreditation process and success. Regardless language, culture, pedagogical practices, or technological infrastructure, the core elements of quality teaching and learning remain the same across all delivery formats. What is unique is how to ensure quality of teaching and learning in online education and digital learning. No one knows all the answers to everything but no one needs to reinvent the wheel either. Together the international education community can support and learn from each other to achieve institutional goals and ensure all students succeed in the digital learning environments.

Keywords: Online Education, Digital Learning, Quality Assurance, Standards and Best Practices

Procedia PDF Downloads 27
10429 The Effect of Cooperative Learning on Academic Achievement of Grade Nine Students in Mathematics: The Case of Mettu Secondary and Preparatory School

Authors: Diriba Gemechu, Lamessa Abebe

Abstract:

The aim of this study was to examine the effect of cooperative learning method on student’s academic achievement and on the achievement level over a usual method in teaching different topics of mathematics. The study also examines the perceptions of students towards cooperative learning. Cooperative learning is the instructional strategy in which pairs or small groups of students with different levels of ability work together to accomplish a shared goal. The aim of this cooperation is for students to maximize their own and each other learning, with members striving for joint benefit. The teacher’s role changes from wise on the wise to guide on the side. Cooperative learning due to its influential aspects is the most prevalent teaching-learning technique in the modern world. Therefore the study was conducted in order to examine the effect of cooperative learning on the academic achievement of grade 9 students in Mathematics in case of Mettu secondary school. Two sample sections are randomly selected by which one section served randomly as an experimental and the other as a comparison group. Data gathering instruments are achievement tests and questionnaires. A treatment of STAD method of cooperative learning was provided to the experimental group while the usual method is used in the comparison group. The experiment lasted for one semester. To determine the effect of cooperative learning on the student’s academic achievement, the significance of difference between the scores of groups at 0.05 levels was tested by applying t test. The effect size was calculated to see the strength of the treatment. The student’s perceptions about the method were tested by percentiles of the questionnaires. During data analysis, each group was divided into high and low achievers on basis of their previous Mathematics result. Data analysis revealed that both the experimental and comparison groups were almost equal in Mathematics at the beginning of the experiment. The experimental group out scored significantly than comparison group on posttest. Additionally, the comparison of mean posttest scores of high achievers indicates significant difference between the two groups. The same is true for low achiever students of both groups on posttest. Hence, the result of the study indicates the effectiveness of the method for Mathematics topics as compared to usual method of teaching.

Keywords: academic achievement, comparison group, cooperative learning, experimental group

Procedia PDF Downloads 246
10428 Virtual Player for Learning by Observation to Assist Karate Training

Authors: Kazumoto Tanaka

Abstract:

It is well known that sport skill learning is facilitated by video observation of players’ actions in sports. The optimal viewpoint for the observation of actions depends on sport scenes. On the other hand, it is impossible to change viewpoint for the observation in general, because most videos are filmed from fixed points. The study has tackled the problem and focused on karate match as a first step. The study developed a method for observing karate player’s actions from any point of view by using 3D-CG model (i.e. virtual player) obtained from video images, and verified the effectiveness of the method on karate match.

Keywords: computer graphics, karate training, learning by observation, motion capture, virtual player

Procedia PDF Downloads 275
10427 Design and Implementation a Platform for Adaptive Online Learning Based on Fuzzy Logic

Authors: Budoor Al Abid

Abstract:

Educational systems are increasingly provided as open online services, providing guidance and support for individual learners. To adapt the learning systems, a proper evaluation must be made. This paper builds the evaluation model Fuzzy C Means Adaptive System (FCMAS) based on data mining techniques to assess the difficulty of the questions. The following steps are implemented; first using a dataset from an online international learning system called (slepemapy.cz) the dataset contains over 1300000 records with 9 features for students, questions and answers information with feedback evaluation. Next, a normalization process as preprocessing step was applied. Then FCM clustering algorithms are used to adaptive the difficulty of the questions. The result is three cluster labeled data depending on the higher Wight (easy, Intermediate, difficult). The FCM algorithm gives a label to all the questions one by one. Then Random Forest (RF) Classifier model is constructed on the clustered dataset uses 70% of the dataset for training and 30% for testing; the result of the model is a 99.9% accuracy rate. This approach improves the Adaptive E-learning system because it depends on the student behavior and gives accurate results in the evaluation process more than the evaluation system that depends on feedback only.

Keywords: machine learning, adaptive, fuzzy logic, data mining

Procedia PDF Downloads 197
10426 Post-Processing Method for Performance Improvement of Aerial Image Parcel Segmentation

Authors: Donghee Noh, Seonhyeong Kim, Junhwan Choi, Heegon Kim, Sooho Jung, Keunho Park

Abstract:

In this paper, we describe an image post-processing method to enhance the performance of the parcel segmentation method using deep learning-based aerial images conducted in previous studies. The study results were evaluated using a confusion matrix, IoU, Precision, Recall, and F1-Score. In the case of the confusion matrix, it was observed that the false positive value, which is the result of misclassification, was greatly reduced as a result of image post-processing. The average IoU was 0.9688 in the image post-processing, which is higher than the deep learning result of 0.8362, and the F1-Score was also 0.9822 in the image post-processing, which was higher than the deep learning result of 0.8850. As a result of the experiment, it was found that the proposed technique positively complements the deep learning results in segmenting the parcel of interest.

Keywords: aerial image, image process, machine vision, open field smart farm, segmentation

Procedia PDF Downloads 81
10425 Effect of E-Governance and E-Learning Platform on Access to University Education by Public Servants in Nigeria

Authors: Nwamaka Patricia Ibeme, Musa Zakari

Abstract:

E-learning is made more effective because; it is enable student to students to easily interact, share, and collaborate across time and space with the help of e-governance platform. Zoom and the Microsoft classroom team can invite students from all around the world to join a conversation on a certain subject simultaneously. E-governance may be able to work on problem solving skills, as well as brainstorming and developing ideas. As a result of the shared experiences and knowledge, students are able to express themselves and reflect on their own learning." For students, e-governance facilities provide greater opportunity for students to build critical (higher order) thinking abilities through constructive learning methods. Students' critical thinking abilities may improve with more time spent in an online classroom. Students' inventiveness can be enhanced through the use of computer-based instruction. Discover multimedia tools and produce products in the styles that are easily available through games, Compact Disks, and television. The use of e-learning has increased both teaching and learning quality by combining student autonomy, capacity, and creativity over time in developed countries." Teachers are catalysts for the integration of technology through Information and Communication Technology, and e-learning supports teaching by simplifying access to course content." Creating an Information and Communication Technology class will be much easier if educational institutions provide teachers with the assistance, equipment, and resources they need. The study adopted survey research design. The populations of the study are Students and staff. The study adopted a simple random sampling technique to select a representative population. Both primary and secondary method of data collection was used to obtain the data. A chi-square statistical technique was used to analyze. Finding from the study revealed that e-learning has increase accesses to universities educational by public servants in Nigeria. Public servants in Nigeria have utilized e-learning and Online Distance Learning (ODL) programme to into various degree programmes. Finding also shows that E-learning plays an important role in teaching because it is oriented toward the use of information and communication technologies that have become a part of the everyday life and day-to-day business. E-learning contributes to traditional teaching methods and provides many advantages to society and citizens. The study recommends that the e-learning tools and internet facilities should be upgrade to foster any network challenges in the online facilitation and lecture delivery system.

Keywords: E-governance, E-learning, online distance learning, university education public servants, Nigeria

Procedia PDF Downloads 69
10424 Project Management at University: Towards an Evaluation Process around Cooperative Learning

Authors: J. L. Andrade-Pineda, J.M. León-Blanco, M. Calle, P. L. González-R

Abstract:

The enrollment in current Master's degree programs usually pursues gaining the expertise required in real-life workplaces. The experience we present here concerns the learning process of "Project Management Methodology (PMM)", around a cooperative/collaborative mechanism aimed at affording students measurable learning goals and providing the teacher with the ability of focusing on the weaknesses detected. We have designed a mixed summative/formative evaluation, which assures curriculum engage while enriches the comprehension of PMM key concepts. In this experience we converted the students into active actors in the evaluation process itself and we endowed ourselves as teachers with a flexible process in which along with qualifications (score), other attitudinal feedback arises. Despite the high level of self-affirmation on their discussion within the interactive assessment sessions, they ultimately have exhibited a great ability to review and correct the wrong reasoning when that was the case.

Keywords: cooperative-collaborative learning, educational management, formative-summative assessment, leadership training

Procedia PDF Downloads 170
10423 Addressing the Exorbitant Cost of Labeling Medical Images with Active Learning

Authors: Saba Rahimi, Ozan Oktay, Javier Alvarez-Valle, Sujeeth Bharadwaj

Abstract:

Successful application of deep learning in medical image analysis necessitates unprecedented amounts of labeled training data. Unlike conventional 2D applications, radiological images can be three-dimensional (e.g., CT, MRI), consisting of many instances within each image. The problem is exacerbated when expert annotations are required for effective pixel-wise labeling, which incurs exorbitant labeling effort and cost. Active learning is an established research domain that aims to reduce labeling workload by prioritizing a subset of informative unlabeled examples to annotate. Our contribution is a cost-effective approach for U-Net 3D models that uses Monte Carlo sampling to analyze pixel-wise uncertainty. Experiments on the AAPM 2017 lung CT segmentation challenge dataset show that our proposed framework can achieve promising segmentation results by using only 42% of the training data.

Keywords: image segmentation, active learning, convolutional neural network, 3D U-Net

Procedia PDF Downloads 156
10422 Engaging Girls in 'Learn Science by Doing' as Strategy for Enhanced Learning Outcome at the Junior High School Level in Nigeria

Authors: Stella Y. Erinosho

Abstract:

In an attempt to impact on girls’ interest in science, an instructional package on ‘Learn Science by Doing (LSD)’ was developed to support science teachers in teaching integrated science at the junior secondary level in Nigeria. LSD provides an instructional framework aimed at actively engaging girls in beginners’ science through activities that are discovery-oriented and allow for experiential learning. The goal of this study was to show the impact of application of LSD on girls’ performance and interest in science. The major hypothesis that was tested in the study was that students would exhibit higher learning outcomes (achievement and attitude) in science as effect of exposure to LSD instructional package. A quasi-experimental design was adopted, incorporating four all-girls schools. Three of the schools (comprising six classes) were randomly designated as experimental and one as the control. The sample comprised 357 girls (275 experimental and 82 control) and nine science teachers drawn from the experimental schools. The questionnaire was designed to gather data on students’ background characteristics and their attitude toward science while the cognitive outcomes were measured using tests, both within a group and between groups, the girls who had exposure to LSD exhibited improved cognitive outcomes and more positive attitude towards science compared with those who had conventional teaching. The data are consistent with previous studies indicating that interactive learning activities increase student performance and interest.

Keywords: active learning, school science, teaching and learning, Nigeria

Procedia PDF Downloads 385
10421 Measuring Student Teachers' Attitude and Intention toward Cell-Phone Use for Learning in Nigeria

Authors: Shittu Ahmed Tajudeen

Abstract:

This study examines student-teachers’ attitude and intention towards cell-phone use for learning. The study involves one hundred and ninety (190) trainee teachers in one of the Institutes of Education in Nigeria. The data of the study was collected through a questionnaire on a rating of seven point likert-type Scale. The data collected was used to test the hypothesized model of the study using Structural Equation Modeling approach. The finding of the study revealed that Perceived Usefulness (PU), Perceived Ease of Use (PEU), Subjective Norm (SN) and Attitude significantly influence students’ intention towards adoption of cell-phone for learning. The study showed that perceived ease of use stands to be the strongest predictor of cell-phone use. The model of the study exhibits a good-fit with the data and provides an explanation on student- teachers’ attitude and intention towards cell-phone for learning.

Keywords: cell-phone, adoption, structural equation modeling, technology acceptance model

Procedia PDF Downloads 453
10420 Design of a Professional Development Framework in Teaching and Learning for Engineering Educators

Authors: Orla McConnell, Cormac MacMahon, Jen Harvey

Abstract:

Ireland’s national professional development framework for those who teach in higher education, aims to provide guidance and leadership in the planning, developing and engaging in professional development practices. A series of pilot projects have been initiated to help explore the framework’s likely utility and acceptance by educators and their institutions. These projects require engagement with staff in the interpretation and adaption of the framework within their working contexts. The purpose of this paper is to outline the development of one such project with engineering educators at three Institutes of Technology seeking designation as a technological university. The initiative aims to gain traction in the acceptance of the framework with the engineering education community by linking core and discipline-specific teaching and learning competencies with professional development activities most valued by engineering educators. Informed by three strands of literature: professional development in higher education; engineering education; and teaching and learning training provisions, the project begins with a survey of all those involved in teaching and learning in engineering across the three institutes. Based on engagement with key stakeholders, subsequent qualitative research informs the contextualization of the national framework for discipline-specific and institutional piloting. The paper concludes by exploring engineering educator perceptions of the national framework’s utility based on their engagement with the pilot process. Feedback from the pilot indicates that there is a significant gap between the professional development needs of engineering educators and the current professional development provision in teaching and learning.

Keywords: engineering education, pilot, professional development, teaching and learning

Procedia PDF Downloads 330
10419 Timbuktu Pattern of Islamic Education: A Role Model for the Establishment of Islamic Educational System in Sokoto Caliphate

Authors: A. M. Gada, H. U. Malami

Abstract:

Timbuktu is one of the eight regions in the present day the Republic of Mali. It flourished as one of the earliest centres of Islamic learning in West Africa in the eleventh century CE. The famous Islamic centre in Timbuktu is situated in the Sankore mosque, which is known to be one of the earliest established Islamic University. This centre produced scholars who were zealous in disseminating Islamic education to different parts of West Africa and beyond. As a result, most of these centres adopted the Timbuktu pattern of learning. Some of the beneficiaries of this noble activity are Muslim scholars which are responsible for the establishment of the Sokoto Caliphate in the early nineteenth century. This paper intends to reflect on the pattern of Islamic education of the Timbuktu scholars and see how it impacted on the Islamic centres of learning established by these Jihad-scholars who were successful in the establishment of an Islamic state known as the Sokoto Caliphate.

Keywords: Timbuktu, Sankore, Islamic educational system, Sokoto Caliphate, centres of Islamic learning

Procedia PDF Downloads 417
10418 Active Learning in Computer Exercises on Electronics

Authors: Zoja Raud, Valery Vodovozov

Abstract:

Modelling and simulation provide effective way to acquire engineering experience. An active approach to modelling and simulation proposed in the paper involves, beside the compulsory part directed by the traditional step-by-step instructions, the new optional part basing on the human’s habits to design thus stimulating the efforts towards success in active learning. Computer exercises as a part of engineering curriculum incorporate a set of effective activities. In addition to the knowledge acquired in theoretical training, the described educational arrangement helps to develop problem solutions, computation skills, and experimentation performance along with enhancement of practical experience and qualification.

Keywords: modelling, simulation, engineering education, electronics, active learning

Procedia PDF Downloads 391
10417 Grounding Chinese Language Vocabulary Teaching and Assessment in the Working Memory Research

Authors: Chan Kwong Tung

Abstract:

Since Baddeley and Hitch’s seminal research in 1974 on working memory (WM), this topic has been of great interest to language educators. Although there are some variations in the definitions of WM, recent findings in WM have contributed vastly to our understanding of language learning, especially its effects on second language acquisition (SLA). For example, the phonological component of WM (PWM) and the executive component of WM (EWM) have been found to be positively correlated with language learning. This paper discusses two general, yet highly relevant WM findings that could directly affect the effectiveness of Chinese Language (CL) vocabulary teaching and learning, as well as the quality of its assessment. First, PWM is found to be critical for the long-term learning of phonological forms of new words. Second, EWM is heavily involved in interpreting the semantic characteristics of new words, which consequently affects the quality of learners’ reading comprehension. These two ideas are hardly discussed in the Chinese literature, both conceptual and empirical. While past vocabulary acquisition studies have mainly focused on the cognitive-processing approach, active processing, ‘elaborate processing’ (or lexical elaboration) and other effective learning tasks and strategies, it is high time to balance the spotlight to the WM (particularly PWM and EWM) to ensure an optimum control on the teaching and learning effectiveness of such approaches, as well as the validity of this language assessment. Given the unique phonological, orthographical and morphological properties of the CL, this discussion will shed some light on the vocabulary acquisition of this Sino-Tibetan language family member. Together, these two WM concepts could have crucial implications for the design, development, and planning of vocabularies and ultimately reading comprehension teaching and assessment in language education. Hopefully, this will raise an awareness and trigger a dialogue about the meaning of these findings for future language teaching, learning, and assessment.

Keywords: Chinese Language, working memory, vocabulary assessment, vocabulary teaching

Procedia PDF Downloads 344
10416 International Counseling Learning: The Need for Suitable Training within Counselor Education and Counseling Students

Authors: Paula Lazarim

Abstract:

As global mobility thrives, researchers emphasize the urgency of global literacy through training qualified counselors to serve internationally in a culturally competent manner. However, the focus thus far has been on how counselors’ preparation to approach international populations fuses with study abroad experiential learning short-term immersions. Looking for better solutions for cultural competency and skills learning related to international counseling, the author of this manuscript examines international counseling's current status, learning scope and goals, and educational opportunities. A guiding framework grounded on relational pedagogy (Reeves & Le Mare, 2017), relational cultural theory (Jordan, 2017), and intercultural education (Nastasi et al., 2020) is applied with four long-term educational modality projects designed to benefit cultural competence, attitude, relational skills development, and learning an intercultural counseling approach. Suggestions that encourage innovative instruction in counselor education and counseling programs at master and doctoral levels, stimulate self-learning, and educate in intercultural relational competence are linked to strategies for engaging in international counseling based on findings of a literature review and training-projects implementation. Ultimately, the author highlights theoretical and practical implications of suitable training to improve counselors' performance and discusses long-term teaching-learning opportunities that positively impact the international counseling community by sending out internationally culturally competent counselors.

Keywords: international counseling, counselor education, counseling, relational pedagogy, intercultural education, counselors’ training

Procedia PDF Downloads 200
10415 Enhancing Teachers’ Professional Development Programmes by the Implementation of Flipped Learning Instruction: A Qualitative Study

Authors: Badriah Algarni

Abstract:

The pedagogy of ‘flipped learning’ is a form of blended instruction which is gaining widespread attention throughout the world. However, there is a lack of research concerning teachers’ professional development (TPD) in teachers who use flipping. The aim of this study was, therefore, to identify teachers’ perspectives on their experience of flipped PD. The study used a qualitative approach. Purposive sampling recruited nineteen teachers who participated in semi-structured, in-depth interviews. Thematic analysis was used to analyse the interview data. Overall, the teachers reported feeling more confident in their knowledge and skills after participating in flipped TPD. The analysis of the interview data revealed five overarching themes:1) increased engagement with the content; 2) better use of resources; 3) a social, collaborative environment; 4) exchange of practices and experiences; and 5) valuable online activities. These findings can encourage educators, policymakers, and trainers to consider flipped TPD as a form of PD to promote the building of teachers’ knowledge and stimulate reflective practices to improve teaching and learning practices.

Keywords: engagement, flipped learning, teachers’ professional development, collaboration

Procedia PDF Downloads 96
10414 The Nuclear Energy Museum in Brazil: Creative Solutions to Transform Science Education into Meaningful Learning

Authors: Denise Levy, Helen J. Khoury

Abstract:

Nuclear technology is a controversial issue among a great share of the Brazilian population. Misinformation and common wrong beliefs confuse public’s perceptions and the scientific community is expected to offer a wider perspective on the benefits and risks resulting from ionizing radiation in everyday life. Attentive to the need of new approaches between science and society, the Nuclear Energy Museum, in northeast Brazil, is an initiative created to communicate the growing impact of the beneficial applications of nuclear technology in medicine, industry, agriculture and electric power generation. Providing accessible scientific information, the museum offers a rich learning environment, making use of different educational strategies, such as films, interactive panels and multimedia learning tools, which not only increase the enjoyment of visitors, but also maximize their learning potential. Developed according to modern active learning instructional strategies, multimedia materials are designed to present the increasingly role of nuclear science in modern life, transforming science education into a meaningful learning experience. In year 2016, nine different interactive computer-based activities were developed, presenting curiosities about ionizing radiation in different landmarks around the world, such as radiocarbon dating works in Egypt, nuclear power generation in France and X-radiography of famous paintings in Italy. Feedback surveys have reported a high level of visitors’ satisfaction, proving the high quality experience in learning nuclear science at the museum. The Nuclear Energy Museum is the first and, up to the present time, the only permanent museum in Brazil devoted entirely to nuclear science.

Keywords: nuclear technology, multimedia learning tools, science museum, society and education

Procedia PDF Downloads 324
10413 International Students in the US: Personality and Cross-Cultural Adaptability

Authors: Nhi Phuoc Thuc Le

Abstract:

Cross-cultural adaptability —one’s readiness to interact with people who are different from oneself or to adapt to living in another culture— is essential to the well-being and experience of international students. This research was set out to find the correlation between certain personality traits of international students and their likelihood to adapt to the U.S., the host culture. The study used Qualtrics, an online survey, to investigate the relationships between international students’ social self-efficacy, ego-resiliency, cultural intelligence, Big Five personality traits and cross-cultural adaptability (sociocultural and psychological adaptability). The data were analysed with the software SPSS. The findings of this quantitative study show that high scores in ego-resiliency, social self-efficacy, cultural intelligence and personality traits (including extraversion, agreeableness, intellect and conscientiousness) are correlated with better cross-cultural adaptation. Meanwhile, the Big-Five trait neuroticism is correlated with lower cross-cultural adaptability. Such insight is suggested to help international students be better prepared for an immersion into the US culture.

Keywords: Big Five, cross-cultural adaptability, cultural intelligence, ego-resiliency, international students, personality, self-efficacy

Procedia PDF Downloads 194
10412 Engaging Students in Multimedia Constructivist Learning: Analysis of Students' Science Achievement

Authors: Maria Georgiou

Abstract:

This study examined whether there was a statistically significant difference between pretest and posttest achievement scores for students who received multimedia-based instructions in science. The paired samples t-test was used to address the research question and to establish whether there was a significant difference between pretest and posttest scores that may have occurred based on the students’ learning experience with multimedia technology. Findings indicated that there was a significant difference in students’ achievement scores before and after a multimedia-based instruction. Students’ achievement scores were increased by approximately two points, after students received multimedia-based instruction. On a paired samples t-test, a high level of significance was found, p = 0.000. Opportunities to learn with multimedia are more likely to result in sustained improvements in student achievement and a deeper understanding of science content. Multimedia can make learning more active and student-centered and activate student motivation.

Keywords: constructivist learning, hyperstudio, multimedia, multimedia-based instruction

Procedia PDF Downloads 162
10411 Exploring the Potential of Mobile Learning in Distance Higher Education: A Case Study of the University of Jammu, Jammu, and Kashmir

Authors: Darshana Sharma

Abstract:

Distance Education has emerged as a viable alternative to serve the higher educational needs of the socially and economically disadvantaged people of the remote, rural areas of Jammu region. The University of Jammu is a National Accreditation, and Assessment Council accredited, A+ university and has been accorded graded autonomy by the University Grants Commission. It is a dual mode university offering academic programmes through the regular departments and through the Directorate of Distance Education. The Directorate of Distance Education, University of Jammu still uses printed study material as a mode of instructional delivery. The development of technologies has assured increased interaction and communication for distance learners throughout the distance open learning institutions. Though it is tempting and convenient to adopt technology already being used by others, it may not prove effective for the simple reason that two institutions may be unlike in some respect. The use of technology must be conceived in view of the needs of the learners; geographical socio-economic-cultural and technological contexts and financial, administrative and academic resources of the institution. Mobile learning (m-learning) is a novel approach to knowledge acquisition and dissemination and is gaining global attention. It has evolved as one of the useful channels of distance learning promoting interaction between learners and teachers. It is felt that the Directorate of Distance Education, University of Jammu also needs to adopt new technologies to provide more effective academic and information support to distance learners in order to keep them motivated and also to develop self-learning skills. The chief objective of the research on which this paper is based was to measure the opinion of the distance learners of the DDE, the University of Jammu about the merits of mobile learning. It also explores their preferences for implementing mobile learning. The survey research design of descriptive research has been used. The data was collected from 400 distance learners enrolled with undergraduate and post-graduate programmes using self-constructed questionnaire containing five-point Likert scale items arranging from strongly agree, agree, indifferent, disagree and strongly disagree. Percentages were used to analyze the data. The findings lead to conclude that mobile learning has a great potential for the DDE for reaching out to the rural, remotely located distance learners of the Jammu region and also to improve the teaching-learning environment. The paper also finds out the challenges in the implementation of mobile learning in the region and further makes suggestions for effective implementation of mobile learning in DDE, University of Jammu.

Keywords: directorate of distance education, mobile learning, national accreditation and assessment council, university of Jammu

Procedia PDF Downloads 123
10410 Gradient Boosted Trees on Spark Platform for Supervised Learning in Health Care Big Data

Authors: Gayathri Nagarajan, L. D. Dhinesh Babu

Abstract:

Health care is one of the prominent industries that generate voluminous data thereby finding the need of machine learning techniques with big data solutions for efficient processing and prediction. Missing data, incomplete data, real time streaming data, sensitive data, privacy, heterogeneity are few of the common challenges to be addressed for efficient processing and mining of health care data. In comparison with other applications, accuracy and fast processing are of higher importance for health care applications as they are related to the human life directly. Though there are many machine learning techniques and big data solutions used for efficient processing and prediction in health care data, different techniques and different frameworks are proved to be effective for different applications largely depending on the characteristics of the datasets. In this paper, we present a framework that uses ensemble machine learning technique gradient boosted trees for data classification in health care big data. The framework is built on Spark platform which is fast in comparison with other traditional frameworks. Unlike other works that focus on a single technique, our work presents a comparison of six different machine learning techniques along with gradient boosted trees on datasets of different characteristics. Five benchmark health care datasets are considered for experimentation, and the results of different machine learning techniques are discussed in comparison with gradient boosted trees. The metric chosen for comparison is misclassification error rate and the run time of the algorithms. The goal of this paper is to i) Compare the performance of gradient boosted trees with other machine learning techniques in Spark platform specifically for health care big data and ii) Discuss the results from the experiments conducted on datasets of different characteristics thereby drawing inference and conclusion. The experimental results show that the accuracy is largely dependent on the characteristics of the datasets for other machine learning techniques whereas gradient boosting trees yields reasonably stable results in terms of accuracy without largely depending on the dataset characteristics.

Keywords: big data analytics, ensemble machine learning, gradient boosted trees, Spark platform

Procedia PDF Downloads 241
10409 Enhancer: An Effective Transformer Architecture for Single Image Super Resolution

Authors: Pitigalage Chamath Chandira Peiris

Abstract:

A widely researched domain in the field of image processing in recent times has been single image super-resolution, which tries to restore a high-resolution image from a single low-resolution image. Many more single image super-resolution efforts have been completed utilizing equally traditional and deep learning methodologies, as well as a variety of other methodologies. Deep learning-based super-resolution methods, in particular, have received significant interest. As of now, the most advanced image restoration approaches are based on convolutional neural networks; nevertheless, only a few efforts have been performed using Transformers, which have demonstrated excellent performance on high-level vision tasks. The effectiveness of CNN-based algorithms in image super-resolution has been impressive. However, these methods cannot completely capture the non-local features of the data. Enhancer is a simple yet powerful Transformer-based approach for enhancing the resolution of images. A method for single image super-resolution was developed in this study, which utilized an efficient and effective transformer design. This proposed architecture makes use of a locally enhanced window transformer block to alleviate the enormous computational load associated with non-overlapping window-based self-attention. Additionally, it incorporates depth-wise convolution in the feed-forward network to enhance its ability to capture local context. This study is assessed by comparing the results obtained for popular datasets to those obtained by other techniques in the domain.

Keywords: single image super resolution, computer vision, vision transformers, image restoration

Procedia PDF Downloads 105
10408 A Study of Permission-Based Malware Detection Using Machine Learning

Authors: Ratun Rahman, Rafid Islam, Akin Ahmed, Kamrul Hasan, Hasan Mahmud

Abstract:

Malware is becoming more prevalent, and several threat categories have risen dramatically in recent years. This paper provides a bird's-eye view of the world of malware analysis. The efficiency of five different machine learning methods (Naive Bayes, K-Nearest Neighbor, Decision Tree, Random Forest, and TensorFlow Decision Forest) combined with features picked from the retrieval of Android permissions to categorize applications as harmful or benign is investigated in this study. The test set consists of 1,168 samples (among these android applications, 602 are malware and 566 are benign applications), each consisting of 948 features (permissions). Using the permission-based dataset, the machine learning algorithms then produce accuracy rates above 80%, except the Naive Bayes Algorithm with 65% accuracy. Of the considered algorithms TensorFlow Decision Forest performed the best with an accuracy of 90%.

Keywords: android malware detection, machine learning, malware, malware analysis

Procedia PDF Downloads 169