Search results for: web service monitoring
4991 Understanding the Influence on Drivers’ Recommendation and Review-Writing Behavior in the P2P Taxi Service
Authors: Liwen Hou
Abstract:
The booming mobile business has been penetrating the taxi industry worldwide with P2P (peer to peer) taxi services, as an emerging business model, transforming the industry. Parallel with other mobile businesses, member recommendations and online reviews are believed to be very effective with regard to acquiring new users for P2P taxi services. Based on an empirical dataset of the taxi industry in China, this study aims to reveal which factors influence users’ recommendations and review-writing behaviors. Differing from the existing literature, this paper takes the taxi driver’s perspective into consideration and hence selects a group of variables related to the drivers. We built two models to reflect the factors that influence the number of recommendations and reviews posted on the platform (i.e., the app). Our models show that all factors, except the driver’s score, significantly influence the recommendation behavior. Likewise, only one factor, passengers’ bad reviews, is insignificant in generating more drivers’ reviews. In the conclusion, we summarize the findings and limitations of the research.Keywords: online recommendation, P2P taxi service, review-writing, word of mouth
Procedia PDF Downloads 3074990 Fourier Transform and Machine Learning Techniques for Fault Detection and Diagnosis of Induction Motors
Authors: Duc V. Nguyen
Abstract:
Induction motors are widely used in different industry areas and can experience various kinds of faults in stators and rotors. In general, fault detection and diagnosis techniques for induction motors can be supervised by measuring quantities such as noise, vibration, and temperature. The installation of mechanical sensors in order to assess the health conditions of a machine is typically only done for expensive or load-critical machines, where the high cost of a continuous monitoring system can be Justified. Nevertheless, induced current monitoring can be implemented inexpensively on machines with arbitrary sizes by using current transformers. In this regard, effective and low-cost fault detection techniques can be implemented, hence reducing the maintenance and downtime costs of motors. This work proposes a method for fault detection and diagnosis of induction motors, which combines classical fast Fourier transform and modern/advanced machine learning techniques. The proposed method is validated on real-world data and achieves a precision of 99.7% for fault detection and 100% for fault classification with minimal expert knowledge requirement. In addition, this approach allows users to be able to optimize/balance risks and maintenance costs to achieve the highest benet based on their requirements. These are the key requirements of a robust prognostics and health management system.Keywords: fault detection, FFT, induction motor, predictive maintenance
Procedia PDF Downloads 1734989 Determination of Pesticides Residues in Tissue of Two Freshwater Fish Species by Modified QuEChERS Method
Authors: Iwona Cieślik, Władysław Migdał, Kinga Topolska, Ewa Cieślik
Abstract:
The consumption of fish is recommended as a means of preventing serious diseases, especially cardiovascular problems. Fish is known to be a valuable source of protein (rich in essential amino acids), unsaturated fatty acids, fat-soluble vitamins, macro- and microelements. However, it can also contain several contaminants (e.g. pesticides, heavy metals) that may pose considerable risks for humans. Among others, pesticide are of special concern. Their widespread use has resulted in the contamination of environmental compartments, including water. The occurrence of pesticides in the environment is a serious problem, due to their potential toxicity. Therefore, a systematic monitoring is needed. The aim of the study was to determine the organochlorine and organophosphate pesticide residues in fish muscle tissues of the pike (Esox lucius, L.) and the rainbow trout (Oncorhynchus mykkis, Walbaum) by a modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method, using Gas Chromatography Quadrupole Mass Spectrometry (GC/Q-MS), working in selected-ion monitoring (SIM) mode. The analysis of α-HCH, β-HCH, lindane, diazinon, disulfoton, δ-HCH, methyl parathion, heptachlor, malathion, aldrin, parathion, heptachlor epoxide, γ-chlordane, endosulfan, α-chlordane, o,p'-DDE, dieldrin, endrin, 4,4'-DDD, ethion, endrin aldehyde, endosulfan sulfate, 4,4'-DDT, and metoxychlor was performed in the samples collected in the Carp Valley (Malopolska region, Poland). The age of the pike (n=6) was 3 years and its weight was 2-3 kg, while the age of the rainbow trout (n=6) was 0.5 year and its weight was 0.5-1.0 kg. Detectable pesticide (HCH isomers, endosulfan isomers, DDT and its metabolites as well as metoxychlor) residues were present in fish samples. However, all these compounds were below the limit of quantification (LOQ). The other examined pesticide residues were below the limit of detection (LOD). Therefore, the levels of contamination were - in all cases - below the default Maximum Residue Levels (MRLs), established by Regulation (EC) No 396/2005 of the European Parliament and of the Council. The monitoring of pesticide residues content in fish is required to minimize potential adverse effects on the environment and human exposure to these contaminants.Keywords: contaminants, fish, pesticides residues, QuEChERS method
Procedia PDF Downloads 2204988 An Exploratory Analysis of Brisbane's Commuter Travel Patterns Using Smart Card Data
Authors: Ming Wei
Abstract:
Over the past two decades, Location Based Service (LBS) data have been increasingly applied to urban and transportation studies due to their comprehensiveness and consistency. However, compared to other LBS data including mobile phone data, GPS and social networking platforms, smart card data collected from public transport users have arguably yet to be fully exploited in urban systems analysis. By using five weekdays of passenger travel transaction data taken from go card – Southeast Queensland’s transit smart card – this paper analyses the spatiotemporal distribution of passenger movement with regard to the land use patterns in Brisbane. Work and residential places for public transport commuters were identified after extracting journeys-to-work patterns. Our results show that the locations of the workplaces identified from the go card data and residential suburbs are largely consistent with those that were marked in the land use map. However, the intensity for some residential locations in terms of population or commuter densities do not match well between the map and those derived from the go card data. This indicates that the misalignment between residential areas and workplaces to a certain extent, shedding light on how enhancements to service management and infrastructure expansion might be undertaken.Keywords: big data, smart card data, travel pattern, land use
Procedia PDF Downloads 2874987 Trace Analysis of Genotoxic Impurity Pyridine in Sitagliptin Drug Material Using UHPLC-MS
Authors: Bashar Al-Sabti, Jehad Harbali
Abstract:
Background: Pyridine is a reactive base that might be used in preparing sitagliptin. International Agency for Research on Cancer classifies pyridine in group 2B; this classification means that pyridine is possibly carcinogenic to humans. Therefore, pyridine should be monitored at the allowed limit in sitagliptin pharmaceutical ingredients. Objective: The aim of this study was to develop a novel ultra high performance liquid chromatography mass spectrometry (UHPLC-MS) method to estimate the quantity of pyridine impurity in sitagliptin pharmaceutical ingredients. Methods: The separation was performed on C8 shim-pack (150 mm X 4.6 mm, 5 µm) in reversed phase mode using a mobile phase of water-methanol-acetonitrile containing 4 mM ammonium acetate in gradient mode. Pyridine was detected by mass spectrometer using selected ionization monitoring mode at m/z = 80. The flow rate of the method was 0.75 mL/min. Results: The method showed excellent sensitivity with a quantitation limit of 1.5 ppm of pyridine relative to sitagliptin. The linearity of the method was excellent at the range of 1.5-22.5 ppm with a correlation coefficient of 0.9996. Recoveries values were between 93.59-103.55%. Conclusions: The results showed good linearity, precision, accuracy, sensitivity, selectivity, and robustness. The studied method was applied to test three batches of sitagliptin raw materials. Highlights: This method is useful for monitoring pyridine in sitagliptin during its synthesis and testing sitagliptin raw materials before using them in the production of pharmaceutical products.Keywords: genotoxic impurity, pyridine, sitagliptin, UHPLC -MS
Procedia PDF Downloads 954986 Towards Conservation and Recovery of Species at Risk in Ontario: Progress on Recovery Planning and Implementation and an Overview of Key Research Needs
Authors: Rachel deCatanzaro, Madeline Austen, Ken Tuininga, Kathy St. Laurent, Christina Rohe
Abstract:
In Canada, the federal Species at Risk Act (SARA) provides protection for wildlife species at risk and a national legislative framework for the conservation or recovery of species that are listed as endangered, threatened, or special concern under Schedule 1 of SARA. Key aspects of the federal species at risk program include the development of recovery documents (recovery strategies, action plans, and management plans) outlining threats, objectives, and broad strategies or measures for conservation or recovery of the species; the identification and protection of critical habitat for threatened and endangered species; and working with groups and organizations to implement on-the-ground recovery actions. Environment Canada’s progress on the development of recovery documents and on the identification and protection of critical habitat in Ontario will be presented, along with successes and challenges associated with on-the ground implementation of recovery actions. In Ontario, Environment Canada is currently involved in several recovery and monitoring programs for at-risk bird species such as the Loggerhead Shrike, Piping Plover, Golden-winged Warbler and Cerulean Warbler and has provided funding for a wide variety of recovery actions targeting priority species at risk and geographic areas each year through stewardship programs including the Habitat Stewardship Program, Aboriginal Fund for Species at Risk, and the Interdepartmental Recovery Fund. Key research needs relevant to the recovery of species at risk have been identified, and include: surveys and monitoring of population sizes and threats, population viability analyses, and addressing knowledge gaps identified for individual species (e.g., species biology and habitat needs). The engagement of all levels of government, the local and international conservation communities, and the scientific research community plays an important role in the conservation and recovery of species at risk in Ontario– through surveying and monitoring, filling knowledge gaps, conducting public outreach, and restoring, protecting, or managing habitat – and will be critical to the continued success of the federal species at risk program.Keywords: conservation biology, habitat protection, species at risk, wildlife recovery
Procedia PDF Downloads 4534985 An Exploratory Case Study of Pre-Service Teachers' Learning to Teach Mathematics to Culturally Diverse Students through a Community-Based After-School Field Experience
Authors: Eugenia Vomvoridi-Ivanovic
Abstract:
It is broadly assumed that participation in field experiences will help pre-service teachers (PSTs) bridge theory to practice. However, this is often not the case since PSTs who are placed in classrooms with large numbers of students from diverse linguistic, cultural, racial, and ethnic backgrounds (culturally diverse students (CDS)) usually observe ineffective mathematics teaching practices that are in contrast to those discussed in their teacher preparation program. Over the past decades, the educational research community has paid increasing attention to investigating out-of-school learning contexts and how participation in such contexts can contribute to the achievement of underrepresented groups in Science, Technology, Engineering, and mathematics (STEM) education and their expanded participation in STEM fields. In addition, several research studies have shown that students display different kinds of mathematical behaviors and discourse practices in out-of-school contexts than they do in the typical mathematics classroom since they draw from a variety of linguistic and cultural resources to negotiate meanings and participate in joint problem solving. However, almost no attention has been given to exploring these contexts as field experiences for pre-service mathematics teachers. The purpose of this study was to explore how participation in a community based after-school field experience promotes understanding of the content pedagogy concepts introduced in elementary mathematics methods courses, particularly as they apply to teaching mathematics to CDS. This study draws upon a situated, socio-cultural theory of teacher learning that centers on the concept of learning as situated social practice, which includes discourse, social interaction, and participation structures. Consistent with exploratory case study methodology, qualitative methods were employed to investigate how a cohort of twelve participating pre-service teacher's approach to pedagogy and their conversations around teaching and learning mathematics to CDS evolved through their participation in the after-school field experience, and how they connected the content discussed in their mathematics methods course with their interactions with the CDS in the after-school. Data were collected over a period of one academic year from the following sources: (a) audio recordings of the PSTs' interactions with the students during the after-school sessions, (b) PSTs' after-school field-notes, (c) audio-recordings of weekly methods course meetings, and (d) other document data (e.g., PST and student generated artifacts, PSTs' written course assignments). The findings of this study reveal that the PSTs benefitted greatly through their participation in the after-school field experience. Specifically, after-school participation promoted a deeper understanding of the content pedagogy concepts introduced in the mathematics methods course and gained a greater appreciation for how students learn mathematics with understanding. Further, even though many of PSTs' assumptions about the mathematical abilities of CDS were challenged and PSTs began to view CDSs' cultural and linguistic backgrounds as resources (rather than obstacles) for learning, some PSTs still held negative stereotypes about CDS and teaching and learning mathematics to CDS in particular. Insights gained through this study contribute to a better understanding of how informal mathematics learning contexts may provide a valuable context for pre-service teacher's learning to teach mathematics to CDS.Keywords: after-school mathematics program, pre-service mathematical education of teachers, qualitative methods, situated socio-cultural theory, teaching culturally diverse students
Procedia PDF Downloads 1314984 Comprehensive Multilevel Practical Condition Monitoring Guidelines for Power Cables in Industries: Case Study of Mobarakeh Steel Company in Iran
Authors: S. Mani, M. Kafil, E. Asadi
Abstract:
Condition Monitoring (CM) of electrical equipment has gained remarkable importance during the recent years; due to huge production losses, substantial imposed costs and increases in vulnerability, risk and uncertainty levels. Power cables feed numerous electrical equipment such as transformers, motors, and electric furnaces; thus their condition assessment is of a very great importance. This paper investigates electrical, structural and environmental failure sources, all of which influence cables' performances and limit their uptimes; and provides a comprehensive framework entailing practical CM guidelines for maintenance of cables in industries. The multilevel CM framework presented in this study covers performance indicative features of power cables; with a focus on both online and offline diagnosis and test scenarios, and covers short-term and long-term threats to the operation and longevity of power cables. The study, after concisely overviewing the concept of CM, thoroughly investigates five major areas of power quality, Insulation Quality features of partial discharges, tan delta and voltage withstand capabilities, together with sheath faults, shield currents and environmental features of temperature and humidity; and elaborates interconnections and mutual impacts between those areas; using mathematical formulation and practical guidelines. Detection, location, and severity identification methods for every threat or fault source are also elaborated. Finally, the comprehensive, practical guidelines presented in the study are presented for the specific case of Electric Arc Furnace (EAF) feeder MV power cables in Mobarakeh Steel Company (MSC), the largest steel company in MENA region, in Iran. Specific technical and industrial characteristics and limitations of a harsh industrial environment like MSC EAF feeder cable tunnels are imposed on the presented framework; making the suggested package more practical and tangible.Keywords: condition monitoring, diagnostics, insulation, maintenance, partial discharge, power cables, power quality
Procedia PDF Downloads 2294983 A Soft Computing Approach Monitoring of Heavy Metals in Soil and Vegetables in the Republic of Macedonia
Authors: Vesna Karapetkovska Hristova, M. Ayaz Ahmad, Julijana Tomovska, Biljana Bogdanova Popov, Blagojce Najdovski
Abstract:
The average total concentrations of heavy metals; (cadmium [Cd], copper [Cu], nickel [Ni], lead [Pb], and zinc [Zn]) were analyzed in soil and vegetables samples collected from the different region of Macedonia during the years 2010-2012. Basic soil properties such as pH, organic matter and clay content were also included in the study. The average concentrations of Cd, Cu, Ni, Pb, Zn in the A horizon (0-30 cm) of agricultural soils were as follows, respectively: 0.25, 5.3, 6.9, 15.2, 26.3 mg kg-1 of soil. We have found that neural networking model can be considered as a tool for prediction and spatial analysis of the processes controlling the metal transfer within the soil-and vegetables. The predictive ability of such models is well over 80% as compared to 20% for typical regression models. A radial basic function network reflects good predicting accuracy and correlation coefficients between soil properties and metal content in vegetables much better than the back-propagation method. Neural Networking / soft computing can support the decision-making processes at different levels, including agro ecology, to improve crop management based on monitoring data and risk assessment of metal transfer from soils to vegetables.Keywords: soft computing approach, total concentrations, heavy metals, agricultural soils
Procedia PDF Downloads 3684982 Preferred Service Delivery options for Female Sex Workers in the Riverine Area of lome, Togo
Authors: Gbone Akou Sophie
Abstract:
Lome state in Togo is considered to have the highest HIV prevalence in Togo according to NAIIS 2023, with the prevalence of 5.5%, Female Sex Workers (FSW) are one of the most vulnerable population, and they are vital in HIV programming. They have the highest HIV prevalence compared to others such as HRM, PWID and Transgender in lome State, Togo. Evidence from Integrated Biological Behavioral Surveillance Survey shows increasing burden of HIV infection from 13.7% in 20018 to 17.2% in 2020 and now 22.9% in 2021 among Female Sex Workers (FSW). This shows their HIV prevalence has been rising over time. The vulnerability status of the FSW in the riverine areas of lome is heightened because of cultural and economic issues where there is exchange of sex for commodities with cross border traders as well as limited access to HIV prevention information. Methods:A cross sectional study which recruited 120 FSW from two Riverine LGAs of Agoe and Kpehenou LGA of Lome State using both snowballing and simple random sampling technique. While semi-structured questionnaire was used as an instrument for data collection among the 120 FSW respondents. Additional information was also elicited from 10 FSW key opinion leaders and community members through in-depth interviews (IDI). Results: 44(36%) of respondents were willing to receive regular HIV care and services as well as visit for STI check-ups at any service point. However, 47(40%) were willing to receive services at private facilities alone, 10 (8%) were willing to receive services at public facilities, 6 (5%) were willing to access services in their homes rather than in the health facility. 13 (11%) were also willing to have peers assist in getting HIV testing services. Conclusion: integrated differentiated model of care for HIV services helps improve HIV services uptake among FSW community especially in the hard- to reach riverine areas which will further lead to epidemic control. Also targeted HIV information should be designed to suit the learning needs of the hard-to reach communities like the riverine areas. More peer educators should be engaged to ensure information and other HIV services reach the riverine communities.Keywords: female sex workers ( FSW), human immuno-deficiency virus(HIV), prevanlence, service delivery
Procedia PDF Downloads 734981 Assessment of the Contribution of Geographic Information System Technology in Non Revenue Water: Case Study Dar Es Salaam Water and Sewerage Authority Kawe - Mzimuni Street
Authors: Victor Pesco Kassa
Abstract:
This research deals with the assessment of the contribution of GIS Technology in NRW. This research was conducted at Dar, Kawe Mzimuni Street. The data collection was obtained from existing source which is DAWASA HQ. The interpretation of the data was processed by using ArcGIS software. The data collected from the existing source reveals a good coverage of DAWASA’s water network at Mzimuni Street. Most of residents are connected to the DAWASA’s customer service. Also the collected data revealed that by using GIS DAWASA’s customer Geodatabase has been improved. Through GIS we can prepare customer location map purposely for site surveying also this map will be able to show different type of customer that are connected to DAWASA’s water service. This is a perfect contribution of the GIS Technology to address and manage the problem of NRW in DAWASA. Finally, the study recommends that the same study should be conducted in other DAWASA’s zones such as Temeke, Boko and Bagamoyo not only at Kawe Mzimuni Street. Through this study it is observed that ArcGIS software can offer powerful tools for managing and processing information geographically and in water and sanitation authorities such as DAWASA.Keywords: DAWASA, NRW, Esri, EURA, ArcGIS
Procedia PDF Downloads 834980 Factors Influencing the Adoption of Social Media as a Medium of Public Service Broadcasting
Authors: Seyed Mohammadbagher Jafari, Izmeera Shiham, Masoud Arianfar
Abstract:
The increased usage of Social media for different uses in turn makes it important to develop an understanding of users and their attitudes toward these sites, and moreover, the uses of such sites in a broader perspective such as broadcasting. This quantitative study addressed the problem of factors influencing the adoption of social media as a medium of public service broadcasting in the Republic of Maldives. These powerful and increasingly usable tools, accompanied by large public social media datasets, are bringing in a golden age of social science by empowering researchers to measure social behavior on a scale never before possible. This was conducted by exploring social responses on the use of social media. Research model was developed based on the previous models such as TAM, DOI and Trust combined model. It evaluates the influence of perceived ease of use, perceived usefulness, trust, complexity, compatibility and relative advantage influence on the adoption of social Media. The model was tested on a sample of 365 Maldivian people using survey method via questionnaire. The result showed that perceived usefulness, trust, relative advantage and complexity would highly influence the adoption of social media.Keywords: adoption, broadcasting, maldives, social media
Procedia PDF Downloads 4844979 Application of the Hit or Miss Transform to Detect Dams Monitored for Water Quality Using Remote Sensing in South Africa
Authors: Brighton Chamunorwa
Abstract:
The current remote sensing of water quality procedures does not provide a step representing physical visualisation of the monitored dam. The application of the remote sensing of water quality techniques may benefit from use of mathematical morphology operators for shape identification. Given an input of dam outline, morphological operators such as the hit or miss transform identifies if the water body is present on input remotely sensed images. This study seeks to determine the accuracy of the hit or miss transform to identify dams monitored by the water resources authorities in South Africa on satellite images. To achieve this objective the study download a Landsat image acquired in winter and tested the capability of the hit or miss transform using shapefile boundaries of dams in the crocodile marico catchment. The results of the experiment show that it is possible to detect most dams on the Landsat image after the adjusting the erosion operator to detect pixel matching a percentage similarity of 80% and above. Successfully implementation of the current study contributes towards optimisation of mathematical morphology image operators. Additionally, the effort helps develop remote sensing of water quality monitoring with improved simulation of the conventional procedures.Keywords: hit or miss transform, mathematical morphology, remote sensing, water quality monitoring
Procedia PDF Downloads 1544978 Website Appeal’s Impact on Brand Outcomes: The Mediated Effect of Emotional Attractiveness in the Relationship between Consistent Image and Brand Value
Authors: Salvador Treviño-Martinez, Christian Reich-Lopez
Abstract:
This paper investigates the relationship between website appeal and brand value outcomes (brand attraction, brand loyalty, brand relationship, and brand experience), considering the mediating effect of emotional attractiveness. Data were collected from 221 customers of a quick-service restaurant in Culiacan, Mexico, using an online survey distributed via WhatsApp, following the clients' navigation of the restaurant's website. The study employed PLS-SEM to test the proposed hypotheses and performed 5,000 bootstrapping subsamples to obtain results. The findings indicate that consistent image, a key component of website appeal, has a statistically significant direct and mediated effect (through emotional attractiveness) on the aforementioned brand outcomes. The study's limitations include the convenience sampling method and the single company client database used for the sample composition. This research contributes to the branding and website quality literature by testing nine hypotheses using the Stimuli-Organism-Response theoretical approach in an underexplored context: quick-service restaurants in Latin America.Keywords: website appeal, branding, emotional attractiveness, consistent image, website quality
Procedia PDF Downloads 934977 Troubleshooting Petroleum Equipment Based on Wireless Sensors Based on Bayesian Algorithm
Authors: Vahid Bayrami Rad
Abstract:
In this research, common methods and techniques have been investigated with a focus on intelligent fault finding and monitoring systems in the oil industry. In fact, remote and intelligent control methods are considered a necessity for implementing various operations in the oil industry, but benefiting from the knowledge extracted from countless data generated with the help of data mining algorithms. It is a avoid way to speed up the operational process for monitoring and troubleshooting in today's big oil companies. Therefore, by comparing data mining algorithms and checking the efficiency and structure and how these algorithms respond in different conditions, The proposed (Bayesian) algorithm using data clustering and their analysis and data evaluation using a colored Petri net has provided an applicable and dynamic model from the point of view of reliability and response time. Therefore, by using this method, it is possible to achieve a dynamic and consistent model of the remote control system and prevent the occurrence of leakage in oil pipelines and refineries and reduce costs and human and financial errors. Statistical data The data obtained from the evaluation process shows an increase in reliability, availability and high speed compared to other previous methods in this proposed method.Keywords: wireless sensors, petroleum equipment troubleshooting, Bayesian algorithm, colored Petri net, rapid miner, data mining-reliability
Procedia PDF Downloads 674976 Incidence of Vulval, Vaginal and Cervical Disease in Rapid Access Clinic in a London Tertiary Hospital Setting
Authors: Kieren Wilson, Gulnaz Majeed
Abstract:
NHS constitution gives rights to the patient with suspected cancer to be seen by a cancer specialist within 2 weeks of referral. Guys and St Thomas Hospital (GSTT) is one of the largest cancer centres in London. NICE guidelines have provided guidance for health professionals to refer patients appropriately to RAC. In GSTT suspected gynae cancer referrals are mostly by NHS e-Referral Service with some fax, emails as well as paper referrals. The objective of this study was to evaluate compliance with 2-week referral pathway with emphasis on one stop diagnostic service with supporting efficient pathways. A prospective evaluation over 3 months (1 Jan 2017 to 31 Mar 2017) was undertaken. There were 26 clinics, 761 patients were booked in the clinics with a DNA rate of 13% (n=101) hence 606 patients were seen. Majority of referrals were for post menopausal bleeding (PMB) 25% (n=194) followed by cervical, vaginal, vulval reasons 23% (n=179) (abnormal cytology excluded as patients directly referred to colposcopy unit in GSTT), ovarian 7% (n=54) and endometrial 5% (n=41). Women with new or previous established diagnosis of cancer were 24, cervical (n=17), vulva (n=6) and vagina (n=1). Multifocal preinvasive disease vulva (VIN), vagina (VAIN) and cervix (CIN) was confirmed in twenty-six patients 4% (high prevalence in HIV patients). Majority of cervical referrals: PCB (n=14), cervical erosion (n=7), polyps (n=9) and cervical cyst were benign. However, two women with PMB had cervical cancer. Only 2 out of 13 referrals with vaginal concerns had VAIN. One case with non-cervical glandular cytology was confirmed to have endometrial cancer. One stop service based on the diagnostic support of ultrasound, colposcopy and hysteroscopy was achieved in 54% (n=359). Patients were discharged to GP, benign gynaecology, endometriosis, combined vulval/dermatology clinic or gynae oncology. 33% (n=202) required a second visit, 12% (n=70) third visit, 3% (n=19) fourth visit, 1% (n=4) fifth visit and 1% (n=6) sixth visit. Main reasons for follow ups were the unavailability of diagnostic slots, patient choice, need for interpreters, the discussion following gynae MDM review for triage to benign gynae, delay in availability of diagnostic results like histology/MRI/CT. Recommendations following this study are multi disciplinary review of pathways with the availability of additional diagnostic procedure slots to aim for one stop service. Furthermore, establishment of virtual and telephone consultations to reduce follow ups.Keywords: multifocal disease, post menopausal bleeding, preinvasive disease, rapid access clinic
Procedia PDF Downloads 1894975 Multi-Source Data Fusion for Urban Comprehensive Management
Authors: Bolin Hua
Abstract:
In city governance, various data are involved, including city component data, demographic data, housing data and all kinds of business data. These data reflects different aspects of people, events and activities. Data generated from various systems are different in form and data source are different because they may come from different sectors. In order to reflect one or several facets of an event or rule, data from multiple sources need fusion together. Data from different sources using different ways of collection raised several issues which need to be resolved. Problem of data fusion include data update and synchronization, data exchange and sharing, file parsing and entry, duplicate data and its comparison, resource catalogue construction. Governments adopt statistical analysis, time series analysis, extrapolation, monitoring analysis, value mining, scenario prediction in order to achieve pattern discovery, law verification, root cause analysis and public opinion monitoring. The result of Multi-source data fusion is to form a uniform central database, which includes people data, location data, object data, and institution data, business data and space data. We need to use meta data to be referred to and read when application needs to access, manipulate and display the data. A uniform meta data management ensures effectiveness and consistency of data in the process of data exchange, data modeling, data cleansing, data loading, data storing, data analysis, data search and data delivery.Keywords: multi-source data fusion, urban comprehensive management, information fusion, government data
Procedia PDF Downloads 3954974 Design of a Mhealth Therapy Management to Maintain Therapy Outcomes after Bariatric Surgery
Authors: A. Dudek, P. Tylec, G. Torbicz, P. Duda, K. Proniewska, P. Major, M. Pedziwiatr
Abstract:
Background: Conservative treatments of obesity, based only on a proper diet and physical activity, without the support of an interdisciplinary team of specialist does not bring satisfactory bariatric results. Long-term maintenance of a proper metabolic results after rapid weight loss due to bariatric surgery requires engagement from patients. Mobile health tool may offer alternative model that enhance participant engagement in keeping the therapy. Objective: We aimed to assess the influence of constant monitoring and subsequent motivational alerts in perioperative period and on post-operative effects in the bariatric patients. As well as the study was designed to identify factors conductive urge to change lifestyle after surgery. Methods: This prospective clinical control study was based on a usage of a designed prototype of bariatric mHealth system. The prepared application comprises central data management with a comprehensible interface dedicated for patients and data transfer module as a physician’s platform. Motivation system of a platform consist of motivational alerts, graphic outcome presentation, and patient communication center. Generated list of patients requiring urgent consultation and possibility of a constant contact with a specialist provide safety zone. 31 patients were enrolled in continuous monitoring program during a 6-month period along with typical follow-up visits. After one year follow-up, all patients were examined. Results: There were 20 active users of the proposed monitoring system during the entire duration of the study. After six months, 24 patients took a part in a control by telephone questionnaires. Among them, 75% confirmed that the application concept was an important element in the treatment. Active users of the application indicated as the most valuable features: motivation to continue treatment (11 users), graphical presentation of weight loss, and other parameters (7 users), the ability to contact a doctor (3 users). The three main drawbacks are technical errors (9 users), tedious questionnaires inside the application (5 users), and time-consuming tasks inside the system (2 users). Conclusions: Constant monitoring and successive motivational alerts to continue treatment is an appropriate tool in the treatment after bariatric surgery, mainly in the early post-operative period. Graphic presentation of data and continuous connection with a clinical staff seemed to be an element of motivation to continue treatment and a sense of security.Keywords: bariatric surgery, mHealth, mobile health tool, obesity
Procedia PDF Downloads 1134973 Smart Sensor Data to Predict Machine Performance with IoT-Based Machine Learning and Artificial Intelligence
Authors: C. J. Rossouw, T. I. van Niekerk
Abstract:
The global manufacturing industry is utilizing the internet and cloud-based services to further explore the anatomy and optimize manufacturing processes in support of the movement into the Fourth Industrial Revolution (4IR). The 4IR from a third world and African perspective is hindered by the fact that many manufacturing systems that were developed in the third industrial revolution are not inherently equipped to utilize the internet and services of the 4IR, hindering the progression of third world manufacturing industries into the 4IR. This research focuses on the development of a non-invasive and cost-effective cyber-physical IoT system that will exploit a machine’s vibration to expose semantic characteristics in the manufacturing process and utilize these results through a real-time cloud-based machine condition monitoring system with the intention to optimize the system. A microcontroller-based IoT sensor was designed to acquire a machine’s mechanical vibration data, process it in real-time, and transmit it to a cloud-based platform via Wi-Fi and the internet. Time-frequency Fourier analysis was applied to the vibration data to form an image representation of the machine’s behaviour. This data was used to train a Convolutional Neural Network (CNN) to learn semantic characteristics in the machine’s behaviour and relate them to a state of operation. The same data was also used to train a Convolutional Autoencoder (CAE) to detect anomalies in the data. Real-time edge-based artificial intelligence was achieved by deploying the CNN and CAE on the sensor to analyse the vibration. A cloud platform was deployed to visualize the vibration data and the results of the CNN and CAE in real-time. The cyber-physical IoT system was deployed on a semi-automated metal granulation machine with a set of trained machine learning models. Using a single sensor, the system was able to accurately visualize three states of the machine’s operation in real-time. The system was also able to detect a variance in the material being granulated. The research demonstrates how non-IoT manufacturing systems can be equipped with edge-based artificial intelligence to establish a remote machine condition monitoring system.Keywords: IoT, cyber-physical systems, artificial intelligence, manufacturing, vibration analytics, continuous machine condition monitoring
Procedia PDF Downloads 884972 The Impact of an Improved Strategic Partnership Programme on Organisational Performance and Growth of Firms in the Internet Protocol Television and Hybrid Fibre-Coaxial Broadband Industry
Authors: Collen T. Masilo, Brane Semolic, Pieter Steyn
Abstract:
The Internet Protocol Television (IPTV) and Hybrid Fibre-Coaxial (HFC) Broadband industrial sector landscape are rapidly changing and organisations within the industry need to stay competitive by exploring new business models so that they can be able to offer new services and products to customers. The business challenge in this industrial sector is meeting or exceeding high customer expectations across multiple content delivery modes. The increasing challenges in the IPTV and HFC broadband industrial sector encourage service providers to form strategic partnerships with key suppliers, marketing partners, advertisers, and technology partners. The need to form enterprise collaborative networks poses a challenge for any organisation in this sector, in selecting the right strategic partners who will ensure that the organisation’s services and products are marketed in new markets. Partners who will ensure that customers are efficiently supported by meeting and exceeding their expectations. Lastly, selecting cooperation partners who will represent the organisation in a positive manner, and contribute to improving the performance of the organisation. Companies in the IPTV and HFC broadband industrial sector tend to form informal partnerships with suppliers, vendors, system integrators and technology partners. Generally, partnerships are formed without thorough analysis of the real reason a company is forming collaborations, without proper evaluations of prospective partners using specific selection criteria, and with ineffective performance monitoring of partners to ensure that a firm gains real long term benefits from its partners and gains competitive advantage. Similar tendencies are illustrated in the research case study and are based on Skyline Communications, a global leader in end-to-end, multi-vendor network management and operational support systems (OSS) solutions. The organisation’s flagship product is the DataMiner network management platform used by many operators across multiple industries and can be referred to as a smart system that intelligently manages complex technology ecosystems for its customers in the IPTV and HFC broadband industry. The approach of the research is to develop the most efficient business model that can be deployed to improve a strategic partnership programme in order to significantly improve the performance and growth of organisations participating in a collaborative network in the IPTV and HFC broadband industrial sector. This involves proposing and implementing a new strategic partnership model and its main features within the industry which should bring about significant benefits for all involved companies to achieve value add and an optimal growth strategy. The proposed business model has been developed based on the research of existing relationships, value chains and business requirements in this industrial sector and validated in 'Skyline Communications'. The outputs of the business model have been demonstrated and evaluated in the research business case study the IPTV and HFC broadband service provider 'Skyline Communications'.Keywords: growth, partnership, selection criteria, value chain
Procedia PDF Downloads 1344971 Detection of Hepatitis B by the Use of Artifical Intelegence
Authors: Shizra Waris, Bilal Shoaib, Munib Ahmad
Abstract:
Background; The using of clinical decision support systems (CDSSs) may recover unceasing disease organization, which requires regular visits to multiple health professionals, treatment monitoring, disease control, and patient behavior modification. The objective of this survey is to determine if these CDSSs improve the processes of unceasing care including diagnosis, treatment, and monitoring of diseases. Though artificial intelligence is not a new idea it has been widely documented as a new technology in computer science. Numerous areas such as education business, medical and developed have made use of artificial intelligence Methods: The survey covers articles extracted from relevant databases. It uses search terms related to information technology and viral hepatitis which are published between 2000 and 2016. Results: Overall, 80% of studies asserted the profit provided by information technology (IT); 75% of learning asserted the benefits concerned with medical domain;25% of studies do not clearly define the added benefits due IT. The CDSS current state requires many improvements to hold up the management of liver diseases such as HCV, liver fibrosis, and cirrhosis. Conclusion: We concluded that the planned model gives earlier and more correct calculation of hepatitis B and it works as promising tool for calculating of custom hepatitis B from the clinical laboratory data.Keywords: detection, hapataties, observation, disesese
Procedia PDF Downloads 1584970 Monitoring Large-Coverage Forest Canopy Height by Integrating LiDAR and Sentinel-2 Images
Authors: Xiaobo Liu, Rakesh Mishra, Yun Zhang
Abstract:
Continuous monitoring of forest canopy height with large coverage is essential for obtaining forest carbon stocks and emissions, quantifying biomass estimation, analyzing vegetation coverage, and determining biodiversity. LiDAR can be used to collect accurate woody vegetation structure such as canopy height. However, LiDAR’s coverage is usually limited because of its high cost and limited maneuverability, which constrains its use for dynamic and large area forest canopy monitoring. On the other hand, optical satellite images, like Sentinel-2, have the ability to cover large forest areas with a high repeat rate, but they do not have height information. Hence, exploring the solution of integrating LiDAR data and Sentinel-2 images to enlarge the coverage of forest canopy height prediction and increase the prediction repeat rate has been an active research topic in the environmental remote sensing community. In this study, we explore the potential of training a Random Forest Regression (RFR) model and a Convolutional Neural Network (CNN) model, respectively, to develop two predictive models for predicting and validating the forest canopy height of the Acadia Forest in New Brunswick, Canada, with a 10m ground sampling distance (GSD), for the year 2018 and 2021. Two 10m airborne LiDAR-derived canopy height models, one for 2018 and one for 2021, are used as ground truth to train and validate the RFR and CNN predictive models. To evaluate the prediction performance of the trained RFR and CNN models, two new predicted canopy height maps (CHMs), one for 2018 and one for 2021, are generated using the trained RFR and CNN models and 10m Sentinel-2 images of 2018 and 2021, respectively. The two 10m predicted CHMs from Sentinel-2 images are then compared with the two 10m airborne LiDAR-derived canopy height models for accuracy assessment. The validation results show that the mean absolute error (MAE) for year 2018 of the RFR model is 2.93m, CNN model is 1.71m; while the MAE for year 2021 of the RFR model is 3.35m, and the CNN model is 3.78m. These demonstrate the feasibility of using the RFR and CNN models developed in this research for predicting large-coverage forest canopy height at 10m spatial resolution and a high revisit rate.Keywords: remote sensing, forest canopy height, LiDAR, Sentinel-2, artificial intelligence, random forest regression, convolutional neural network
Procedia PDF Downloads 954969 Public Wi-Fi Security Threat Evil Twin Attack Detection Based on Signal Variant and Hop Count
Authors: Said Abdul Ahad Ahadi, Elyas Baray, Nitin Rakesh, Sudeep Varshney
Abstract:
Wi-Fi is a widely used internet source that is used to provide internet access in many areas such as Stores, Cafes, University campuses, Restaurants and so on. This technology brought more facilities in communication and networking. On the other hand, due to the transmission of data over the air, which makes the network vulnerable, so it becomes prone to various threats such as Evil Twin and etc. The Evil Twin is a kind of adversary which impersonates a legitimate access point (LAP) as it can happen by spoofing the name (SSID) and MAC address (BSSID) of a legitimate access point (LAP). And this attack can cause many threats such as MITM, Service Interruption, Access point service blocking. Various Evil Twin Attack Detection Techniques are proposed, but they require additional hardware, or they require protocol modification. In this paper, we proposed a new technique based on Access Point’s two fingerprints, Received Signal Strength Indicator (RSSI) and Hop Count, that is hard to copy by an adversary. And we implemented the technique in a system called “ETDetector,” which can detect and prevent the attack.Keywords: evil twin, LAP, SSID, Wi-Fi security, signal variation, ETAD, kali linux, scapy, python
Procedia PDF Downloads 1444968 A Location-Based Search Approach According to Users’ Application Scenario
Authors: Shih-Ting Yang, Chih-Yun Lin, Ming-Yu Li, Jhong-Ting Syue, Wei-Ming Huang
Abstract:
Global positioning system (GPS) has become increasing precise in recent years, and the location-based service (LBS) has developed rapidly. Take the example of finding a parking lot (such as Parking apps). The location-based service can offer immediate information about a nearby parking lot, including the information about remaining parking spaces. However, it cannot provide expected search results according to the requirement situations of users. For that reason, this paper develops a “Location-based Search Approach according to Users’ Application Scenario” according to the location-based search and demand determination to help users obtain the information consistent with their requirements. The “Location-based Search Approach based on Users’ Application Scenario” of this paper consists of one mechanism and three kernel modules. First, in the Information Pre-processing Mechanism (IPM), this paper uses the cosine theorem to categorize the locations of users. Then, in the Information Category Evaluation Module (ICEM), the kNN (k-Nearest Neighbor) is employed to classify the browsing records of users. After that, in the Information Volume Level Determination Module (IVLDM), this paper makes a comparison between the number of users’ clicking the information at different locations and the average number of users’ clicking the information at a specific location, so as to evaluate the urgency of demand; then, the two-dimensional space is used to estimate the application situations of users. For the last step, in the Location-based Search Module (LBSM), this paper compares all search results and the average number of characters of the search results, categorizes the search results with the Manhattan Distance, and selects the results according to the application scenario of users. Additionally, this paper develops a Web-based system according to the methodology to demonstrate practical application of this paper. The application scenario-based estimate and the location-based search are used to evaluate the type and abundance of the information expected by the public at specific location, so that information demanders can obtain the information consistent with their application situations at specific location.Keywords: data mining, knowledge management, location-based service, user application scenario
Procedia PDF Downloads 1264967 Method for Selecting and Prioritising Smart Services in Manufacturing Companies
Authors: Till Gramberg, Max Kellner, Erwin Gross
Abstract:
This paper presents a comprehensive investigation into the topic of smart services and IIoT-Platforms, focusing on their selection and prioritization in manufacturing organizations. First, a literature review is conducted to provide a basic understanding of the current state of research in the area of smart services. Based on discussed and established definitions, a definition approach for this paper is developed. In addition, value propositions for smart services are identified based on the literature and expert interviews. Furthermore, the general requirements for the provision of smart services are presented. Subsequently, existing approaches for the selection and development of smart services are identified and described. In order to determine the requirements for the selection of smart services, expert opinions from successful companies that have already implemented smart services are collected through semi-structured interviews. Based on the results, criteria for the evaluation of existing methods are derived. The existing methods are then evaluated according to the identified criteria. Furthermore, a novel method for the selection of smart services in manufacturing companies is developed, taking into account the identified criteria and the existing approaches. The developed concept for the method is verified in expert interviews. The method includes a collection of relevant smart services identified in the literature. The actual relevance of the use cases in the industrial environment was validated in an online survey. The required data and sensors are assigned to the smart service use cases. The value proposition of the use cases is evaluated in an expert workshop using different indicators. Based on this, a comparison is made between the identified value proposition and the required data, leading to a prioritization process. The prioritization process follows an established procedure for evaluating technical decision-making processes. In addition to the technical requirements, the prioritization process includes other evaluation criteria such as the economic benefit, the conformity of the new service offering with the company strategy, or the customer retention enabled by the smart service. Finally, the method is applied and validated in an industrial environment. The results of these experiments are critically reflected upon and an outlook on future developments in the area of smart services is given. This research contributes to a deeper understanding of the selection and prioritization process as well as the technical considerations associated with smart service implementation in manufacturing organizations. The proposed method serves as a valuable guide for decision makers, helping them to effectively select the most appropriate smart services for their specific organizational needs.Keywords: smart services, IIoT, industrie 4.0, IIoT-platform, big data
Procedia PDF Downloads 904966 Agent Based Location Management Protocol for Mobile Adhoc Networks
Authors: Mallikarjun B. Channappagoudar, Pallapa Venkataram
Abstract:
The dynamic nature of Mobile adhoc network (MANET) due to mobility and disconnection of mobile nodes, leads to various problems in predicting the movement of nodes and their location information updation, for efficient interaction among the application specific nodes. Location management is one of the main challenges to be considered for an efficient service provision to the applications of a MANET. In this paper, we propose a location management protocol, for locating the nodes of a MANET and to maintain uninterrupted high-quality service for distributed applications by intelligently anticipating the change of location of its nodes. The protocol predicts the node movement and application resource scarcity, does the replacement with the chosen nodes nearby which have less mobility and rich in resources, with the help of both static and mobile agents, and maintains the application continuity by providing required network resources. The protocol has been simulated using Java Agent Development Environment (JADE) Framework for agent generation, migration and communication. It consumes much less time (response time), gives better location accuracy, utilize less network resources, and reduce location management overhead.Keywords: mobile agent, location management, distributed applications, mobile adhoc network
Procedia PDF Downloads 3954965 Contactless Heart Rate Measurement System based on FMCW Radar and LSTM for Automotive Applications
Authors: Asma Omri, Iheb Sifaoui, Sofiane Sayahi, Hichem Besbes
Abstract:
Future vehicle systems demand advanced capabilities, notably in-cabin life detection and driver monitoring systems, with a particular emphasis on drowsiness detection. To meet these requirements, several techniques employ artificial intelligence methods based on real-time vital sign measurements. In parallel, Frequency-Modulated Continuous-Wave (FMCW) radar technology has garnered considerable attention in the domains of healthcare and biomedical engineering for non-invasive vital sign monitoring. FMCW radar offers a multitude of advantages, including its non-intrusive nature, continuous monitoring capacity, and its ability to penetrate through clothing. In this paper, we propose a system utilizing the AWR6843AOP radar from Texas Instruments (TI) to extract precise vital sign information. The radar allows us to estimate Ballistocardiogram (BCG) signals, which capture the mechanical movements of the body, particularly the ballistic forces generated by heartbeats and respiration. These signals are rich sources of information about the cardiac cycle, rendering them suitable for heart rate estimation. The process begins with real-time subject positioning, followed by clutter removal, computation of Doppler phase differences, and the use of various filtering methods to accurately capture subtle physiological movements. To address the challenges associated with FMCW radar-based vital sign monitoring, including motion artifacts due to subjects' movement or radar micro-vibrations, Long Short-Term Memory (LSTM) networks are implemented. LSTM's adaptability to different heart rate patterns and ability to handle real-time data make it suitable for continuous monitoring applications. Several crucial steps were taken, including feature extraction (involving amplitude, time intervals, and signal morphology), sequence modeling, heart rate estimation through the analysis of detected cardiac cycles and their temporal relationships, and performance evaluation using metrics such as Root Mean Square Error (RMSE) and correlation with reference heart rate measurements. For dataset construction and LSTM training, a comprehensive data collection system was established, integrating the AWR6843AOP radar, a Heart Rate Belt, and a smart watch for ground truth measurements. Rigorous synchronization of these devices ensured data accuracy. Twenty participants engaged in various scenarios, encompassing indoor and real-world conditions within a moving vehicle equipped with the radar system. Static and dynamic subject’s conditions were considered. The heart rate estimation through LSTM outperforms traditional signal processing techniques that rely on filtering, Fast Fourier Transform (FFT), and thresholding. It delivers an average accuracy of approximately 91% with an RMSE of 1.01 beat per minute (bpm). In conclusion, this paper underscores the promising potential of FMCW radar technology integrated with artificial intelligence algorithms in the context of automotive applications. This innovation not only enhances road safety but also paves the way for its integration into the automotive ecosystem to improve driver well-being and overall vehicular safety.Keywords: ballistocardiogram, FMCW Radar, vital sign monitoring, LSTM
Procedia PDF Downloads 744964 The Data Quality Model for the IoT based Real-time Water Quality Monitoring Sensors
Authors: Rabbia Idrees, Ananda Maiti, Saurabh Garg, Muhammad Bilal Amin
Abstract:
IoT devices are the basic building blocks of IoT network that generate enormous volume of real-time and high-speed data to help organizations and companies to take intelligent decisions. To integrate this enormous data from multisource and transfer it to the appropriate client is the fundamental of IoT development. The handling of this huge quantity of devices along with the huge volume of data is very challenging. The IoT devices are battery-powered and resource-constrained and to provide energy efficient communication, these IoT devices go sleep or online/wakeup periodically and a-periodically depending on the traffic loads to reduce energy consumption. Sometime these devices get disconnected due to device battery depletion. If the node is not available in the network, then the IoT network provides incomplete, missing, and inaccurate data. Moreover, many IoT applications, like vehicle tracking and patient tracking require the IoT devices to be mobile. Due to this mobility, If the distance of the device from the sink node become greater than required, the connection is lost. Due to this disconnection other devices join the network for replacing the broken-down and left devices. This make IoT devices dynamic in nature which brings uncertainty and unreliability in the IoT network and hence produce bad quality of data. Due to this dynamic nature of IoT devices we do not know the actual reason of abnormal data. If data are of poor-quality decisions are likely to be unsound. It is highly important to process data and estimate data quality before bringing it to use in IoT applications. In the past many researchers tried to estimate data quality and provided several Machine Learning (ML), stochastic and statistical methods to perform analysis on stored data in the data processing layer, without focusing the challenges and issues arises from the dynamic nature of IoT devices and how it is impacting data quality. A comprehensive review on determining the impact of dynamic nature of IoT devices on data quality is done in this research and presented a data quality model that can deal with this challenge and produce good quality of data. This research presents the data quality model for the sensors monitoring water quality. DBSCAN clustering and weather sensors are used in this research to make data quality model for the sensors monitoring water quality. An extensive study has been done in this research on finding the relationship between the data of weather sensors and sensors monitoring water quality of the lakes and beaches. The detailed theoretical analysis has been presented in this research mentioning correlation between independent data streams of the two sets of sensors. With the help of the analysis and DBSCAN, a data quality model is prepared. This model encompasses five dimensions of data quality: outliers’ detection and removal, completeness, patterns of missing values and checks the accuracy of the data with the help of cluster’s position. At the end, the statistical analysis has been done on the clusters formed as the result of DBSCAN, and consistency is evaluated through Coefficient of Variation (CoV).Keywords: clustering, data quality, DBSCAN, and Internet of things (IoT)
Procedia PDF Downloads 1414963 Variability of Energy Efficiency with the Application of Technologies Embedded in Locomotives of a Heavy Haul Railway: Case Study of Vitoria Minas Railway, Brazil
Authors: Eric Wilson Santos Cabral, Marta Monteiro Da Costa Cruz, Rodrigo Pirola Pestana, Vivian Andréa Parreira
Abstract:
In the transportation sector in Brazil, there is a great challenge that is the maintenance of profit in the face of the great variation in the price of diesel. This directly affects the variable cost of transport companies. Within the railways, part of the great challenges is to overcome the annual budget, cargo and ore transported, thus reducing costs compared to previous years, becoming more efficient each year. Within this scenario, the railway companies are looking for effective measures, aiming at reducing the ratio of liter of diesel consumed by KTKB (Kilometer Gross Ton multiplied by thousand). This ratio represents the indicator of energy efficiency of some railroads in Brazil and in other countries. In this study, we sought to analyze the behavior of the energy efficiency indicator on two parts: The first, with the application of technologies used in locomotives, such as the start-stop system of the diesel engine and the system of tracking and monitoring of fuel. The second, evaluation of the behavior of the variation of the type of cargo transported (loading mix). The study focused on locomotive technology will be carried out using statistical analysis, behavioral evaluation in different operating conditions, such as maneuvers for trains, service trains and freight trains. The analysis will also cover the evaluation of the loading mix made using statistical analysis of the existing railroad database, comparing the energy efficiency per loading mine and type of product. With the completion of this study, the railway undertakings should be able to better target decision-making in order to achieve substantial reductions in transport costs.Keywords: railway transport, energy efficiency, railway technology, fuel consumption
Procedia PDF Downloads 3054962 Design and Implementation of Remote Application Virtualization in Cloud Environments
Authors: Shuen-Tai Wang, Ying-Chuan Chen, Hsi-Ya Chang
Abstract:
Cloud computing is a paradigm of computing that shifts the way computing has been done in the past. The users can use cloud resources such as application software or storage space from the cloud without needing to own them. This paper is focused on solutions that are anticipated to introduce IaaS idea to build cloud base services and enable the individual remote user's applications in cloud environments, which appear as if they are running on the end user's local computer. The available features of application delivery solution have been developed based on our previous research on the virtualization technology to offer applications independent of location so that the users can work online, offline, anywhere, with appropriate device and at any time. This proposed effort has the potential to positively provide an efficient, resilience and elastic environment for cloud service. Users no longer need to burden the system managers and drastically reduces the overall cost of hardware and software licenses. Moreover, this flexible remote application virtualization service represents the next significant step to the mobile workplace, and it lets users access their applications remotely through cloud services anywhere. This is also made possible by the low administrative costs as well as relatively inexpensive end-user terminals and reduced energy expenses.Keywords: cloud computing, IaaS, virtualization, application delivery
Procedia PDF Downloads 281