Search results for: temperature sensors
6446 A Model-Based Approach for Energy Performance Assessment of a Spherical Stationary Reflector/Tracking Absorber Solar Concentrator
Authors: Rosa Christodoulaki, Irene Koronaki, Panagiotis Tsekouras
Abstract:
The aim of this study is to analyze the energy performance of a spherical Stationary Reflector / Tracking Absorber (SRTA) solar concentrator. This type of collector consists of a segment of a spherical mirror placed in a stationary position facing the sun and a cylindrical absorber that tracks the sun by a simple pivoting motion about the center of curvature of the reflector. The energy analysis is performed through the development of a dynamic simulation model in TRNSYS software that calculates the annual heat production and the efficiency of the SRTA solar concentrator. The effect of solar concentrator design features and characteristics, such the reflector material, the reflector diameter, the receiver type, the solar radiation level and the concentration ratio, are discussed in details. Moreover, the energy performance curve of the SRTA solar concentrator, for various temperature differences between the mean fluid temperature and the ambient temperature and radiation intensities is drawn. The results are shown in diagrams, visualizing the effect of solar, optical and thermal parameters to the overall performance of the SRTA solar concentrator throughout the year. The analysis indicates that the SRTA solar concentrator can operate efficiently under a wide range of operating conditions.Keywords: concentrating solar collector, energy analysis , stationary reflector, tracking absorber
Procedia PDF Downloads 2036445 Investigation of Dry Ice Mixed Novel Hybrid Lubri-Coolant in Sustainable Machining of Ti-6AL-4V Alloy: A Comparison of Experimental and Modelling
Authors: Muhammad Jamil, Ning He, Aqib Mashood Khan, Munish Kumar Gupta
Abstract:
Ti-6Al-4V has numerous applications in the medical, automobile, and aerospace industries due to corrosion resistivity, structural stability, and chemical inertness to most fluids at room temperature. These peculiar characteristics are beneficial for their application and present formidable challenges during machining. Machining of Ti-6Al-4V produces an elevated cutting temperature above 1000oC at dry conditions. This accelerates tool wear and reduces product quality. Therefore, there is always a need to employ sustainable/effective coolant/lubricant when machining such alloy. In this study, Finite Element Modeling (FEM) and experimental analysis when cutting Ti-6Al-4V under a distinctly developed dry ice mixed hybrid lubri-coolant are presented. This study aims to model the milling process of Ti-6Al-4V under a proposed novel hybrid lubri-coolant using different cutting speeds and feed per tooth DEFORM® software package was used to conduct the FEM and the numerical model was experimentally validated. A comparison of experimental and simulation results showed a maximum error of no more than 6% for all experimental conditions. In a nutshell, it can be said that the proposed model is effective in predicting the machining temperature precisely.Keywords: friction coefficient, heat transfer, finite element modeling (FEM), milling Ti-6Al-4V
Procedia PDF Downloads 636444 Predicting Aggregation Propensity from Low-Temperature Conformational Fluctuations
Authors: Hamza Javar Magnier, Robin Curtis
Abstract:
There have been rapid advances in the upstream processing of protein therapeutics, which has shifted the bottleneck to downstream purification and formulation. Finding liquid formulations with shelf lives of up to two years is increasingly difficult for some of the newer therapeutics, which have been engineered for activity, but their formulations are often viscous, can phase separate, and have a high propensity for irreversible aggregation1. We explore means to develop improved predictive ability from a better understanding of how protein-protein interactions on formulation conditions (pH, ionic strength, buffer type, presence of excipients) and how these impact upon the initial steps in protein self-association and aggregation. In this work, we study the initial steps in the aggregation pathways using a minimal protein model based on square-well potentials and discontinuous molecular dynamics. The effect of model parameters, including range of interaction, stiffness, chain length, and chain sequence, implies that protein models fold according to various pathways. By reducing the range of interactions, the folding- and collapse- transition come together, and follow a single-step folding pathway from the denatured to the native state2. After parameterizing the model interaction-parameters, we developed an understanding of low-temperature conformational properties and fluctuations, and the correlation to the folding transition of proteins in isolation. The model fluctuations increase with temperature. We observe a low-temperature point, below which large fluctuations are frozen out. This implies that fluctuations at low-temperature can be correlated to the folding transition at the melting temperature. Because proteins “breath” at low temperatures, defining a native-state as a single structure with conserved contacts and a fixed three-dimensional structure is misleading. Rather, we introduce a new definition of a native-state ensemble based on our understanding of the core conservation, which takes into account the native fluctuations at low temperatures. This approach permits the study of a large range of length and time scales needed to link the molecular interactions to the macroscopically observed behaviour. In addition, these models studied are parameterized by fitting to experimentally observed protein-protein interactions characterized in terms of osmotic second virial coefficients.Keywords: protein folding, native-ensemble, conformational fluctuation, aggregation
Procedia PDF Downloads 3636443 Numerical Study of a Nanofluid in a Truncated Cone
Authors: B. Mahfoud, A. Bendjaghlouli
Abstract:
Natural convection is simulated in a truncated cone filled with nanofluid. Inclined and top walls have constant temperature where the heat source is located on the bottom wall of the conical container which is thermally insulated. A finite volume approach is used to solve the governing equations using the SIMPLE algorithm for different parameters such as Rayleigh number, inclination angle of inclined walls of the enclosure and heat source length. The results showed an enhancement in cooling system by using a nanofluid, when conduction regime is assisted. The inclination angle of inclined sidewall and heat source length affect the heat transfer rate and the maximum temperature.Keywords: heat source, truncated cone, nanofluid, natural convection
Procedia PDF Downloads 3106442 Low Field Microwave Absorption and Magnetic Anisotropy in TM Co-Doped ZnO System
Authors: J. Das, T. S. Mahule, V. V. Srinivasu
Abstract:
Electron spin resonance (ESR) study at 9.45 GHz and a field modulation frequency of 100Hz was performed on bulk polycrystalline samples of Mn:TM (Fe/Ni) and Mn:RE (Gd/Sm) co doped ZnO samples with composition Zn1-xMn:TM/RE)xO synthesised by solid state reaction route and sintered at 500 0C temperature. The room temperature microwave absorption data collected by sweeping the DC magnetic field from -500 to 9500 G for the Mn:Fe and Mn:Ni co doped ZnO samples exhibit a rarely reported non resonant low field absorption (NRLFA) in addition to a strong absorption at around 3350G, usually associated with ferromagnetic resonance (FMR) satisfying Larmor’s relation due to absorption in the full saturation state. Observed low field absorption is distinct to ferromagnetic resonance even at low temperature and shows hysteresis. Interestingly, it shows a phase opposite with respect to the main ESR signal of the samples, which indicates that the low field absorption has a minimum value at zero magnetic field whereas the ESR signal has a maximum value. The major resonance peak as well as the peak corresponding to low field absorption exhibit asymmetric nature indicating magnetic anisotropy in the sample normally associated with intrinsic ferromagnetism. Anisotropy parameter for Mn:Ni codoped ZnO sample is noticed to be quite higher. The g values also support the presence of oxygen vacancies and clusters in the samples. These samples have shown room temperature ferromagnetism in the SQUID measurement. However, in rare earth (RE) co doped samples (Zn1-x (Mn: Gd/Sm)xO), which show paramagnetic behavior at room temperature, the low field microwave signals are not observed. As microwave currents due to itinerary electrons can lead to ohmic losses inside the sample, we speculate that more delocalized 3d electrons contributed from the TM dopants facilitate such microwave currents leading to the loss and hence absorption at the low field which is also supported by the increase in current with increased micro wave power. Besides, since Fe and Ni has intrinsic spin polarization with polarisability of around 45%, doping of Fe and Ni is expected to enhance the spin polarization related effect in ZnO. We emphasize that in this case Fe and Ni doping contribute to polarized current which interacts with the magnetization (spin) vector and get scattered giving rise to the absorption loss.Keywords: co-doping, electron spin resonance, hysteresis, non-resonant microwave absorption
Procedia PDF Downloads 3156441 Fire Resistance of High Alumina Cement and Slag Based Ultra High Performance Fibre-Reinforced Cementitious Composites
Authors: A. Q. Sobia, M. S. Hamidah, I. Azmi, S. F. A. Rafeeqi
Abstract:
Fibre-reinforced polymer (FRP) strengthened reinforced concrete (RC) structures are susceptible to intense deterioration when exposed to elevated temperatures, particularly in the incident of fire. FRP has the tendency to lose bond with the substrate due to the low glass transition temperature of epoxy; the key component of FRP matrix. In the past few decades, various types of high performance cementitious composites (HPCC) were explored for the protection of RC structural members against elevated temperature. However, there is an inadequate information on the influence of elevated temperature on the ultra high performance fibre-reinforced cementitious composites (UHPFRCC) containing ground granulated blast furnace slag (GGBS) as a replacement of high alumina cement (HAC) in conjunction with hybrid fibres (basalt and polypropylene fibres), which could be a prospective fire resisting material for the structural components. The influence of elevated temperatures on the compressive as well as flexural strength of UHPFRCC, made of HAC-GGBS and hybrid fibres, were examined in this study. Besides control sample (without fibres), three other samples, containing 0.5%, 1% and 1.5% of basalt fibres by total weight of mix and 1 kg/m3 of polypropylene fibres, were prepared and tested. Another mix was also prepared with only 1 kg/m3 of polypropylene fibres. Each of the samples were retained at ambient temperature as well as exposed to 400, 700 and 1000 °C followed by testing after 28 and 56 days of conventional curing. Investigation of results disclosed that the use of hybrid fibres significantly helped to improve the ambient temperature compressive and flexural strength of UHPFRCC, which was found to be 80 and 14.3 MPa respectively. However, the optimum residual compressive strength was marked by UHPFRCC-CP (with polypropylene fibres only), equally after both curing days (28 and 56 days), i.e. 41%. In addition, the utmost residual flexural strength, after 28 and 56 days of curing, was marked by UHPFRCC– CP and UHPFRCC– CB2 (1 kg/m3 of PP fibres + 1% of basalt fibres) i.e. 39% and 48.5% respectively.Keywords: fibre reinforced polymer materials (FRP), ground granulated blast furnace slag (GGBS), high-alumina cement, hybrid, fibres
Procedia PDF Downloads 2876440 Processing Big Data: An Approach Using Feature Selection
Authors: Nikat Parveen, M. Ananthi
Abstract:
Big data is one of the emerging technology, which collects the data from various sensors and those data will be used in many fields. Data retrieval is one of the major issue where there is a need to extract the exact data as per the need. In this paper, large amount of data set is processed by using the feature selection. Feature selection helps to choose the data which are actually needed to process and execute the task. The key value is the one which helps to point out exact data available in the storage space. Here the available data is streamed and R-Center is proposed to achieve this task.Keywords: big data, key value, feature selection, retrieval, performance
Procedia PDF Downloads 3436439 Thermodynamic Analysis of GT Cycle with Naphtha or Natural Gas as the Fuel: A Thermodynamic Comparison
Authors: S. Arpit, P. K. Das, S. K. Dash
Abstract:
In this paper, a comparative study is done between two fuels, naphtha and natural gas (NG), for a gas turbine (GT) plant of 32.5 MW with the same thermodynamic configuration. From the energy analysis, it is confirmed that the turbine inlet temperature (TIT) of the gas turbine in the case of natural gas is higher as compared to naphtha, and hence the isentropic efficiency of the turbine is better. The result from the exergy analysis also confirms that due to high turbine inlet temperature in the case of natural gas, exergy destruction in combustion chamber is less. But comparing two fuels for overall analysis, naphtha has higher energy and exergetic efficiency as compared to natural gas.Keywords: exergy analysis, gas turbine, naphtha, natural gas
Procedia PDF Downloads 2106438 Joint Probability Distribution of Extreme Water Level with Rainfall and Temperature: Trend Analysis of Potential Impacts of Climate Change
Authors: Ali Razmi, Saeed Golian
Abstract:
Climate change is known to have the potential to impact adversely hydrologic patterns for variables such as rainfall, maximum and minimum temperature and sea level rise. Long-term average of these climate variables could possibly change over time due to climate change impacts. In this study, trend analysis was performed on rainfall, maximum and minimum temperature and water level data of a coastal area in Manhattan, New York City, Central Park and Battery Park stations to investigate if there is a significant change in the data mean. Partial Man-Kendall test was used for trend analysis. Frequency analysis was then performed on data using common probability distribution functions such as Generalized Extreme Value (GEV), normal, log-normal and log-Pearson. Goodness of fit tests such as Kolmogorov-Smirnov are used to determine the most appropriate distributions. In flood frequency analysis, rainfall and water level data are often separately investigated. However, in determining flood zones, simultaneous consideration of rainfall and water level in frequency analysis could have considerable effect on floodplain delineation (flood extent and depth). The present study aims to perform flood frequency analysis considering joint probability distribution for rainfall and storm surge. First, correlation between the considered variables was investigated. Joint probability distribution of extreme water level and temperature was also investigated to examine how global warming could affect sea level flooding impacts. Copula functions were fitted to data and joint probability of water level with rainfall and temperature for different recurrence intervals of 2, 5, 25, 50, 100, 200, 500, 600 and 1000 was determined and compared with the severity of individual events. Results for trend analysis showed increase in long-term average of data that could be attributed to climate change impacts. GEV distribution was found as the most appropriate function to be fitted to the extreme climate variables. The results for joint probability distribution analysis confirmed the necessity for incorporation of both rainfall and water level data in flood frequency analysis.Keywords: climate change, climate variables, copula, joint probability
Procedia PDF Downloads 3636437 Optimal Formation of Metallic Nuggets during the Reduction of Coal-Composite Briquette
Authors: Chol Min Yu, Sok Chol Ri
Abstract:
The optimization of formation and growth of metallic nuggets during self-reduction of coal composite briquette (CCB here) is essential to increase the yield of valuable metals. The formation of metallic nuggets was investigated theoretically and experimentally during the reduction of coal composite briquette made from stainless steel dust and coal. The formation of metallic nuggets is influenced by slag viscosity and interfacial tension between the liquid metal and the slag in the reduced product. Surface tensions of liquid metal and slag are rather strong, respectively, due to the high basicity of its slag. Strong surface tensions of them lead to increase of interfacial tension between the liquid metal and the slag to be favorable to the growth of metallic nuggets. The viscosity of slag and interfacial tension between the liquid metal and the slag depends on the temperature and composition of the slag. The formation and the growth of metallic nuggets depend on carbon to oxygen ratio FC/O and temperature.Keywords: stainless steel dust, coal-composite briquette, temperature, high basicity, interfacial tension
Procedia PDF Downloads 846436 Elastodynamic Response of Shear Wave Dispersion in a Multi-Layered Concentric Cylinders Composed of Reinforced and Piezo-Materials
Authors: Sunita Kumawat, Sumit Kumar Vishwakarma
Abstract:
The present study fundamentally focuses on analyzing the limitations and transference of horizontally polarized Shear waves(SH waves) in a four-layered compounded cylinder. The geometrical structure comprises of concentric cylinders of infinite length composed of self-reinforced (SR), fibre-reinforced (FR), piezo-magnetic (PM), and piezo-electric(PE) materials. The entire structure is assumed to be pre stressed along the azimuthal direction. In order to make the structure sensitive to the application pertaining to sensors and actuators, the PM and PE cylinders have been categorically placed in the outer part of the geometry. Whereas in order to provide stiffness and stability to the structure, the inner part consists of self-reinforced and fibre-reinforced media. The common boundary between each of the cylinders has been essentially considered as imperfectly bounded. At the interface of PE and PM media, mechanical, electrical, magnetic, and inter-coupled types of imperfections have been exhibited. The closed-form of dispersion relation has been deduced for two contrast cases i.e. electrically open magnetically short(EOMS) and electrically short and magnetically open ESMO circuit conditions. Dispersion curves have been plotted to illustrate the salient features of parameters like normalized imperfect interface parameters, initial stresses, and radii of the concentric cylinders. The comparative effect of each one of these parameters on the phase velocity of the wave has been enlisted and marked individually. Every graph has been presented with two consecutive modes in succession for a comprehensive understanding. This theoretical study may be implemented to improvise the performance of surface acoustic wave (SAW) sensors and actuators consisting of piezo-electric quartz and piezo-composite concentric cylinders.Keywords: self-reinforced, fibre-reinforced, piezo-electric, piezo-magnetic, interfacial imperfection
Procedia PDF Downloads 1096435 Parameter and Lose Effect Analysis of Beta Stirling Cycle Refrigerating Machine
Authors: Muluken Z. Getie, Francois Lanzetta, Sylvie Begot, Bimrew T. Admassu
Abstract:
This study is aimed at the numerical analysis of the effects of phase angle and losses (shuttle heat loss and gas leakage to the crankcase) that could have an impact on the pressure and temperature of working fluid for a β-type Stirling cycle refrigerating machine. First, the developed numerical model incorporates into the ideal adiabatic analysis, the shuttle heat transfer (heat loss from compression space to expansion space), and gas leakage from the working space to the buffer space into the crankcase. The other losses that may not have a direct effect on the temperature and pressure of working fluid are simply incorporated in a simple analysis. The model is then validated by reversing the model to the engine model and compared with other literature results using (GPU-3) engine. After validating the model with other engine model and experiment results, analysis of the effect of phase angle, shuttle heat lose and gas leakage on temperature, pressure, and performance (power requirement, cooling capacity and coefficient of performance) of refrigerating machine considering the FEMTO 60 Stirling engine as a case study have been conducted. Shuttle heat loss has a greater effect on the temperature of working gas; gas leakage to the crankcase has more effect on the pressure of working spaces and hence both have a considerable impact on the performance of the Stirling cycle refrigerating machine. The optimum coefficient of performance exists between phase angles of 900-950, and optimum cooling capacity could be found between phase angles of 950-980.Keywords: beta configuration, engine model, moderate cooling, stirling refrigerator, and validation
Procedia PDF Downloads 1046434 Numerical Simulation of Heating Characteristics in a Microwave T-Prong Antenna for Cancer Therapy
Authors: M. Chaichanyut, S. Tungjitkusolmun
Abstract:
This research is presented with microwave (MW) ablation by using the T-Prong monopole antennas. In the study, three-dimensional (3D) finite-element methods (FEM) were utilized to analyse: the tissue heat flux, temperature distributions (heating pattern) and volume destruction during MW ablation in liver cancer tissue. The configurations of T-Prong monopole antennas were considered: Three T-prong antenna, Expand T-Prong antenna and Arrow T-Prong antenna. The 3D FEMs solutions were based on Maxwell and bio-heat equations. The microwave power deliveries were 10 W; the duration of ablation in all cases was 300s. Our numerical result, heat flux and the hotspot occurred at the tip of the T-prong antenna for all cases. The temperature distribution pattern of all antennas was teardrop. The Arrow T-Prong antenna can induce the highest temperature within cancer tissue. The microwave ablation was successful when the region where the temperatures exceed 50°C (i.e. complete destruction). The Expand T-Prong antenna could complete destruction the liver cancer tissue was maximized (6.05 cm³). The ablation pattern or axial ratio (Widest/length) of Expand T-Prong antenna and Arrow T-Prong antenna was 1, but the axial ratio of Three T-prong antenna of about 1.15.Keywords: liver cancer, T-Prong antenna, finite element, microwave ablation
Procedia PDF Downloads 3316433 Experimental Investigation of Nano-Enhanced-PCM-Based Heat Sinks for Passive Thermal Management of Small Satellites
Authors: Billy Moore, Izaiah Smith, Dominic Mckinney, Andrew Cisco, Mehdi Kabir
Abstract:
Phase-change materials (PCMs) are considered one of the most promising substances to be engaged passively in thermal management and storage systems for spacecraft, where it is critical to diminish the overall mass of the onboard thermal storage system while minimizing temperature fluctuations upon drastic changes in the environmental temperature within the orbit stage. This makes the development of effective thermal management systems more challenging since there is no atmosphere in outer space to take advantage of natural and forced convective heat transfer. PCM can store or release a tremendous amount of thermal energy within a small volume in the form of latent heat of fusion in the phase-change processes of melting and solidification from solid to liquid or, conversely, during which temperature remains almost constant. However, the existing PCMs pose very low thermal conductivity, leading to an undesirable increase in total thermal resistance and, consequently, a slow thermal response time. This often turns into a system bottleneck from the thermal performance perspective. To address the above-mentioned drawback, the present study aims to design and develop various heat sinks featured by nano-structured graphitic foams (i.e., carbon foam), expanded graphite (EG), and open-cell copper foam (OCCF) infiltrated with a conventional paraffin wax PCM with a melting temperature of around 35 °C. This study focuses on the use of passive thermal management techniques to develop efficient heat sinks to maintain the electronics circuits’ and battery module’s temperature within the thermal safety limit for small spacecraft and satellites such as the Pumpkin and OPTIMUS battery modules designed for CubeSats with a cross-sectional area of approximately 4˝×4˝. Thermal response times for various heat sinks are assessed in a vacuum chamber to simulate space conditions.Keywords: heat sink, porous foams, phase-change material (PCM), spacecraft thermal management
Procedia PDF Downloads 186432 Changes in Rainfall and Temperature and Its Impact on Crop Production in Moyamba District, Southern Sierra Leone
Authors: Keiwoma Mark Yila, Mathew Lamrana Siaffa Gboku, Mohamed Sahr Lebbie, Lamin Ibrahim Kamara
Abstract:
Rainfall and temperature are the important variables which are often used to trace climate variability and change. A perception study and analysis of climatic data were conducted to assess the changes in rainfall and temperature and their impact on crop production in Moyamba district, Sierra Leone. For the perception study, 400 farmers were randomly selected from farmer-based organizations (FBOs) in 4 chiefdoms, and 30 agricultural extension workers (AWEs) in the Moyamba district were purposely selected as respondents. Descriptive statistics and Kendall’s test of concordance was used to analyze the data collected from the farmers and AEWs. Data for the analysis of variability and trends of rainfall and temperature from 1991 to 2020 were obtained from the Sierra Leone Meteorological Agency and Njala University and grouped into monthly, seasonal and annual time series. Regression analysis was used to determine the statistical values and trend lines for the seasonal and annual time series data. The Mann-Kendall test and Sen’s Slope Estimator were used to analyze the trends' significance and magnitude, respectively. The results of both studies show evidence of climate change in the Moyamba district. A substantial number of farmers and AEWs perceived a decrease in the annual rainfall amount, length of the rainy season, a late start and end of the rainy season, an increase in the temperature during the day and night, and a shortened harmattan period over the last 30 years. Analysis of the meteorological data shows evidence of variability in the seasonal and annual distribution of rainfall and temperature, a decreasing and non-significant trend in the rainy season and annual rainfall, and an increasing and significant trend in seasonal and annual temperature from 1991 to 2020. However, the observed changes in rainfall and temperature by the farmers and AEWs partially agree with the results of the analyzed meteorological data. The majority of the farmers perceived that; adverse weather conditions have negatively affected crop production in the district. Droughts, high temperatures, and irregular rainfall are the three major adverse weather events that farmers perceived to have contributed to a substantial loss in the yields of the major crops cultivated in the district. In response to the negative effects of adverse weather events, a substantial number of farmers take no action due to their lack of knowledge and technical or financial capacity to implement climate-sensitive agricultural (CSA) practices. Even though few farmers are practising some CSA practices in their farms, there is an urgent need to build the capacity of farmers and AEWs to adapt to and mitigate the negative impacts of climate change. The most priority support needed by farmers is the provision of climate-resilient crop varieties, whilst the AEWs need training on CSA practices.Keywords: climate change, crop productivity, farmer’s perception, rainfall, temperature, Sierra Leone
Procedia PDF Downloads 756431 The Spectral Power Amplification on the Regular Lattices
Authors: Kotbi Lakhdar, Hachi Mostefa
Abstract:
We show that a simple transformation between the regular lattices (the square, the triangular, and the honeycomb) belonging to the same dimensionality can explain in a natural way the universality of the critical exponents found in phase transitions and critical phenomena. It suffices that the Hamiltonian and the lattice present similar writing forms. In addition, it appears that if a property can be calculated for a given lattice then it can be extrapolated simply to any other lattice belonging to the same dimensionality. In this study, we have restricted ourselves on the spectral power amplification (SPA), we note that the SPA does not have an effect on the critical exponents but does have an effect by the criticality temperature of the lattice; the generalisation to other lattice could be shown according to the containment principle.Keywords: ising model, phase transitions, critical temperature, critical exponent, spectral power amplification
Procedia PDF Downloads 3116430 Long-Term Trends of Sea Level and Sea Surface Temperature in the Mediterranean Sea
Authors: Bayoumy Mohamed, Khaled Alam El-Din
Abstract:
In the present study, 24 years of gridded sea level anomalies (SLA) from satellite altimetry and sea surface temperature (SST) from advanced very-high-resolution radiometer (AVHRR) daily data (1993-2016) are used. These data have been used to investigate the sea level rising and warming rates of SST, and their spatial distribution in the Mediterranean Sea. The results revealed that there is a significant sea level rise in the Mediterranean Sea of 2.86 ± 0.45 mm/year together with a significant warming of 0.037 ± 0.007 °C/year. The high spatial correlation between sea level and SST variations suggests that at least part of the sea level change reported during the period of study was due to heating of surface layers. This indicated that the steric effect had a significant influence on sea level change in the Mediterranean Sea.Keywords: altimetry, AVHRR, Mediterranean Sea, sea level and SST changes, trend analysis
Procedia PDF Downloads 1976429 Applying Different Working Fluids in a Combined Power and Ejector Refrigeration Cycle with Low Temperature Heat Sources
Authors: Samad Jafarmadar, Amin Habibzadeh
Abstract:
A power and cooling cycle, which combines the organic Rankine cycle and the ejector refrigeration cycle supplied by waste heat energy sources, is discussed in this paper. 13 working fluids including wet, dry, and isentropic fluids are studied in order to find their performances on the combined cycle. Various operating conditions’ effects on the proposed cycle are examined by fixing power/refrigeration ratio. According to the results, dry and isentropic fluids have better performance compared with wet fluids.Keywords: combined power and refrigeration cycle, low temperature heat sources, organic rankine cycle, working fluids
Procedia PDF Downloads 2716428 Sensor and Sensor System Design, Selection and Data Fusion Using Non-Deterministic Multi-Attribute Tradespace Exploration
Authors: Matthew Yeager, Christopher Willy, John Bischoff
Abstract:
The conceptualization and design phases of a system lifecycle consume a significant amount of the lifecycle budget in the form of direct tasking and capital, as well as the implicit costs associated with unforeseeable design errors that are only realized during downstream phases. Ad hoc or iterative approaches to generating system requirements oftentimes fail to consider the full array of feasible systems or product designs for a variety of reasons, including, but not limited to: initial conceptualization that oftentimes incorporates a priori or legacy features; the inability to capture, communicate and accommodate stakeholder preferences; inadequate technical designs and/or feasibility studies; and locally-, but not globally-, optimized subsystems and components. These design pitfalls can beget unanticipated developmental or system alterations with added costs, risks and support activities, heightening the risk for suboptimal system performance, premature obsolescence or forgone development. Supported by rapid advances in learning algorithms and hardware technology, sensors and sensor systems have become commonplace in both commercial and industrial products. The evolving array of hardware components (i.e. sensors, CPUs, modular / auxiliary access, etc…) as well as recognition, data fusion and communication protocols have all become increasingly complex and critical for design engineers during both concpetualization and implementation. This work seeks to develop and utilize a non-deterministic approach for sensor system design within the multi-attribute tradespace exploration (MATE) paradigm, a technique that incorporates decision theory into model-based techniques in order to explore complex design environments and discover better system designs. Developed to address the inherent design constraints in complex aerospace systems, MATE techniques enable project engineers to examine all viable system designs, assess attribute utility and system performance, and better align with stakeholder requirements. Whereas such previous work has been focused on aerospace systems and conducted in a deterministic fashion, this study addresses a wider array of system design elements by incorporating both traditional tradespace elements (e.g. hardware components) as well as popular multi-sensor data fusion models and techniques. Furthermore, statistical performance features to this model-based MATE approach will enable non-deterministic techniques for various commercial systems that range in application, complexity and system behavior, demonstrating a significant utility within the realm of formal systems decision-making.Keywords: multi-attribute tradespace exploration, data fusion, sensors, systems engineering, system design
Procedia PDF Downloads 1896427 Physico-Chemical and Phytoplankton Analyses of Kazaure Dam, Jigawa State, Nigeria
Authors: Aminu Musa Muhammad, Muhammad Kabiru Abubakar
Abstract:
Monthly changes in Phytoplankton periodicity, nutrient levels, temperature, pH, suspended solids, dissolved solids, conductivity, dissolved oxygen and biochemical oxygen demand of Kazaure Dam, Jigawa State, Nigeria were studied for a period of six months (July-Dec.-2011). Physico-chemical result showed that temperature and pH ranged between17-25˚C and 5.5-7.5, while dissolved solids and suspended solids ranged between 95-155 mg/L and 0.13-112 mg/L respectively. Dissolved oxygen (DO), Biochemical oxygen demand (BOD), Chemical oxygen demand (COD), conductivity, nitrate, phosphate and sulphate ion concentrations were within the ranges of 3.5-3.6 mg/L, 4.8-7.2 mg/L, 8.10-12.30 mg/L, 21-58µΩ/cm, 0.2-8.1 mg/L, 2.4-18.1 mg/L, and 1.22-15.60 mg/L respectively. A total of 4514 Org/L phytoplankton were recorded, of which four classes of algae were identified. These comprised of Chlorophyta (44.1%), Cyanophyta(30.62%), Bacillariophyta(3.2%), Euglenophyta (32.1%). Descriptive statistics of the result showed that phytoplankton count varied with variation of physico-chemical parameters at 5% level during the study period. The abundance and distribution of the algae varied with the variation in the physico-chemical parameters. Pearson correlation showed that temperature and nutrients were significantly correlated with phytoplankton, while DO, sulphate and pH were insignificantly correlated, while there was no significant correlation with COD and phytoplankton.Keywords: correlation, phytoplankton, physico chemical, kazaure dam
Procedia PDF Downloads 5746426 The Effect of Meteorological Factors on the Trap Catches of Culicoides Species
Authors: Ahmed M. Rashed
Abstract:
Culicoides midges are known to be vectors of disease to both man and animals. For providing information necessary for control methods to be applied to the best advantage, a New jersey light-trap was used. Twenty species were identified during this study and eight species were recorded from Chantilly for the first time, these include C.grisescens, C.nubeculosus, C.cubitalis, C.achrayi, C.circumscriptus, C.stigma, C.reconditus, and C.parroti. The environmental factors, wind speed and temperature were found to have a marked effect on the activity of Culicoides midges. The temperature was found to be positively correlated and the wind speed negatively correlated with the light-trap catch. However, humidioty could not be shown to have any effect on the catch.Keywords: culicoides, meteorological factors, wind speed, disease
Procedia PDF Downloads 4536425 Design and Development of Solar Water Cooler Using Principle of Evaporation
Authors: Vipul Shiralkar, Rohit Khadilkar, Shekhar Kulkarni, Ismail Mullani, Omkar Malvankar
Abstract:
The use of water cooler has increased and become an important appliance in the world of global warming. Most of the coolers are electrically operated. In this study an experimental setup of evaporative water cooler using solar energy is designed and developed. It works on the principle of heat transfer using evaporation of water. Water is made to flow through copper tubes arranged in a specific array manner. Cotton plug is wrapped on copper tubes and rubber pipes are arranged in the same way as copper tubes above it. Water percolated from rubber pipes is absorbed by cotton plug. The setup has 40L water carrying capacity with forced cooling arrangement and variable speed fan which uses solar energy stored in 20Ah capacity battery. Fan speed greatly affects the temperature drop. Tests were performed at different fan speed. Maximum temperature drop achieved was 90C at 1440 rpm of fan speed. This temperature drop is very attractive. This water cooler uses solar energy hence it is cost efficient and it is affordable to rural community as well. The cooler is free from any harmful emissions like other refrigerants and hence environmental friendly. Very less maintenance is required as compared to the conventional electrical water cooler.Keywords: evaporation, cooler, energy, copper, solar, cost
Procedia PDF Downloads 3206424 Mathematical Modelling of Bacterial Growth in Products of Animal Origin in Storage and Transport: Effects of Temperature, Use of Bacteriocins and pH Level
Authors: Benjamin Castillo, Luis Pastenes, Fernando Cordova
Abstract:
The pathogen growth in animal source foods is a common problem in the food industry, causing monetary losses due to the spoiling of products or food intoxication outbreaks in the community. In this sense, the quality of the product is reflected by the population of deteriorating agents present in it, which are mainly bacteria. The factors which are likely associated with freshness in animal source foods are temperature and processing, storage, and transport times. However, the level of deterioration of products depends, in turn, on the characteristics of the bacterial population, causing the decomposition or spoiling, such as pH level and toxins. Knowing the growth dynamics of the agents that are involved in product contamination allows the monitoring for more efficient processing. This means better quality and reasonable costs, along with a better estimation of necessary time and temperature intervals for transport and storage in order to preserve product quality. The objective of this project is to design a secondary model that allows measuring the impact on temperature bacterial growth and the competition for pH adequacy and release of bacteriocins in order to describe such phenomenon and, thus, estimate food product half-life with the least possible risk of deterioration or spoiling. In order to achieve this objective, the authors propose an analysis of a three-dimensional ordinary differential which includes; logistic bacterial growth extended by the inhibitory action of bacteriocins including the effect of the medium pH; change in the medium pH levels through an adaptation of the Luedeking-Piret kinetic model; Bacteriocin concentration modeled similarly to pH levels. These three dimensions are being influenced by the temperature at all times. Then, this differential system is expanded, taking into consideration the variable temperature and the concentration of pulsed bacteriocins, which represent characteristics inherent of the modeling, such as transport and storage, as well as the incorporation of substances that inhibit bacterial growth. The main results lead to the fact that temperature changes in an early stage of transport increased the bacterial population significantly more than if it had increased during the final stage. On the other hand, the incorporation of bacteriocins, as in other investigations, proved to be efficient in the short and medium-term since, although the population of bacteria decreased, once the bacteriocins were depleted or degraded over time, the bacteria eventually returned to their regular growth rate. The efficacy of the bacteriocins at low temperatures decreased slightly, which equates with the fact that their natural degradation rate also decreased. In summary, the implementation of the mathematical model allowed the simulation of a set of possible bacteria present in animal based products, along with their properties, in various transport and storage situations, which led us to state that for inhibiting bacterial growth, the optimum is complementary low constant temperatures and the initial use of bacteriocins.Keywords: bacterial growth, bacteriocins, mathematical modelling, temperature
Procedia PDF Downloads 1386423 Chassis Level Control Using Proportional Integrated Derivative Control, Fuzzy Logic and Deep Learning
Authors: Atakan Aral Ormancı, Tuğçe Arslantaş, Murat Özcü
Abstract:
This study presents the design and implementation of an experimental chassis-level system for various control applications. Specifically, the height level of the chassis is controlled using proportional integrated derivative, fuzzy logic, and deep learning control methods. Real-time data obtained from height and pressure sensors installed in a 6x2 truck chassis, in combination with pulse-width modulation signal values, are utilized during the tests. A prototype pneumatic system of a 6x2 truck is added to the setup, which enables the Smart Pneumatic Actuators to function as if they were in a real-world setting. To obtain real-time signal data from height sensors, an Arduino Nano is utilized, while a Raspberry Pi processes the data using Matlab/Simulink and provides the correct output signals to control the Smart Pneumatic Actuator in the truck chassis. The objective of this research is to optimize the time it takes for the chassis to level down and up under various loads. To achieve this, proportional integrated derivative control, fuzzy logic control, and deep learning techniques are applied to the system. The results show that the deep learning method is superior in optimizing time for a non-linear system. Fuzzy logic control with a triangular membership function as the rule base achieves better outcomes than proportional integrated derivative control. Traditional proportional integrated derivative control improves the time it takes to level the chassis down and up compared to an uncontrolled system. The findings highlight the superiority of deep learning techniques in optimizing the time for a non-linear system, and the potential of fuzzy logic control. The proposed approach and the experimental results provide a valuable contribution to the field of control, automation, and systems engineering.Keywords: automotive, chassis level control, control systems, pneumatic system control
Procedia PDF Downloads 826422 The Convection Heater Numerical Simulation
Authors: Cristian Patrascioiu, Loredana Negoita
Abstract:
This paper is focused on modeling and simulation of the tubular heaters. The paper is structured in four parts: the structure of the tubular convection section, the heat transfer model, the adaptation of the mathematical model and the solving model. The main hypothesis of the heat transfer modeling is that the heat exchanger of the convective tubular heater is a lumped system. In the same time, the model uses the heat balance relations, Newton’s law and criteria relations. The numerical program achieved allows for the estimation of the burn gases outlet temperature and the heated flow outlet temperature.Keywords: heat exchanger, mathematical modelling, nonlinear equation system, Newton-Raphson algorithm
Procedia PDF Downloads 2936421 Energy Interaction among HVAC and Supermarket Environment
Authors: Denchai Woradechjumroen, Haorong Li, Yuebin Yu
Abstract:
Supermarkets are the most electricity-intensive type of commercial buildings. The unsuitable indoor environment of a supermarket provided by abnormal HVAC operations incurs waste energy consumption in refrigeration systems. This current study briefly describes significantly solid backgrounds and proposes easy-to-use analysis terminology for investigating the impact of HVAC operations on refrigeration power consumption using the field-test data obtained from building automation system (BAS). With solid backgrounds and prior knowledge, expected energy interactions between HVAC and refrigeration systems are proposed through Pearson’s correlation analysis (R value) by considering correlations between equipment power consumption and dominantly independent variables (driving force conditions). The R value can be conveniently utilized to evaluate how strong relations between equipment operations and driving force parameters are. The calculated R values obtained from field data are compared to expected ranges of R values computed by energy interaction methodology. The comparisons can separate the operational conditions of equipment into faulty and normal conditions. This analysis can simply investigate the condition of equipment operations or building sensors because equipment could be abnormal conditions due to routine operations or faulty commissioning processes in field tests. With systematically solid and easy-to-use backgrounds of interactions provided in the present article, the procedures can be utilized as a tool to evaluate the proper commissioning and routine operations of HVAC and refrigeration systems to detect simple faults (e.g. sensors and driving force environment of refrigeration systems and equipment set-point) and optimize power consumption in supermarket buildings. Moreover, the analysis will be used to further study FDD research for supermarkets in future.Keywords: energy interaction, HVAC, R-value, supermarket buildings
Procedia PDF Downloads 4316420 Analysis of Thermal Damping in Si Based Torsional Micromirrors
Authors: R. Resmi, M. R. Baiju
Abstract:
The thermal damping of a dynamic vibrating micromirror is an important factor affecting the design of MEMS based actuator systems. In the development process of new micromirror systems, assessing the extent of energy loss due to thermal damping accurately and predicting the performance of the system is very essential. In this paper, the depth of the thermal penetration layer at different eigenfrequencies and the temperature variation distributions surrounding a vibrating micromirror is analyzed. The thermal penetration depth corresponds to the thermal boundary layer in which energy is lost which is a measure of the thermal damping is found out. The energy is mainly dissipated in the thermal boundary layer and thickness of the layer is an important parameter. The detailed thermoacoustics is used to model the air domain surrounding the micromirror. The thickness of the boundary layer, temperature variations and thermal power dissipation are analyzed for a Si based torsional mode micromirror. It is found that thermal penetration depth decreases with eigenfrequency and hence operating the micromirror at higher frequencies is essential for reducing thermal damping. The temperature variations and thermal power dissipations at different eigenfrequencies are also analyzed. Both frequency-response and eigenfrequency analyses are done using COMSOL Multiphysics software.Keywords: Eigen frequency analysis, micromirrors, thermal damping, thermoacoustic interactions
Procedia PDF Downloads 3676419 Undercooling of Refractory High-Entropy Alloy
Authors: Liang Hu
Abstract:
The innovation of refractory high-entropy alloy (RHEA) formed from refractory metals W, Ta, Mo, Nb, Hf, V, and Zr was firstly implemented in 2010 to obtain better strength at high temperature than conventional HEAs based on Al, Co, Cr, Cu, Fe and Ni. Due to the refractory characteristic and high chemical activity at elevated temperature, electrostatic levitation technique has been utilized to fulfill the rapid solidification of RHEA. Several RHEAs consisting W, Ta, Mo, Nb, Zr have been selected to perform the undercooling and rapid solidification by ESL. They are substantially undercooled by up to 0.2TL. The evolution of as-solidified microstructure and component redistribution with undercooling have been investigated by SEM, EBSD, and EPMA analysis. According to the EPMA results of composing elements at different undercooling levels, the chemical distribution relevant to undercooling was also analyzed.Keywords: chemical distribution, high-entropy alloy, rapid solidification, undercooling
Procedia PDF Downloads 1306418 A Computational Model of the Thermal Grill Illusion: Simulating the Perceived Pain Using Neuronal Activity in Pain-Sensitive Nerve Fibers
Authors: Subhankar Karmakar, Madhan Kumar Vasudevan, Manivannan Muniyandi
Abstract:
Thermal Grill Illusion (TGI) elicits a strong and often painful sensation of burn when interlacing warm and cold stimuli that are individually non-painful, excites thermoreceptors beneath the skin. Among several theories of TGI, the “disinhibition” theory is the most widely accepted in the literature. According to this theory, TGI is the result of the disinhibition or unmasking of the pain-sensitive HPC (Heat-Pinch-Cold) nerve fibers due to the inhibition of cold-sensitive nerve fibers that are responsible for masking HPC nerve fibers. Although researchers focused on understanding TGI throughexperiments and models, none of them investigated the prediction of TGI pain intensity through a computational model. Furthermore, the comparison of psychophysically perceived TGI intensity with neurophysiological models has not yet been studied. The prediction of pain intensity through a computational model of TGI can help inoptimizing thermal displays and understanding pathological conditions related to temperature perception. The current studyfocuses on developing a computational model to predict the intensity of TGI pain and experimentally observe the perceived TGI pain. The computational model is developed based on the disinhibition theory and by utilizing the existing popular models of warm and cold receptors in the skin. The model aims to predict the neuronal activity of the HPC nerve fibers. With a temperature-controlled thermal grill setup, fifteen participants (ten males and five females) were presented with five temperature differences between warm and cold grills (each repeated three times). All the participants rated the perceived TGI pain sensation on a scale of one to ten. For the range of temperature differences, the experimentally observed perceived intensity of TGI is compared with the neuronal activity of pain-sensitive HPC nerve fibers. The simulation results show a monotonically increasing relationship between the temperature differences and the neuronal activity of the HPC nerve fibers. Moreover, a similar monotonically increasing relationship is experimentally observed between temperature differences and the perceived TGI intensity. This shows the potential comparison of TGI pain intensity observed through the experimental study with the neuronal activity predicted through the model. The proposed model intends to bridge the theoretical understanding of the TGI and the experimental results obtained through psychophysics. Further studies in pain perception are needed to develop a more accurate version of the current model.Keywords: thermal grill Illusion, computational modelling, simulation, psychophysics, haptics
Procedia PDF Downloads 1736417 Microorganisms in Fresh and Stored Bee Pollen Originated from Slovakia
Authors: Vladimíra Kňazovická, Mária Dovičičová, Miroslava Kačániová, Margita Čanigová
Abstract:
The aim of the study was to test the storage of bee pollen at room temperature and in cold store, and to describe microorganisms originated from it. Fresh bee pollen originating in West Slovakia was collected in May 2010. It was tested for presence of particular microbial groups using dilution plating method, and divided into two parts with different storage (in cold store and at room temperature). Microbial analyses of pollen were repeated after one year of storage. Several bacterial strains were isolated and tested using Gram staining, for catalase and fructose-6-phosphate-phosphoketolase presence, and by rapid ID 32A (BioMérieux, France). Micromycetes were identified at genus level. Fresh pollen contained coliform bacteria, which were not detected after one year of storage in both ways. Total plate count (TPC) of aerobes and anaerobes and of yeasts in fresh bee pollen exceeded 5.00 log CFU/g. TPC of aerobes and anaerobes decreased below 2.00 log CFU/g after one year of storage in both ways. Count of yeasts decreased to 2.32 log CFU/g (at room temperature) and to 3.66 log CFU/g (in cold store). Microscopic filamentous fungi decreased from 3.41 log CFU/g (fresh bee pollen) to 1.13 log CFU/g (at room temperature) and to 1.89 log CFU/g (in cold store). In fresh bee pollen, 12 genera of micromycetes were identified in the following order according to their relative density: Penicillium > Mucor > Absidia > Cladosporium, Fusarium > Alternaria > Eurotium > Aspergillus, Rhizopus > Emericella > Arthrinium and Mycelium sterilium. After one year at room temperature, only three genera were detected in bee pollen (Penicillium > Aspergillus, Mucor) and after one year in cold store, seven genera were detected (Mucor > Penicillium, Emericella > Aspergillus, Absidia > Arthrinium, Eurotium). From the plates designated for anaerobes, eight colonies originating in fresh bee pollen were isolated. Among them, a single yeast isolate occurred. Other isolates were G+ bacteria, with a total of five rod shaped. In three out of these five, catalase was absent and fructose-6-phosphate-phosphoketolase was present. Bacterial isolates originating in fresh pollen belonged probably to genus Bifidobacterium or relative genera, but their identity was not confirmed unequivocally. In general, cold conditions are suitable for maintaining the natural properties of foodstuffs for a longer time. Slight decrease of microscopic fungal number and diversity was recorded in cold temperatures compared with storage at room temperature.Keywords: bacteria, bee product, microscopic fungi, biosystems engineering
Procedia PDF Downloads 346