Search results for: matching optimization
2100 Research on Hangzhou Commercial Center System Based on Point of Interest Data
Authors: Chen Wang, Qiuxiao Chen
Abstract:
With the advent of the information age and the era of big data, urban planning research is no longer satisfied with the analysis and application of traditional data. Because of the limitations of traditional urban commercial center system research, big data provides new opportunities for urban research. Therefore, based on the quantitative evaluation method of big data, the commercial center system of the main city of Hangzhou is analyzed and evaluated, and the scale and hierarchical structure characteristics of the urban commercial center system are studied. In order to make up for the shortcomings of the existing POI extraction method, it proposes a POI extraction method based on adaptive adjustment of search window, which can accurately and efficiently extract the POI data of commercial business in the main city of Hangzhou. Through the visualization and nuclear density analysis of the extracted Point of Interest (POI) data, the current situation of the commercial center system in the main city of Hangzhou is evaluated. Then it compares with the commercial center system structure of 'Hangzhou City Master Plan (2001-2020)', analyzes the problems existing in the planned urban commercial center system, and provides corresponding suggestions and optimization strategy for the optimization of the planning of Hangzhou commercial center system. Then get the following conclusions: The status quo of the commercial center system in the main city of Hangzhou presents a first-level main center, a two-level main center, three third-level sub-centers, and multiple community-level business centers. Generally speaking, the construction of the main center in the commercial center system is basically up to standard, and there is still a big gap in the construction of the sub-center and the regional-level commercial center, further construction is needed. Therefore, it proposes an optimized hierarchical functional system, organizes commercial centers in an orderly manner; strengthens the central radiation to drive surrounding areas; implements the construction guidance of the center, effectively promotes the development of group formation and further improves the commercial center system structure of the main city of Hangzhou.Keywords: business center system, business format, main city of Hangzhou, POI extraction method
Procedia PDF Downloads 1392099 Optimization of the Co-Precipitation of Industrial Waste Metals in a Continuous Reactor System
Authors: Thomas S. Abia II, Citlali Garcia-Saucedo
Abstract:
A continuous copper precipitation treatment (CCPT) system was conceived at Intel Chandler Site to serve as a first-of-kind (FOK) facility-scale waste copper (Cu), nickel (Ni), and manganese (Mn) co-precipitation facility. The process was designed to treat highly variable wastewater discharged from a substrate packaging research factory. The paper discusses metals co-precipitation induced by internal changes for manufacturing facilities that lack the capacity for hardware expansion due to real estate restrictions, aggressive schedules, or budgetary constraints. Herein, operating parameters such as pH and oxidation reduction potential (ORP) were examined to analyze the ability of the CCPT System to immobilize various waste metals. Additionally, influential factors such as influent concentrations and retention times were investigated to quantify the environmental variability against system performance. A total of 2,027 samples were analyzed and statistically evaluated to measure the performance of CCPT that was internally retrofitted for Mn abatement to meet environmental regulations. In order to enhance the consistency of the influent, a separate holding tank was cannibalized from another system to collect and slow-feed the segregated Mn wastewater from the factory into CCPT. As a result, the baseline influent Mn decreased from 17.2+18.7 mg1L-1 at pre-pilot to 5.15+8.11 mg1L-1 post-pilot (70.1% reduction). Likewise, the pre-trial and post-trial average influent Cu values to CCPT were 52.0+54.6 mg1L-1 and 33.9+12.7 mg1L-1, respectively (34.8% reduction). However, the raw Ni content of 0.97+0.39 mg1L-1 at pre-pilot increased to 1.06+0.17 mg1L-1 at post-pilot. The average Mn output declined from 10.9+11.7 mg1L-1 at pre-pilot to 0.44+1.33 mg1L-1 at post-pilot (96.0% reduction) as a result of the pH and ORP operating setpoint changes. In similar fashion, the output Cu quality improved from 1.60+5.38 mg1L-1 to 0.55+1.02 mg1L-1 (65.6% reduction) while the Ni output sustained a 50% enhancement during the pilot study (0.22+0.19 mg1L-1 reduced to 0.11+0.06 mg1L-1). pH and ORP were shown to be significantly instrumental to the precipitative versatility of the CCPT System.Keywords: copper, co-precipitation, industrial wastewater treatment, manganese, optimization, pilot study
Procedia PDF Downloads 2682098 The Gasoil Hydrofining Kinetics Constants Identification
Authors: C. Patrascioiu, V. Matei, N. Nicolae
Abstract:
The paper describes the experiments and the kinetic parameters calculus of the gasoil hydrofining. They are presented experimental results of gasoil hidrofining using Mo and promoted with Ni on aluminum support catalyst. The authors have adapted a kinetic model gasoil hydrofining. Using this proposed kinetic model and the experimental data they have calculated the parameters of the model. The numerical calculus is based on minimizing the difference between the experimental sulf concentration and kinetic model estimation.Keywords: hydrofining, kinetic, modeling, optimization
Procedia PDF Downloads 4332097 Optimization of Mechanical Cacao Shelling Parameters Using Unroasted Cocoa Beans
Authors: Jeffrey A. Lavarias, Jessie C. Elauria, Arnold R. Elepano, Engelbert K. Peralta, Delfin C. Suministrado
Abstract:
Shelling process is one of the primary processes and critical steps in the processing of chocolate or any product that is derived from cocoa beans. It affects the quality of the cocoa nibs in terms of flavor and purity. In the Philippines, small-scale food processor cannot really compete with large scale confectionery manufacturers because of lack of available postharvest facilities that are appropriate to their level of operation. The impact of this study is to provide the needed intervention that will pave the way for cacao farmers of engaging on the advantage of value-adding as way to maximize the economic potential of cacao. Thus, provision and availability of needed postharvest machines like mechanical cacao sheller will revolutionize the current state of cacao industry in the Philippines. A mechanical cacao sheller was developed, fabricated, and evaluated to establish optimum shelling conditions such as moisture content of cocoa beans, clearance where of cocoa beans passes through the breaker section and speed of the breaking mechanism on shelling recovery, shelling efficiency, shelling rate, energy utilization and large nib recovery; To establish the optimum level of shelling parameters of the mechanical sheller. These factors were statistically analyzed using design of experiment by Box and Behnken and Response Surface Methodology (RSM). By maximizing shelling recovery, shelling efficiency, shelling rate, large nib recovery and minimizing energy utilization, the optimum shelling conditions were established at moisture content, clearance and breaker speed of 6.5%, 3 millimeters and 1300 rpm, respectively. The optimum values for shelling recovery, shelling efficiency, shelling rate, large nib recovery and minimizing energy utilization were recorded at 86.51%, 99.19%, 21.85kg/hr, 89.75%, and 542.84W, respectively. Experimental values obtained using the optimum conditions were compared with predicted values using predictive models and were found in good agreement.Keywords: cocoa beans, optimization, RSM, shelling parameters
Procedia PDF Downloads 3572096 Reallocation of Bed Capacity in a Hospital Combining Discrete Event Simulation and Integer Linear Programming
Authors: Muhammed Ordu, Eren Demir, Chris Tofallis
Abstract:
The number of inpatient admissions in the UK has been significantly increasing over the past decade. These increases cause bed occupancy rates to exceed the target level (85%) set by the Department of Health in England. Therefore, hospital service managers are struggling to better manage key resource such as beds. On the other hand, this severe demand pressure might lead to confusion in wards. For example, patients can be admitted to the ward of another inpatient specialty due to lack of resources (i.e., bed). This study aims to develop a simulation-optimization model to reallocate the available number of beds in a mid-sized hospital in the UK. A hospital simulation model was developed to capture the stochastic behaviours of the hospital by taking into account the accident and emergency department, all outpatient and inpatient services, and the interactions between each other. A couple of outputs of the simulation model (e.g., average length of stay and revenue) were generated as inputs to be used in the optimization model. An integer linear programming was developed under a number of constraints (financial, demand, target level of bed occupancy rate and staffing level) with the aims of maximizing number of admitted patients. In addition, a sensitivity analysis was carried out by taking into account unexpected increases on inpatient demand over the next 12 months. As a result, the major findings of the approach proposed in this study optimally reallocate the available number of beds for each inpatient speciality and reveal that 74 beds are idle. In addition, the findings of the study indicate that the hospital wards will be able to cope with 14% demand increase at most in the projected year. In conclusion, this paper sheds a new light on how best to reallocate beds in order to cope with current and future demand for healthcare services.Keywords: bed occupancy rate, bed reallocation, discrete event simulation, inpatient admissions, integer linear programming, projected usage
Procedia PDF Downloads 1432095 Implementation of Green Deal Policies and Targets in Energy System Optimization Models: The TEMOA-Europe Case
Authors: Daniele Lerede, Gianvito Colucci, Matteo Nicoli, Laura Savoldi
Abstract:
The European Green Deal is the first internationally agreed set of measures to contrast climate change and environmental degradation. Besides the main target of reducing emissions by at least 55% by 2030, it sets the target of accompanying European countries through an energy transition to make the European Union into a modern, resource-efficient, and competitive net-zero emissions economy by 2050, decoupling growth from the use of resources and ensuring a fair adaptation of all social categories to the transformation process. While the general purpose to allow the realization of the purposes of the Green Deal already dates back to 2019, strategies and policies keep being developed coping with recent circumstances and achievements. However, general long-term measures like the Circular Economy Action Plan, the proposals to shift from fossil natural gas to renewable and low-carbon gases, in particular biomethane and hydrogen, and to end the sale of gasoline and diesel cars by 2035, will all have significant effects on energy supply and demand evolution across the next decades. The interactions between energy supply and demand over long-term time frames are usually assessed via energy system models to derive useful insights for policymaking and to address technological choices and research and development. TEMOA-Europe is a newly developed energy system optimization model instance based on the minimization of the total cost of the system under analysis, adopting a technologically integrated, detailed, and explicit formulation and considering the evolution of the system in partial equilibrium in competitive markets with perfect foresight. TEMOA-Europe is developed on the TEMOA platform, an open-source modeling framework totally implemented in Python, therefore ensuring third-party verification even on large and complex models. TEMOA-Europe is based on a single-region representation of the European Union and EFTA countries on a time scale between 2005 and 2100, relying on a set of assumptions for socio-economic developments based on projections by the International Energy Outlook and a large technological dataset including 7 sectors: the upstream and power sectors for the production of all energy commodities and the end-use sectors, including industry, transport, residential, commercial and agriculture. TEMOA-Europe also includes an updated hydrogen module considering its production, storage, transportation, and utilization. Besides, it can rely on a wide set of innovative technologies, ranging from nuclear fusion and electricity plants equipped with CCS in the power sector to electrolysis-based steel production processes and steel in the industrial sector – with a techno-economic characterization based on public literature – to produce insightful energy scenarios and especially to cope with the very long analyzed time scale. The aim of this work is to examine in detail the scheme of measures and policies for the realization of the purposes of the Green Deal and to transform them into a set of constraints and new socio-economic development pathways. Based on them, TEMOA-Europe will be used to produce and comparatively analyze scenarios to assess the consequences of Green Deal-related measures on the future evolution of the energy mix over the whole energy system in an economic optimization environment.Keywords: European Green Deal, energy system optimization modeling, scenario analysis, TEMOA-Europe
Procedia PDF Downloads 1042094 Investigations on Enhancement of Fly Ash in Cement Manufacturing through Optimization of Clinker Quality and Fly Ash Fineness
Authors: Suresh Vanguri, Suresh Palla, K. V. Kalyani, S. K. Chaturvedi, B. N. Mohapatra
Abstract:
Enhancing the fly ash utilization in the manufacture of cement is identified as one of the key areas to mitigate the Green House Gas emissions from the cement industry. Though increasing the fly ash content in cement has economic and environmental benefits, it results in a decrease in the compressive strength values, particularly at early ages. Quality of clinker and fly ash were identified as predominant factors that govern the extent of absorption of fly ash in the manufacturing of cement. This paper presents systematic investigations on the effect of clinker and fly ash quality on the properties of resultant cement. Since mechanical activation alters the physicochemical properties such as particle size distribution, surface area, phase morphology, understanding the variation of these properties with activation is required for its applications. The effect of mechanical activation on fly ash surface area, specific gravity, flow properties, lime reactivity, comparative compressive strength (CCS), reactive silica and mineralogical properties were also studied. The fineness of fly ash was determined by Blaine’s method, specific gravity, lime reactivity, CCS were determined as per the method IS 1727-1967. The phase composition of fly ash was studied using the X-ray Diffraction technique. The changes in the microstructure and morphology with activation were examined using the scanning electron microscope. The studies presented in this paper also include evaluation of Portland Pozzolana Cement (PPC), prepared using high volume fly ash. Studies are being carried out using clinker from cement plants located in different regions/clusters in India. Blends of PPC containing higher contents of activated fly ash have been prepared and investigated for their chemical and physical properties, as per Indian Standard procedures. Changes in the microstructure of fly ash with activation and mechanical properties of resultant cement containing high volumes of fly ash indicated the significance of optimization of the quality of clinker and fly ash fineness for better techno-economical benefits.Keywords: flow properties, fly ash enhancement, lime reactivity, microstructure, mineralogy
Procedia PDF Downloads 4622093 An Evolutionary Approach for Automated Optimization and Design of Vivaldi Antennas
Authors: Sahithi Yarlagadda
Abstract:
The design of antenna is constrained by mathematical and geometrical parameters. Though there are diverse antenna structures with wide range of feeds yet, there are many geometries to be tried, which cannot be customized into predefined computational methods. The antenna design and optimization qualify to apply evolutionary algorithmic approach since the antenna parameters weights dependent on geometric characteristics directly. The evolutionary algorithm can be explained simply for a given quality function to be maximized. We can randomly create a set of candidate solutions, elements of the function's domain, and apply the quality function as an abstract fitness measure. Based on this fitness, some of the better candidates are chosen to seed the next generation by applying recombination and permutation to them. In conventional approach, the quality function is unaltered for any iteration. But the antenna parameters and geometries are wide to fit into single function. So, the weight coefficients are obtained for all possible antenna electrical parameters and geometries; the variation is learnt by mining the data obtained for an optimized algorithm. The weight and covariant coefficients of corresponding parameters are logged for learning and future use as datasets. This paper drafts an approach to obtain the requirements to study and methodize the evolutionary approach to automated antenna design for our past work on Vivaldi antenna as test candidate. The antenna parameters like gain, directivity, etc. are directly caged by geometries, materials, and dimensions. The design equations are to be noted here and valuated for all possible conditions to get maxima and minima for given frequency band. The boundary conditions are thus obtained prior to implementation, easing the optimization. The implementation mainly aimed to study the practical computational, processing, and design complexities that incur while simulations. HFSS is chosen for simulations and results. MATLAB is used to generate the computations, combinations, and data logging. MATLAB is also used to apply machine learning algorithms and plotting the data to design the algorithm. The number of combinations is to be tested manually, so HFSS API is used to call HFSS functions from MATLAB itself. MATLAB parallel processing tool box is used to run multiple simulations in parallel. The aim is to develop an add-in to antenna design software like HFSS, CSTor, a standalone application to optimize pre-identified common parameters of wide range of antennas available. In this paper, we have used MATLAB to calculate Vivaldi antenna parameters like slot line characteristic impedance, impedance of stripline, slot line width, flare aperture size, dielectric and K means, and Hamming window are applied to obtain the best test parameters. HFSS API is used to calculate the radiation, bandwidth, directivity, and efficiency, and data is logged for applying the Evolutionary genetic algorithm in MATLAB. The paper demonstrates the computational weights and Machine Learning approach for automated antenna optimizing for Vivaldi antenna.Keywords: machine learning, Vivaldi, evolutionary algorithm, genetic algorithm
Procedia PDF Downloads 1082092 Arabic Lexicon Learning to Analyze Sentiment in Microblogs
Authors: Mahmoud B. Rokaya
Abstract:
The study of opinion mining and sentiment analysis includes analysis of opinions, sentiments, evaluations, attitudes, and emotions. The rapid growth of social media, social networks, reviews, forum discussions, microblogs, and Twitter, leads to a parallel growth in the field of sentiment analysis. The field of sentiment analysis tries to develop effective tools to make it possible to capture the trends of people. There are two approaches in the field, lexicon-based and corpus-based methods. A lexicon-based method uses a sentiment lexicon which includes sentiment words and phrases with assigned numeric scores. These scores reveal if sentiment phrases are positive or negative, their intensity, and/or their emotional orientations. Creation of manual lexicons is hard. This brings the need for adaptive automated methods for generating a lexicon. The proposed method generates dynamic lexicons based on the corpus and then classifies text using these lexicons. In the proposed method, different approaches are combined to generate lexicons from text. The proposed method classifies the tweets into 5 classes instead of +ve or –ve classes. The sentiment classification problem is written as an optimization problem, finding optimum sentiment lexicons are the goal of the optimization process. The solution was produced based on mathematical programming approaches to find the best lexicon to classify texts. A genetic algorithm was written to find the optimal lexicon. Then, extraction of a meta-level feature was done based on the optimal lexicon. The experiments were conducted on several datasets. Results, in terms of accuracy, recall and F measure, outperformed the state-of-the-art methods proposed in the literature in some of the datasets. A better understanding of the Arabic language and culture of Arab Twitter users and sentiment orientation of words in different contexts can be achieved based on the sentiment lexicons proposed by the algorithm.Keywords: social media, Twitter sentiment, sentiment analysis, lexicon, genetic algorithm, evolutionary computation
Procedia PDF Downloads 1882091 Dido: An Automatic Code Generation and Optimization Framework for Stencil Computations on Distributed Memory Architectures
Authors: Mariem Saied, Jens Gustedt, Gilles Muller
Abstract:
We present Dido, a source-to-source auto-generation and optimization framework for multi-dimensional stencil computations. It enables a large programmer community to easily and safely implement stencil codes on distributed-memory parallel architectures with Ordered Read-Write Locks (ORWL) as an execution and communication back-end. ORWL provides inter-task synchronization for data-oriented parallel and distributed computations. It has been proven to guarantee equity, liveness, and efficiency for a wide range of applications, particularly for iterative computations. Dido consists mainly of an implicitly parallel domain-specific language (DSL) implemented as a source-level transformer. It captures domain semantics at a high level of abstraction and generates parallel stencil code that leverages all ORWL features. The generated code is well-structured and lends itself to different possible optimizations. In this paper, we enhance Dido to handle both Jacobi and Gauss-Seidel grid traversals. We integrate temporal blocking to the Dido code generator in order to reduce the communication overhead and minimize data transfers. To increase data locality and improve intra-node data reuse, we coupled the code generation technique with the polyhedral parallelizer Pluto. The accuracy and portability of the generated code are guaranteed thanks to a parametrized solution. The combination of ORWL features, the code generation pattern and the suggested optimizations, make of Dido a powerful code generation framework for stencil computations in general, and for distributed-memory architectures in particular. We present a wide range of experiments over a number of stencil benchmarks.Keywords: stencil computations, ordered read-write locks, domain-specific language, polyhedral model, experiments
Procedia PDF Downloads 1262090 Optimization of Polymerase Chain Reaction Condition to Amplify Exon 9 of PIK3CA Gene in Preventing False Positive Detection Caused by Pseudogene Existence in Breast Cancer
Authors: Dina Athariah, Desriani Desriani, Bugi Ratno Budiarto, Abinawanto Abinawanto, Dwi Wulandari
Abstract:
Breast cancer is a regulated by many genes. Defect in PIK3CA gene especially at position of exon 9 (E542K and E545K), called hot spot mutation induce early transformation of breast cells. The early detection of breast cancer based on mutation profile of this hot spot region would be hampered by the existence of pseudogene, marked by its substitution mutation at base 1658 (E545A) and deletion at 1659 that have been previously proven in several cancers. To the best of the authors’ knowledge, until recently no studies have been reported about pseudogene phenomenon in breast cancer. Here, we reported PCR optimization to to obtain true exon 9 of PIK3CA gene from its pseudogene hence increasing the validity of data. Material and methods: two genomic DNA with Dev and En code were used in this experiment. Two pairs of primer were design for Standard PCR method. The size of PCR products for each primer is 200bp and 400bp. While other primer was designed for Nested-PCR followed with DNA sequencing method. For Nested-PCR, we optimized the annealing temperature in first and second run of PCR, and the PCR cycle for first run PCR (15x versus 25x). Result: standard PCR using both primer pairs designed is failed to detect the true PIK3CA gene, appearing a substitution mutation at 1658 and deletion at 1659 of PCR product in sequence chromatogram indicated pseudogene. Meanwhile, Nested-PCR with optimum condition (annealing temperature for the first round at 55oC, annealing temperatung for the second round at 60,7oC with 15x PCR cycles) and could detect the true PIK3CA gene. Dev sample were identified as WT while En sample contain one substitution mutation at position 545 of exon 9, indicating amino acid changing from E to K. For the conclusion, pseudogene also exists in breast cancer and the apllication of optimazed Nested-PCR in this study could detect the true exon 9 of PIK3CA gene.Keywords: breast cancer, exon 9, hotspot mutation, PIK3CA, pseudogene
Procedia PDF Downloads 2412089 Advanced Technologies and Algorithms for Efficient Portfolio Selection
Authors: Konstantinos Liagkouras, Konstantinos Metaxiotis
Abstract:
In this paper we present a classification of the various technologies applied for the solution of the portfolio selection problem according to the discipline and the methodological framework followed. We provide a concise presentation of the emerged categories and we are trying to identify which methods considered obsolete and which lie at the heart of the debate. On top of that, we provide a comparative study of the different technologies applied for efficient portfolio construction and we suggest potential paths for future work that lie at the intersection of the presented techniques.Keywords: portfolio selection, optimization techniques, financial models, stochastic, heuristics
Procedia PDF Downloads 4302088 3D Hybrid Multiphysics Lattice Boltzmann Model for Studying the Flow Behavior of Emulsions in Structured Rectangular Microchannels
Authors: Luma Al-Tamimi, Hassan Farhat, Wessam Hasan
Abstract:
A three-dimensional (3D) hybrid quasi-steady thermal lattice Boltzmann model is developed to couple the effects of surfactant, temperature, interfacial tension, and contact angle. This 3D model is an extended scheme of a previously introduced two-dimensional (2D) hybrid lattice Boltzmann model. The 3D model is used to study the combined multi-physics effects on emulsion systems flowing in rectangular microchannels with and without confinements, where the suspended phase is made of droplets, plugs, or a mixture of both. The simulation results show that emulsion systems with plugs as the suspended phase are more efficient than with droplets, whereas mixed systems that form large plugs through coalescence have even greater efficiency. The 3D contact angle model generates matching results to those of the 2D model, which were validated with experiments. Furthermore, the effects of various confinements on adhering single drop systems are investigated for delineating their influence on the power required for transporting the suspended phase through the channel. It is shown that the deeper the constriction is, the lower the system efficiency. Increasing the surfactant concentration or fluid temperature in a channel with confinement carries a substantial positive effect on oil droplet transportation.Keywords: lattice Boltzmann method, thermal, contact angle, surfactants, high viscosity ratio, porous media
Procedia PDF Downloads 1742087 Effective Planning of Public Transportation Systems: A Decision Support Application
Authors: Ferdi Sönmez, Nihal Yorulmaz
Abstract:
Decision making on the true planning of the public transportation systems to serve potential users is a must for metropolitan areas. To take attraction of travelers to projected modes of transport, adequately fair overall travel times should be provided. In this fashion, other benefits such as lower traffic congestion, road safety and lower noise and atmospheric pollution may be earned. The congestion which comes with increasing demand of public transportation is becoming a part of our lives and making residents’ life difficult. Hence, regulations should be done to reduce this congestion. To provide a constructive and balanced regulation in public transportation systems, right stations should be located in right places. In this study, it is aimed to design and implement a Decision Support System (DSS) Application to determine the optimal bus stop places for public transport in Istanbul which is one of the biggest and oldest cities in the world. Required information is gathered from IETT (Istanbul Electricity, Tram and Tunnel) Enterprises which manages all public transportation services in Istanbul Metropolitan Area. By using the most real-like values, cost assignments are made. The cost is calculated with the help of equations produced by bi-level optimization model. For this study, 300 buses, 300 drivers, 10 lines and 110 stops are used. The user cost of each station and the operator cost taken place in lines are calculated. Some components like cost, security and noise pollution are considered as significant factors affecting the solution of set covering problem which is mentioned for identifying and locating the minimum number of possible bus stops. Preliminary research and model development for this study refers to previously published article of the corresponding author. Model results are represented with the intent of decision support to the specialists on locating stops effectively.Keywords: operator cost, bi-level optimization model, user cost, urban transportation
Procedia PDF Downloads 2452086 A Universal Approach to Categorize Failures in Production
Authors: Konja Knüppel, Gerrit Meyer, Peter Nyhuis
Abstract:
The increasing interconnectedness and complexity of production processes raise the susceptibility of production systems to failure. Therefore, the ability to respond quickly to failures is increasingly becoming a competitive factor. The research project "Sustainable failure management in manufacturing SMEs" is developing a methodology to identify failures in the production and select preventive and reactive measures in order to correct failures and to establish sustainable failure management systems.Keywords: failure categorization, failure management, logistic performance, production optimization
Procedia PDF Downloads 3722085 Comprehensive Analysis and Optimization of Alkaline Water Electrolysis for Green Hydrogen Production: Experimental Validation, Simulation Study, and Cost Analysis
Authors: Umair Ahmed, Muhammad Bin Irfan
Abstract:
This study focuses on designing and optimization of an alkaline water electrolyser for the production of green hydrogen. The aim is to enhance the durability and efficiency of this technology while simultaneously reducing the cost associated with the production of green hydrogen. The experimental results obtained from the alkaline water electrolyser are compared with simulated results using Aspen Plus software, allowing a comprehensive analysis and evaluation. To achieve the aforementioned goals, several design and operational parameters are investigated. The electrode material, electrolyte concentration, and operating conditions are carefully selected to maximize the efficiency and durability of the electrolyser. Additionally, cost-effective materials and manufacturing techniques are explored to decrease the overall production cost of green hydrogen. The experimental setup includes a carefully designed alkaline water electrolyser, where various performance parameters (such as hydrogen production rate, current density, and voltage) are measured. These experimental results are then compared with simulated data obtained using Aspen Plus software. The simulation model is developed based on fundamental principles and validated against the experimental data. The comparison between experimental and simulated results provides valuable insight into the performance of an alkaline water electrolyser. It helps to identify the areas where improvements can be made, both in terms of design and operation, to enhance the durability and efficiency of the system. Furthermore, the simulation results allow cost analysis providing an estimate of the overall production cost of green hydrogen. This study aims to develop a comprehensive understanding of alkaline water electrolysis technology. The findings of this research can contribute to the development of more efficient and durable electrolyser technology while reducing the cost associated with this technology. Ultimately, these advancements can pave the way for a more sustainable and economically viable hydrogen economy.Keywords: sustainable development, green energy, green hydrogen, electrolysis technology
Procedia PDF Downloads 872084 Highly Specific DNA-Aptamer-Based Electrochemical Biosensor for Mercury (II) and Lead (II) Ions Detection in Water Samples
Authors: H. Abu-Ali, A. Nabok, T. Smith
Abstract:
Aptamers are single-strand of DNA or RNA nucleotides sequence which is designed in vitro using selection process known as SELEX (systematic evolution of ligands by exponential enrichment) were developed for the selective detection of many toxic materials. In this work, we have developed an electrochemical biosensor for highly selective and sensitive detection of Hg2+ and Pb2+ using a specific aptamer probe (SAP) labelled with ferrocene (or methylene blue) in (5′) end and the thiol group at its (3′) termini, respectively. The SAP has a specific coil structure that matching with G-G for Pb2+ and T-T for Hg2+ interaction binding nucleotides ions, respectively. Aptamers were immobilized onto surface of screen-printed gold electrodes via SH groups; then the cyclic voltammograms were recorded in binding buffer with the addition of the above metal salts in different concentrations. The resulted values of anode current increase upon binding heavy metal ions to aptamers and analyte due to the presence of electrochemically active probe, i.e. ferrocene or methylene blue group. The correlation between the anodic current values and the concentrations of Hg2+ and Pb2+ ions has been established in this work. To the best of our knowledge, this is the first example of using a specific DNA aptamers for electrochemical detection of heavy metals. Each increase in concentration of 0.1 μM results in an increase in the anode current value by simple DC electrochemical test i.e (Cyclic Voltammetry), thus providing an easy way of determining Hg2+ and Pb2+concentration.Keywords: aptamer, based, biosensor, DNA, electrochemical, highly, specific
Procedia PDF Downloads 1592083 Study on Optimization of Air Infiltration at Entrance of a Commercial Complex in Zhejiang Province
Authors: Yujie Zhao, Jiantao Weng
Abstract:
In the past decade, with the rapid development of China's economy, the purchasing power and physical demand of residents have been improved, which results in the vast emergence of public buildings like large shopping malls. However, the architects usually focus on the internal functions and streamlines of these buildings, ignoring the impact of the environment on the subjective feelings of building users. Only in Zhejiang province, the infiltration of cold air in winter frequently occurs at the entrance of sizeable commercial complex buildings that have been in operation, which will affect the environmental comfort of the building lobby and internal public spaces. At present, to reduce these adverse effects, it is usually adopted to add active equipment, such as setting air curtains to block air exchange or adding heating air conditioners. From the perspective of energy consumption, the infiltration of cold air into the entrance will increase the heat consumption of indoor heating equipment, which will indirectly cause considerable economic losses during the whole winter heating stage. Therefore, it is of considerable significance to explore the suitable entrance forms for improving the environmental comfort of commercial buildings and saving energy. In this paper, a commercial complex with apparent cold air infiltration problem in Hangzhou is selected as the research object to establish a model. The environmental parameters of the building entrance, including temperature, wind speed, and infiltration air volume, are obtained by Computational Fluid Dynamics (CFD) simulation, from which the heat consumption caused by the natural air infiltration in the winter and its potential economic loss is estimated as the objective metric. This study finally obtains the optimization direction of the building entrance form of the commercial complex by comparing the simulation results of other local commercial complex projects with different entrance forms. The conclusions will guide the entrance design of the same type of commercial complex in this area.Keywords: air infiltration, commercial complex, heat consumption, CFD simulation
Procedia PDF Downloads 1322082 Effects of Multilayer Coating of Chitosan and Polystyrene Sulfonate on Quality of ‘Nam Dok Mai No.4’ Mango
Authors: N. Hadthamard, P. Chaumpluk, M. Buanong, P. Boonyaritthongchai, C. Wongs-Aree
Abstract:
Ripe ‘Nam Dok Mai’ mango (Mangifera indica L.) is an important exported fruit of Thailand, but rapidly declined in the quality attributes mainly by infection of anthracnose and stem end rot diseases. Multilayer coating is considered as a developed technique to maintain the postharvest quality of mangoes. The utilization of alternated coating by matching oppositely electrostatic charges between 0.1% chitosan and 0.1% polystyrene sulfonate (PSS) was studied. A number of the coating layers (layer by layer) were applied on mature green ‘Nam Dok Mai No.4’ mangoes prior to storage at 25 oC, 65-70% relative humidity (RH). There were significant differences in some quality attributes of mangoes coated by 3½ layers, 4½ layers and 5½ layers. In comparison to coated mangoes, uncoated fruits were higher in weight loss, total soluble solids, respiration rate, ethylene production and disease incidence except the titratable acidity. Coating fruit at 3½ layers exhibited the ripening delay and reducing disease infection without off flavour. On the other hand, fruit coated with 5½ layers comprised the lowest acceptable score, caused by exhibiting disorders from fermentation at the end of storage. As a result, multilayer coating between chitosan and PSS could effectively maintain the postharvest quality of mango, but number of coating layers should be thoroughly considered.Keywords: multilayer, chitosan, polystyrene sulfonate, Nam Dok Mai No.4
Procedia PDF Downloads 2102081 An Energy Efficient Spectrum Shaping Scheme for Substrate Integrated Waveguides Based on Spread Reshaping Code
Authors: Yu Zhao, Rainer Gruenheid, Gerhard Bauch
Abstract:
In the microwave and millimeter-wave transmission region, substrate-integrated waveguide (SIW) is a very promising candidate for the development of circuits and components. It facilitates the transmission at the data rates in excess of 200 Gbit/s. An SIW mimics a rectangular waveguide by approximating the closed sidewalls with a via fence. This structure suppresses the low frequency components and makes the channel of the SIW a bandpass or high pass filter. This channel characteristic impedes the conventional baseband transmission using non-return-to-zero (NRZ) pulse shaping scheme. Therefore, mixers are commonly proposed to be used as carrier modulator and demodulator in order to facilitate a passband transmission. However, carrier modulation is not an energy efficient solution, because modulation and demodulation at high frequencies consume a lot of energy. For the first time to our knowledge, this paper proposes a spectrum shaping scheme of low complexity for the channel of SIW, namely spread reshaping code. It aims at matching the spectrum of the transmit signal to the channel frequency response. It facilitates the transmission through the SIW channel while it avoids using carrier modulation. In some cases, it even does not need equalization. Simulations reveal a good performance of this scheme, such that, as a result, eye opening is achieved without any equalization or modulation for the respective transmission channels.Keywords: bandpass channel, eye-opening, switching frequency, substrate-integrated waveguide, spectrum shaping scheme, spread reshaping code
Procedia PDF Downloads 1592080 Artificial Neural Network Approach for Modeling and Optimization of Conidiospore Production of Trichoderma harzianum
Authors: Joselito Medina-Marin, Maria G. Serna-Diaz, Alejandro Tellez-Jurado, Juan C. Seck-Tuoh-Mora, Eva S. Hernandez-Gress, Norberto Hernandez-Romero, Iaina P. Medina-Serna
Abstract:
Trichoderma harzianum is a fungus that has been utilized as a low-cost fungicide for biological control of pests, and it is important to determine the optimal conditions to produce the highest amount of conidiospores of Trichoderma harzianum. In this work, the conidiospore production of Trichoderma harzianum is modeled and optimized by using Artificial Neural Networks (AANs). In order to gather data of this process, 30 experiments were carried out taking into account the number of hours of culture (10 distributed values from 48 to 136 hours) and the culture humidity (70, 75 and 80 percent), obtained as a response the number of conidiospores per gram of dry mass. The experimental results were used to develop an iterative algorithm to create 1,110 ANNs, with different configurations, starting from one to three hidden layers, and every hidden layer with a number of neurons from 1 to 10. Each ANN was trained with the Levenberg-Marquardt backpropagation algorithm, which is used to learn the relationship between input and output values. The ANN with the best performance was chosen in order to simulate the process and be able to maximize the conidiospores production. The obtained ANN with the highest performance has 2 inputs and 1 output, three hidden layers with 3, 10 and 10 neurons in each layer, respectively. The ANN performance shows an R2 value of 0.9900, and the Root Mean Squared Error is 1.2020. This ANN predicted that 644175467 conidiospores per gram of dry mass are the maximum amount obtained in 117 hours of culture and 77% of culture humidity. In summary, the ANN approach is suitable to represent the conidiospores production of Trichoderma harzianum because the R2 value denotes a good fitting of experimental results, and the obtained ANN model was used to find the parameters to produce the biggest amount of conidiospores per gram of dry mass.Keywords: Trichoderma harzianum, modeling, optimization, artificial neural network
Procedia PDF Downloads 1572079 A Human Factors Approach to Workload Optimization for On-Screen Review Tasks
Authors: Christina Kirsch, Adam Hatzigiannis
Abstract:
Rail operators and maintainers worldwide are increasingly replacing walking patrols in the rail corridor with mechanized track patrols -essentially data capture on trains- and on-screen reviews of track infrastructure in centralized review facilities. The benefit is that infrastructure workers are less exposed to the dangers of the rail corridor. The impact is a significant change in work design from walking track sections and direct observation in the real world to sedentary jobs in the review facility reviewing captured data on screens. Defects in rail infrastructure can have catastrophic consequences. Reviewer performance regarding accuracy and efficiency of reviews within the available time frame is essential to ensure safety and operational performance. Rail operators must optimize workload and resource loading to transition to on-screen reviews successfully. Therefore, they need to know what workload assessment methodologies will provide reliable and valid data to optimize resourcing for on-screen reviews. This paper compares objective workload measures, including track difficulty ratings and review distance covered per hour, and subjective workload assessments (NASA TLX) and analyses the link between workload and reviewer performance, including sensitivity, precision, and overall accuracy. An experimental study was completed with eight on-screen reviewers, including infrastructure workers and engineers, reviewing track sections with different levels of track difficulty over nine days. Each day the reviewers completed four 90-minute sessions of on-screen inspection of the track infrastructure. Data regarding the speed of review (km/ hour), detected defects, false negatives, and false positives were collected. Additionally, all reviewers completed a subjective workload assessment (NASA TLX) after each 90-minute session and a short employee engagement survey at the end of the study period that captured impacts on job satisfaction and motivation. The results showed that objective measures for tracking difficulty align with subjective mental demand, temporal demand, effort, and frustration in the NASA TLX. Interestingly, review speed correlated with subjective assessments of physical and temporal demand, but to mental demand. Subjective performance ratings correlated with all accuracy measures and review speed. The results showed that subjective NASA TLX workload assessments accurately reflect objective workload. The analysis of the impact of workload on performance showed that subjective mental demand correlated with high precision -accurately detected defects, not false positives. Conversely, high temporal demand was negatively correlated with sensitivity and the percentage of detected existing defects. Review speed was significantly correlated with false negatives. With an increase in review speed, accuracy declined. On the other hand, review speed correlated with subjective performance assessments. Reviewers thought their performance was higher when they reviewed the track sections faster, despite the decline in accuracy. The study results were used to optimize resourcing and ensure that reviewers had enough time to review the allocated track sections to improve defect detection rates in accordance with the efficiency-thoroughness trade-off. Overall, the study showed the importance of a multi-method approach to workload assessment and optimization, combining subjective workload assessments with objective workload and performance measures to ensure that recommendations for work system optimization are evidence-based and reliable.Keywords: automation, efficiency-thoroughness trade-off, human factors, job design, NASA TLX, performance optimization, subjective workload assessment, workload analysis
Procedia PDF Downloads 1182078 Evaluation of PV Orientation Effect on Mismatch between Consumption Load and PV Power Profiles
Authors: Iyad M. Muslih, Yehya Abdellatif, Sara Qutishat
Abstract:
Renewable energy and in particular solar photovoltaic energy is emerging as a reasonable power generation source. The intermittent and unpredictable nature of solar energy can represent a serious challenge to the utility grids, specifically at relatively high penetration. To minimize the impact of PV power systems on the grid, self-consumption is encouraged. Self-consumption can be improved by matching the PV power generation with the electrical load consumption profile. This study will focus in studying different load profiles and comparing them to typical solar PV power generation at the selected sites with the purpose of analyzing the mismatch in consumption load profile for different users; residential, commercial, and industrial versus the solar photovoltaic output generation. The PV array orientation can be adjusted to reduce the mismatch effects. The orientation shift produces a corresponding shift in the energy production curve. This shift has a little effect on the mismatch for residential loads due to the fact the peak load occurs at night due to lighting loads. This minor gain does not justify the power production loss associated with the orientation shift. The orientation shift for both commercial and industrial cases lead to valuable decrease in the mismatch effects. Such a design is worth considering for reducing grid penetration. Furthermore, the proposed orientation shift yielded better results during the summer time due to the extended daylight hours.Keywords: grid impact, HOMER, power mismatch, solar PV energy
Procedia PDF Downloads 6032077 Optimization of the Jatropha curcas Supply Chain as a Criteria for the Implementation of Future Collection Points in Rural Areas of Manabi-Ecuador
Authors: Boris G. German, Edward Jiménez, Sebastián Espinoza, Andrés G. Chico, Ricardo A. Narváez
Abstract:
The unique flora and fauna of The Galapagos Islands has leveraged a tourism-driven growth in the islands. Nonetheless, such development is energy-intensive and requires thousands of gallons of diesel each year for thermoelectric electricity generation. The needed transport of fossil fuels from the continent has generated oil spillages and affectations to the fragile ecosystem of the islands. The Zero Fossil Fuels initiative for The Galapagos proposed by the Ecuadorian government as an alternative to reduce the use of fossil fuels in the islands, considers the replacement of diesel in thermoelectric generators, by Jatropha curcas vegetable oil. However, the Jatropha oil supply cannot entirely cover yet the demand for electricity generation in Galapagos. Within this context, the present work aims to provide an optimization model that can be used as a selection criterion for approving new Jatropha Curcas collection points in rural areas of Manabi-Ecuador. For this purpose, existing Jatropha collection points in Manabi were grouped under three regions: north (7 collection points), center (4 collection points) and south (9 collection points). Field work was carried out in every region in order to characterize the collection points, to establish local Jatropha supply and to determine transportation costs. Data collection was complemented using GIS software and an objective function was defined in order to determine the profit associated to Jatropha oil production. The market price of both Jatropha oil and residual cake, were considered for the total revenue; whereas Jatropha price, transportation and oil extraction costs were considered for the total cost. The tonnes of Jatropha fruit and seed, transported from collection points to the extraction plant, were considered as variables. The maximum and minimum amount of the collected Jatropha from each region constrained the optimization problem. The supply chain was optimized using linear programming in order to maximize the profits. Finally, a sensitivity analysis was performed in order to find a profit-based criterion for the acceptance of future collection points in Manabi. The maximum profit reached a value of $ 4,616.93 per year, which represented a total Jatropha collection of 62.3 tonnes Jatropha per year. The northern region of Manabi had the biggest collection share (69%), followed by the southern region (17%). The criteria for accepting new Jatropha collection points in the rural areas of Manabi can be defined by the current maximum profit of the zone and by the variation in the profit when collection points are removed one at a time. The definition of new feasible collection points plays a key role in the supply chain associated to Jatropha oil production. Therefore, a mathematical model that assists decision makers in establishing new collection points while assuring profitability, contributes to guarantee a continued Jatropha oil supply for Galapagos and a sustained economic growth in the rural areas of Ecuador.Keywords: collection points, Jatropha curcas, linear programming, supply chain
Procedia PDF Downloads 4302076 Reinforcement Learning For Agile CNC Manufacturing: Optimizing Configurations And Sequencing
Authors: Huan Ting Liao
Abstract:
In a typical manufacturing environment, computer numerical control (CNC) machining is essential for automating production through precise computer-controlled tool operations, significantly enhancing efficiency and ensuring consistent product quality. However, traditional CNC production lines often rely on manual loading and unloading, limiting operational efficiency and scalability. Although automated loading systems have been developed, they frequently lack sufficient intelligence and configuration efficiency, requiring extensive setup adjustments for different products and impacting overall productivity. This research addresses the job shop scheduling problem (JSSP) in CNC machining environments, aiming to minimize total completion time (makespan) and maximize CNC machine utilization. We propose a novel approach using reinforcement learning (RL), specifically the Q-learning algorithm, to optimize scheduling decisions. The study simulates the JSSP, incorporating robotic arm operations, machine processing times, and work order demand allocation to determine optimal processing sequences. The Q-learning algorithm enhances machine utilization by dynamically balancing workloads across CNC machines, adapting to varying job demands and machine states. This approach offers robust solutions for complex manufacturing environments by automating decision-making processes for job assignments. Additionally, we evaluate various layout configurations to identify the most efficient setup. By integrating RL-based scheduling optimization with layout analysis, this research aims to provide a comprehensive solution for improving manufacturing efficiency and productivity in CNC-based job shops. The proposed method's adaptability and automation potential promise significant advancements in tackling dynamic manufacturing challenges.Keywords: job shop scheduling problem, reinforcement learning, operations sequence, layout optimization, q-learning
Procedia PDF Downloads 232075 Automatic Registration of Rail Profile Based Local Maximum Curvature Entropy
Authors: Hao Wang, Shengchun Wang, Weidong Wang
Abstract:
On the influence of train vibration and environmental noise on the measurement of track wear, we proposed a method for automatic extraction of circular arc on the inner or outer side of the rail waist and achieved the high-precision registration of rail profile. Firstly, a polynomial fitting method based on truncated residual histogram was proposed to find the optimal fitting curve of the profile and reduce the influence of noise on profile curve fitting. Then, based on the curvature distribution characteristics of the fitting curve, the interval search algorithm based on dynamic window’s maximum curvature entropy was proposed to realize the automatic segmentation of small circular arc. At last, we fit two circle centers as matching reference points based on small circular arcs on both sides and realized the alignment from the measured profile to the standard designed profile. The static experimental results show that the mean and standard deviation of the method are controlled within 0.01mm with small measurement errors and high repeatability. The dynamic test also verified the repeatability of the method in the train-running environment, and the dynamic measurement deviation of rail wear is within 0.2mm with high repeatability.Keywords: curvature entropy, profile registration, rail wear, structured light, train-running
Procedia PDF Downloads 2582074 Solution of Nonlinear Fractional Programming Problem with Bounded Parameters
Authors: Mrinal Jana, Geetanjali Panda
Abstract:
In this paper a methodology is developed to solve a nonlinear fractional programming problem in which the coefficients of the objective function and constraints are interval parameters. This model is transformed into a general optimization problem and relation between the original problem and the transformed problem is established. Finally the proposed methodology is illustrated through a numerical example.Keywords: fractional programming, interval valued function, interval inequalities, partial order relation
Procedia PDF Downloads 5182073 Development of Power System Stability by Reactive Power Planning in Wind Power Plant With Doubley Fed Induction Generators Generator
Authors: Mohammad Hossein Mohammadi Sanjani, Ashknaz Oraee, Oriol Gomis Bellmunt, Vinicius Albernaz Lacerda Freitas
Abstract:
The use of distributed and renewable sources in power systems has grown significantly, recently. One the most popular sources are wind farms which have grown massively. However, ¬wind farms are connected to the grid, this can cause problems such as reduced voltage stability, frequency fluctuations and reduced dynamic stability. Variable speed generators (asynchronous) are used due to the uncontrollability of wind speed specially Doubley Fed Induction Generators (DFIG). The most important disadvantage of DFIGs is its sensitivity to voltage drop. In the case of faults, a large volume of reactive power is induced therefore, use of FACTS devices such as SVC and STATCOM are suitable for improving system output performance. They increase the capacity of lines and also passes network fault conditions. In this paper, in addition to modeling the reactive power control system in a DFIG with converter, FACTS devices have been used in a DFIG wind turbine to improve the stability of the power system containing two synchronous sources. In the following paper, recent optimal control systems have been designed to minimize fluctuations caused by system disturbances, for FACTS devices employed. For this purpose, a suitable method for the selection of nine parameters for MPSH-phase-post-phase compensators of reactive power compensators is proposed. The design algorithm is formulated ¬¬as an optimization problem searching for optimal parameters in the controller. Simulation results show that the proposed controller Improves the stability of the network and the fluctuations are at desired speed.Keywords: renewable energy sources, optimization wind power plant, stability, reactive power compensator, double-feed induction generator, optimal control, genetic algorithm
Procedia PDF Downloads 932072 An Efficient Propensity Score Method for Causal Analysis With Application to Case-Control Study in Breast Cancer Research
Authors: Ms Azam Najafkouchak, David Todem, Dorothy Pathak, Pramod Pathak, Joseph Gardiner
Abstract:
Propensity score (PS) methods have recently become the standard analysis as a tool for the causal inference in the observational studies where exposure is not randomly assigned, thus, confounding can impact the estimation of treatment effect on the outcome. For the binary outcome, the effect of treatment on the outcome can be estimated by odds ratios, relative risks, and risk differences. However, using the different PS methods may give you a different estimation of the treatment effect on the outcome. Several methods of PS analyses have been used mainly, include matching, inverse probability of weighting, stratification, and covariate adjusted on PS. Due to the dangers of discretizing continuous variables (exposure, covariates), the focus of this paper will be on how the variation in cut-points or boundaries will affect the average treatment effect (ATE) utilizing the stratification of PS method. Therefore, we are trying to avoid choosing arbitrary cut-points, instead, we continuously discretize the PS and accumulate information across all cut-points for inferences. We will use Monte Carlo simulation to evaluate ATE, focusing on two PS methods, stratification and covariate adjusted on PS. We will then show how this can be observed based on the analyses of the data from a case-control study of breast cancer, the Polish Women’s Health Study.Keywords: average treatment effect, propensity score, stratification, covariate adjusted, monte Calro estimation, breast cancer, case_control study
Procedia PDF Downloads 1052071 Pavement Management for a Metropolitan Area: A Case Study of Montreal
Authors: Luis Amador Jimenez, Md. Shohel Amin
Abstract:
Pavement performance models are based on projections of observed traffic loads, which makes uncertain to study funding strategies in the long run if history does not repeat. Neural networks can be used to estimate deterioration rates but the learning rate and momentum have not been properly investigated, in addition, economic evolvement could change traffic flows. This study addresses both issues through a case study for roads of Montreal that simulates traffic for a period of 50 years and deals with the measurement error of the pavement deterioration model. Travel demand models are applied to simulate annual average daily traffic (AADT) every 5 years. Accumulated equivalent single axle loads (ESALs) are calculated from the predicted AADT and locally observed truck distributions combined with truck factors. A back propagation Neural Network (BPN) method with a Generalized Delta Rule (GDR) learning algorithm is applied to estimate pavement deterioration models capable of overcoming measurement errors. Linear programming of lifecycle optimization is applied to identify M&R strategies that ensure good pavement condition while minimizing the budget. It was found that CAD 150 million is the minimum annual budget to good condition for arterial and local roads in Montreal. Montreal drivers prefer the use of public transportation for work and education purposes. Vehicle traffic is expected to double within 50 years, ESALS are expected to double the number of ESALs every 15 years. Roads in the island of Montreal need to undergo a stabilization period for about 25 years, a steady state seems to be reached after.Keywords: pavement management system, traffic simulation, backpropagation neural network, performance modeling, measurement errors, linear programming, lifecycle optimization
Procedia PDF Downloads 460