Search results for: infinite feature selection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3940

Search results for: infinite feature selection

2320 Vehicle Detection and Tracking Using Deep Learning Techniques in Surveillance Image

Authors: Abe D. Desta

Abstract:

This study suggests a deep learning-based method for identifying and following moving objects in surveillance video. The proposed method uses a fast regional convolution neural network (F-RCNN) trained on a substantial dataset of vehicle images to first detect vehicles. A Kalman filter and a data association technique based on a Hungarian algorithm are then used to monitor the observed vehicles throughout time. However, in general, F-RCNN algorithms have been shown to be effective in achieving high detection accuracy and robustness in this research study. For example, in one study The study has shown that the vehicle detection and tracking, the system was able to achieve an accuracy of 97.4%. In this study, the F-RCNN algorithm was compared to other popular object detection algorithms and was found to outperform them in terms of both detection accuracy and speed. The presented system, which has application potential in actual surveillance systems, shows the usefulness of deep learning approaches in vehicle detection and tracking.

Keywords: artificial intelligence, computer vision, deep learning, fast-regional convolutional neural networks, feature extraction, vehicle tracking

Procedia PDF Downloads 127
2319 Investigating (Im)Politeness Strategies in Email Communication: The Case Algerian PhD Supervisees and Irish Supervisors

Authors: Zehor Ktitni

Abstract:

In pragmatics, politeness is regarded as a feature of paramount importance to successful interpersonal relationships. On the other hand, emails have recently become one of the indispensable means of communication in educational settings. This research puts email communication at the core of the study and analyses it from a politeness perspective. More specifically, it endeavours to look closely at how the concept of (im)politeness is reflected through students’ emails. To this end, a corpus of Algerian supervisees’ email threads, exchanged with their Irish supervisors, was compiled. Leech’s model of politeness (2014) was selected as the main theoretical framework of this study, in addition to making reference to Brown and Levinson’s model (1987) as it is one of the most influential models in the area of pragmatic politeness. Further, some follow-up interviews are to be conducted with Algerian students to reinforce the results derived from the corpus. Initial findings suggest that Algerian Ph.D. students’ emails tend to include more politeness markers than impoliteness ones, they heavily make use of academic titles when addressing their supervisors (Dr. or Prof.), and they rely on hedging devices in order to sound polite.

Keywords: politeness, email communication, corpus pragmatics, Algerian PhD supervisees, Irish supervisors

Procedia PDF Downloads 70
2318 Assessment of Compost Usage Quality and Quality for Agricultural Use: A Case Study of Hebron District, Palestine

Authors: Mohammed A. A. Sarhan, Issam A. Al-Khatib

Abstract:

Complying with the technical specifications of compost production is of high importance not only for environmental protection but also for increasing the productivity and promotion of compost use by farmers in agriculture. This study focuses on the compost quality of the Palestinian market and farmers’ attitudes toward agricultural use of compost. The quality is assessed through selection of 20 compost samples of different suppliers and producers and lab testing for quality parameters, while the farmers’ attitudes to compost use for agriculture are evaluated through survey questionnaire of 321 farmers in the Hebron area. The results showed that the compost in the Palestinian markets is of medium quality due to partial or non-compliance with the quality standards and guidelines. The Palestinian farmers showed a positive attitude since 91.2% of them have the desire to use compost in agriculture. The results also showed that knowledge of difference between compost and chemical fertilizers, perception of compost benefits and previously experiencing problems in compost use, are significant factors affecting the farmers’ attitude toward the use of compost as an organic fertilizer.

Keywords: attitude, compost, compost quality, organic fertilizer, manure

Procedia PDF Downloads 167
2317 Bag of Words Representation Based on Fusing Two Color Local Descriptors and Building Multiple Dictionaries

Authors: Fatma Abdedayem

Abstract:

We propose an extension to the famous method called Bag of words (BOW) which proved a successful role in the field of image categorization. Practically, this method based on representing image with visual words. In this work, firstly, we extract features from images using Spatial Pyramid Representation (SPR) and two dissimilar color descriptors which are opponent-SIFT and transformed-color-SIFT. Secondly, we fuse color local features by joining the two histograms coming from these descriptors. Thirdly, after collecting of all features, we generate multi-dictionaries coming from n random feature subsets that obtained by dividing all features into n random groups. Then, by using these dictionaries separately each image can be represented by n histograms which are lately concatenated horizontally and form the final histogram, that allows to combine Multiple Dictionaries (MDBoW). In the final step, in order to classify image we have applied Support Vector Machine (SVM) on the generated histograms. Experimentally, we have used two dissimilar image datasets in order to test our proposition: Caltech 256 and PASCAL VOC 2007.

Keywords: bag of words (BOW), color descriptors, multi-dictionaries, MDBoW

Procedia PDF Downloads 297
2316 ICanny: CNN Modulation Recognition Algorithm

Authors: Jingpeng Gao, Xinrui Mao, Zhibin Deng

Abstract:

Aiming at the low recognition rate on the composite signal modulation in low signal to noise ratio (SNR), this paper proposes a modulation recognition algorithm based on ICanny-CNN. Firstly, the radar signal is transformed into the time-frequency image by Choi-Williams Distribution (CWD). Secondly, we propose an image processing algorithm using the Guided Filter and the threshold selection method, which is combined with the hole filling and the mask operation. Finally, the shallow convolutional neural network (CNN) is combined with the idea of the depth-wise convolution (Dw Conv) and the point-wise convolution (Pw Conv). The proposed CNN is designed to complete image classification and realize modulation recognition of radar signal. The simulation results show that the proposed algorithm can reach 90.83% at 0dB and 71.52% at -8dB. Therefore, the proposed algorithm has a good classification and anti-noise performance in radar signal modulation recognition and other fields.

Keywords: modulation recognition, image processing, composite signal, improved Canny algorithm

Procedia PDF Downloads 191
2315 Rules in Policy Integration, Case Study: Victoria Catchment Management

Authors: Ratri Werdiningtyas, Yongping Wei, Andrew Western

Abstract:

This paper contributes to on-going attempts at bringing together land, water and environmental policy in catchment management. A tension remains in defining the boundaries of policy integration. Most of Integrated Water Resource Management is valued as rhetoric policy. It is far from being achieved on the ground because the socio-ecological system has not been understood and developed into complete and coherent problem representation. To clarify the feature of integration, this article draws on institutional fit for public policy integration and uses these insights in an empirical setting to identify the mechanism that can facilitate effective public integration for catchment management. This research is based on the journey of Victoria’s government from 1890-2016. A total of 274 Victorian Acts related to land, water, environment management published in those periods has been investigated. Four conditions of integration have been identified in their co-evolution: (1) the integration policy based on reserves, (2) the integration policy based on authority interest, (3) policy based on integrated information and, (4) policy based coordinated resource, authority and information. Results suggest that policy coordination among their policy instrument is superior rather than policy integration in the case of catchment management.

Keywords: catchment management, co-evolution, policy integration, phase

Procedia PDF Downloads 247
2314 Effect of Swirling Mixer on the Exhaust Flow in a Diesel SCR Aftertreatment System

Authors: Doo Ki Lee, Kumaresh Selvakumar, Man Young Kim, In Jae Song

Abstract:

The widespread utilization of mixer in selective catalytic reduction (SCR) system marks a remarkable advantage in diesel engines. In the automotive selective catalytic reduction (SCR) system, the de-NOX efficiency can be improved by highly uniform flow with effective turbulent mixing. In this paper, the exhaust pipe is complemented with the swirling mixers of three different vane angles installed at the upstream of the SCR reactor. The attributes of the mixer are established by the variation in flow behavior followed by the drawback owing to the absence of mixer. In particular, the information pertaining to the selection of proper static mixer is provided based on the correlation between the uniformity index (UI) and the pressure drop. The uniform distribution of the flow at the entrance of the SCR reactor aids to determine the configuration which gives high mixing performance and comprehend the function of the mixer.

Keywords: pressure drop, selective catalytic reduction, static mixer, turbulent mixing, uniformity index

Procedia PDF Downloads 936
2313 MindFlow: A Collective Intelligence-Based System for Helping Stress Pattern Diagnosis

Authors: Andres Frederic

Abstract:

We present the MindFlow system supporting the detection and the diagnosis of stresses. The heart of the system is a knowledge synthesis engine allowing occupational health stakeholders (psychologists, occupational therapists and human resource managers) to formulate queries related to stress and responding to users requests by recommending a pattern of stress if one exists. The stress pattern diagnosis is based on expert knowledge stored in the MindFlow stress ontology including stress feature vector. The query processing may involve direct access to the MindFlow system by occupational health stakeholders, online communication between the MindFlow system and the MindFlow domain experts, or direct dialog between a occupational health stakeholder and a MindFlow domain expert. The MindFlow knowledge model is generic in the sense that it supports the needs of psychologists, occupational therapists and human resource managers. The system presented in this paper is currently under development as part of a Dutch-Japanese project and aims to assist organisation in the quick diagnosis of stress patterns.

Keywords: occupational stress, stress management, physiological measurement, accident prevention

Procedia PDF Downloads 430
2312 Adaptive Kaman Filter for Fault Diagnosis of Linear Parameter-Varying Systems

Authors: Rajamani Doraiswami, Lahouari Cheded

Abstract:

Fault diagnosis of Linear Parameter-Varying (LPV) system using an adaptive Kalman filter is proposed. The LPV model is comprised of scheduling parameters, and the emulator parameters. The scheduling parameters are chosen such that they are capable of tracking variations in the system model as a result of changes in the operating regimes. The emulator parameters, on the other hand, simulate variations in the subsystems during the identification phase and have negligible effect during the operational phase. The nominal model and the influence vectors, which are the gradient of the feature vector respect to the emulator parameters, are identified off-line from a number of emulator parameter perturbed experiments. A Kalman filter is designed using the identified nominal model. As the system varies, the Kalman filter model is adapted using the scheduling variables. The residual is employed for fault diagnosis. The proposed scheme is successfully evaluated on simulated system as well as on a physical process control system.

Keywords: identification, linear parameter-varying systems, least-squares estimation, fault diagnosis, Kalman filter, emulators

Procedia PDF Downloads 499
2311 Network Functions Virtualization-Based Virtual Routing Function Deployment under Network Delay Constraints

Authors: Kenichiro Hida, Shin-Ichi Kuribayashi

Abstract:

NFV-based network implements a variety of network functions with software on general-purpose servers, and this allows the network operator to select any capabilities and locations of network functions without any physical constraints. In this paper, we evaluate the influence of the maximum tolerable network delay on the virtual routing function deployment guidelines which the authors proposed previously. Our evaluation results have revealed the following: (1) the more the maximum tolerable network delay condition becomes severe, the more the number of areas where the route selection function is installed increases and the total network cost increases, (2) the higher the routing function cost relative to the circuit bandwidth cost, the increase ratio of total network cost becomes larger according to the maximum tolerable network delay condition.

Keywords: NFV (Network Functions Virtualization), resource allocation, virtual routing function, minimum total network cost

Procedia PDF Downloads 247
2310 Estimating the Potential of Solar Energy: A Moroccan Case Study

Authors: Fakhreddin El Wali Elalaoui, Maatouk Mustapha

Abstract:

The problem of global climate change isbecoming more and more serious. Therefore, there is a growing interest in renewable energy sources to minimize the impact of this phenomenon. Environmental policies are changing in different countries, including Morocco, with a greater focus on the integration and development of renewable energy projects. The purpose of this paper is to evaluate the potential of solar power plants in Morocco based on two technologies: concentrated solar power (CSP) and photovoltaics (PV). In order to perform an accurate search, we must follow a certain method to select the correct criteria. Four selection criteria were retained: climate, topography, location, and water resources. AnalyticHierarchy Process (AHP) was used to calculate the weight/importance of each criterion. Once obtained, weights are applied to the map for each criterion to produce a final ranking that ranks regions according to their potential. The results show that Morocco has strong potential for both technologies, especially in the southern region. Finally, this work is the first in the field to include the whole of Morocco in the study area.

Keywords: PV, Csp, solar energy, GIS

Procedia PDF Downloads 96
2309 Analyzing the Effect of Socio-Political Context on Tourism: Perceptions of Young Tourists in Greece, Portugal and Israel

Authors: Shosh Shahrabani, Sharon Teitler-Regev, Helena Desivilya Syna, Fotini Voulgaris, Evangelos Tsoukatos, Vitor Ambrosio, Sandra M. Correia Loureiro

Abstract:

International crises that affect tourism, such as terror attacks, political unrest, and economic crises have become more frequent, and their influence has become broader. The influence of such extreme events depends on their salience in the tourists' awareness. Hence, it is important to understand the mechanisms underlying tourists' selection of travel destinations, especially their perceptions of crisis-related events and the impact of the sociopolitical and economic context in their countries of origin. The current study examined how the socio-political and economic context in the home countries of potential young tourists affected their selection of travel destinations. The objective was to elucidate how the salience of various crises (economic and political) in the tourists' perceptions, due to their experiences at home, color their construal of destinations affected by similar hazards and influence their travel intentions. The study focused on student tourists from Israel, Greece, and Portugal. Today about a fifth of international tourism is based on young people, especially students. These countries were chosen since Greece and Portugal are in the midst of economic crises. In addition, Greece and Portugal have experienced political instability, while Israel has security-related problems (including terrorist incidents). In 2013, a total of 648 students, responded to a questionnaire that included questions concerning attitudes and risk perceptions regarding travel to destinations with various risk hazards as well as socio-demographic details. The results indicate that over half of the Israelis intend to visit Greece or Portugal. The majority of the Portuguese intend to visit Greece, while less than a third of them intend to visit Israel. About half of the Greeks intend to visit Portugal, and most of them do not intend to visit Israel. The results indicate that greater perceived importance of economic crises mitigates the intention to travel to destinations with economic crises for tourists from origin countries that are also marked by economic crises, such as Greece and Portugal. However, for tourists from Israel, a country with a relatively stable economy, issues related to the economy barely affect their intention to travel to the other two countries. The findings also suggest that Greeks and Portuguese who are highly concerned about political unrest are unlikely to select Israel as a tourist destination. In addition, strong apprehension regarding terrorism impedes the intention to travel to destinations marked by terrorist incidents, such as Israel. The current research contributes to the existing literature by highlighting the impact of travelers' personal previous experience with crisis on their risk perceptions and in turn on their intentions to travel to countries with similar risks. Therefore, in a world where such incidents are on the rise, understanding tourists' risk perceptions and behavior and the factors influencing their destination-related decisions are crucial for countries that wish to increase the numbers of incoming tourists.

Keywords: economic crises, political instability, risk perception, young tourists

Procedia PDF Downloads 461
2308 Factors Impacting Shopping Behavior for Luxury Fashion Brands: A Case of National Capital Region in India

Authors: Manoj Kumar, Preeti Goel

Abstract:

National Capital Region of India is one of the most populous urban agglomerations in the world. This region has residents from all the parts of India, and their shopping behaviors are quite different. The region also has the substantial population of people from other countries. Due to high purchasing power of a large number of people, NCR is one the major markets for luxury fashion brands. Marketers of luxury fashion brands keep on adding innovative features to their products to attract the buyers. This research is an attempt to understand the major factors which impact the brand selection for these brands and other buying decisions like purchasing time and location. The research is based on primary data collected from potential buyers of luxury fashion brands and the people involved in the marketing of these brands in various roles. The research has tried to identify the relative strength of various factors on the shopping behavior for these brands.

Keywords: luxury brands, fashion, shopping, National Capital Region (NCR)

Procedia PDF Downloads 409
2307 Genetic Divergence of Life History Traits in Indian Populations of Drosophila bipectinata

Authors: Manvender Singh

Abstract:

Temperature is one of the most important climatic parameter for explaining the geographic distribution of ectothermic species. Empirical investigations on norms of the reaction according to developmental temperatures are helpful in analyzing the adapture capacity of a species which may be related to its ecological niche. In the present investigation, we have compared the effects of developmental temperatures on fecundity, hatchability, viability, and duration of development in five natural populations of Drosophila bipectinata along the latitudinal range. The clinal patterns for fecundity, as well as ovariole number, were observed which showed significant positive correlation (r=0.97). Similarly, hatchability and duration of development also revealed a positive correlation with latitude. Hence, suggesting the role of natural selection in maintaining the genetic divergence for life history traits along the north-south transect of the Indian Subcontinent.

Keywords: growth temperature, fecundity, hatchability, viability, duration of development, Drosophila

Procedia PDF Downloads 242
2306 Collaborative and Context-Aware Learning Approach Using Mobile Technology

Authors: Sameh Baccari, Mahmoud Neji

Abstract:

In recent years, the rapid developments on mobile devices and wireless technologies enable new dimension capabilities for the learning domain. This dimension facilitates people daily activities and shortens the distances between individuals. When these technologies have been used in learning, a new paradigm has been emerged giving birth to mobile learning. Because of the mobility feature, m-learning courses have to be adapted dynamically to the learner’s context. The main challenge in context-aware mobile learning is to develop an approach building the best learning resources according to dynamic learning situations. In this paper, we propose a context-aware mobile learning system called Collaborative and Context-aware Mobile Learning System (CCMLS). It takes into account the requirements of Mobility, Collaboration and Context-Awareness. This system is based on the semantic modeling of the learning context and the learning content. The adaptation part of this approach is made up of adaptation rules to propose and select relevant resources, learning partners and learning activities based not only on the user’s needs, but also on its current context.

Keywords: mobile learning, mobile technologies, context-awareness, collaboration, semantic web, adaptation engine, adaptation strategy, learning object, learning context

Procedia PDF Downloads 308
2305 Application of Metaverse Service to Construct Nursing Education Theory and Platform in the Post-pandemic Era

Authors: Chen-Jung Chen, Yi-Chang Chen

Abstract:

While traditional virtual reality and augmented reality only allow for small movement learning and cannot provide a truly immersive teaching experience to give it the illusion of movement, the new technology of both content creation and immersive interactive simulation of the metaverse can just reach infinite close to the natural teaching situation. However, the mixed reality virtual classroom of metaverse has not yet explored its theory, and it is rarely implemented in the situational simulation teaching of nursing education. Therefore, in the first year, the study will intend to use grounded theory and case study methods and in-depth interviews with nursing education and information experts. Analyze the interview data to investigate the uniqueness of metaverse development. The proposed analysis will lead to alternative theories and methods for the development of nursing education. In the second year, it will plan to integrate the metaverse virtual situation simulation technology into the alternate teaching strategy in the pediatric nursing technology course and explore the nursing students' use of this teaching method as the construction of personal technology and experience. By leveraging the unique features of distinct teaching platforms and developing processes to deliver alternative teaching strategies in a nursing technology teaching environment. The aim is to increase learning achievements without compromising teaching quality and teacher-student relationships in the post-pandemic era. A descriptive and convergent mixed methods design will be employed. Sixty third-grade nursing students will be recruited to participate in the research and complete the pre-test. The students in the experimental group (N=30) agreed to participate in 4 real-time mixed virtual situation simulation courses in self-practice after class and conducted qualitative interviews after each 2 virtual situation courses; the control group (N=30) adopted traditional practice methods of self-learning after class. Both groups of students took a post-test after the course. Data analysis will adopt descriptive statistics, paired t-tests, one-way analysis of variance, and qualitative content analysis. This study addresses key issues in the virtual reality environment for teaching and learning within the metaverse, providing valuable lessons and insights for enhancing the quality of education. The findings of this study are expected to contribute useful information for the future development of digital teaching and learning in nursing and other practice-based disciplines.

Keywords: metaverse, post-pandemic era, online virtual classroom, immersive teaching

Procedia PDF Downloads 68
2304 Enhancement of X-Rays Images Intensity Using Pixel Values Adjustments Technique

Authors: Yousif Mohamed Y. Abdallah, Razan Manofely, Rajab M. Ben Yousef

Abstract:

X-Ray images are very popular as a first tool for diagnosis. Automating the process of analysis of such images is important in order to help physician procedures. In this practice, teeth segmentation from the radiographic images and feature extraction are essential steps. The main objective of this study was to study correction preprocessing of x-rays images using local adaptive filters in order to evaluate contrast enhancement pattern in different x-rays images such as grey color and to evaluate the usage of new nonlinear approach for contrast enhancement of soft tissues in x-rays images. The data analyzed by using MatLab program to enhance the contrast within the soft tissues, the gray levels in both enhanced and unenhanced images and noise variance. The main techniques of enhancement used in this study were contrast enhancement filtering and deblurring images using the blind deconvolution algorithm. In this paper, prominent constraints are firstly preservation of image's overall look; secondly, preservation of the diagnostic content in the image and thirdly detection of small low contrast details in diagnostic content of the image.

Keywords: enhancement, x-rays, pixel intensity values, MatLab

Procedia PDF Downloads 485
2303 A Comparative Analysis on QRS Peak Detection Using BIOPAC and MATLAB Software

Authors: Chandra Mukherjee

Abstract:

The present paper is a representation of the work done in the field of ECG signal analysis using MATLAB 7.1 Platform. An accurate and simple ECG feature extraction algorithm is presented in this paper and developed algorithm is validated using BIOPAC software. To detect the QRS peak, ECG signal is processed by following mentioned stages- First Derivative, Second Derivative and then squaring of that second derivative. Efficiency of developed algorithm is tested on ECG samples from different database and real time ECG signals acquired using BIOPAC system. Firstly we have lead wise specified threshold value the samples above that value is marked and in the original signal, where these marked samples face change of slope are spotted as R-peak. On the left and right side of the R-peak, faces change of slope identified as Q and S peak, respectively. Now the inbuilt Detection algorithm of BIOPAC software is performed on same output sample and both outputs are compared. ECG baseline modulation correction is done after detecting characteristics points. The efficiency of the algorithm is tested using some validation parameters like Sensitivity, Positive Predictivity and we got satisfied value of these parameters.

Keywords: first derivative, variable threshold, slope reversal, baseline modulation correction

Procedia PDF Downloads 411
2302 Automated Prediction of HIV-associated Cervical Cancer Patients Using Data Mining Techniques for Survival Analysis

Authors: O. J. Akinsola, Yinan Zheng, Rose Anorlu, F. T. Ogunsola, Lifang Hou, Robert Leo-Murphy

Abstract:

Cervical Cancer (CC) is the 2nd most common cancer among women living in low and middle-income countries, with no associated symptoms during formative periods. With the advancement and innovative medical research, there are numerous preventive measures being utilized, but the incidence of cervical cancer cannot be truncated with the application of only screening tests. The mortality associated with this invasive cervical cancer can be nipped in the bud through the important role of early-stage detection. This study research selected an array of different top features selection techniques which was aimed at developing a model that could validly diagnose the risk factors of cervical cancer. A retrospective clinic-based cohort study was conducted on 178 HIV-associated cervical cancer patients in Lagos University teaching Hospital, Nigeria (U54 data repository) in April 2022. The outcome measure was the automated prediction of the HIV-associated cervical cancer cases, while the predictor variables include: demographic information, reproductive history, birth control, sexual history, cervical cancer screening history for invasive cervical cancer. The proposed technique was assessed with R and Python programming software to produce the model by utilizing the classification algorithms for the detection and diagnosis of cervical cancer disease. Four machine learning classification algorithms used are: the machine learning model was split into training and testing dataset into ratio 80:20. The numerical features were also standardized while hyperparameter tuning was carried out on the machine learning to train and test the data. Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbor (KNN). Some fitting features were selected for the detection and diagnosis of cervical cancer diseases from selected characteristics in the dataset using the contribution of various selection methods for the classification cervical cancer into healthy or diseased status. The mean age of patients was 49.7±12.1 years, mean age at pregnancy was 23.3±5.5 years, mean age at first sexual experience was 19.4±3.2 years, while the mean BMI was 27.1±5.6 kg/m2. A larger percentage of the patients are Married (62.9%), while most of them have at least two sexual partners (72.5%). Age of patients (OR=1.065, p<0.001**), marital status (OR=0.375, p=0.011**), number of pregnancy live-births (OR=1.317, p=0.007**), and use of birth control pills (OR=0.291, p=0.015**) were found to be significantly associated with HIV-associated cervical cancer. On top ten 10 features (variables) considered in the analysis, RF claims the overall model performance, which include: accuracy of (72.0%), the precision of (84.6%), a recall of (84.6%) and F1-score of (74.0%) while LR has: an accuracy of (74.0%), precision of (70.0%), recall of (70.0%) and F1-score of (70.0%). The RF model identified 10 features predictive of developing cervical cancer. The age of patients was considered as the most important risk factor, followed by the number of pregnancy livebirths, marital status, and use of birth control pills, The study shows that data mining techniques could be used to identify women living with HIV at high risk of developing cervical cancer in Nigeria and other sub-Saharan African countries.

Keywords: associated cervical cancer, data mining, random forest, logistic regression

Procedia PDF Downloads 84
2301 A Comparative Life Cycle Assessment: The Design of a High Performance Building Envelope and the Impact on Operational and Embodied Energy

Authors: Stephanie Wall, Guido Wimmers

Abstract:

The construction and operation of buildings greatly contribute to environmental degradation through resource and energy consumption and greenhouse gas emissions. The design of the envelope system affects the environmental impact of a building in two major ways; 1) high thermal performance and air tightness can significantly reduce the operational energy of the building and 2) the material selection for the envelope largely impacts the embodied energy of the building. Life cycle assessment (LCA) is a scientific methodology that is used to systematically analyze the environmental load of processes or products, such as buildings, over their life. The paper will discuss the results of a comparative LCA of different envelope designs and the long-term monitoring of the Wood Innovation Research Lab (WIRL); a Passive House (PH), industrial building under construction in Prince George, Canada. The WIRL has a footprint of 30m x 30m on a concrete raft slab foundation and consists of shop space as well as a portion of the building that includes a two-story office/classroom space. The lab building goes beyond what was previously thought possible in regards to energy efficiency of industrial buildings in cold climates due to their large volume to surface ratio, small floor area, and high air change rate, and will be the first PH certified industrial building in Canada. These challenges were mitigated through the envelope design which utilizes solar gains while minimizing overheating, reduces thermal bridges with thick (570mm) prefabricated truss walls filled with blown in mineral wool insulation and a concrete slab and roof insulated with EPS rigid insulation. The envelope design results in lower operational and embodied energy when compared to buildings built to local codes or with steel. The LCA conducted using Athena Impact Estimator for Buildings identifies project specific hot spots as well illustrates that for high-efficiency buildings where the operational energy is relatively low; the embodied energy of the material selection becomes a significant design decision as it greatly impacts the overall environmental footprint of the building. The results of the LCA will be reinforced by long-term monitoring of the buildings envelope performance through the installation of temperature and humidity sensors throughout the floor slab, wall and roof panels and through detailed metering of the energy consumption. The data collected from the sensors will also be used to reinforce the results of hygrothermal analysis using WUFI®, a program used to verify the durability of the wall and roof panels. The WIRL provides an opportunity to showcase the use of wood in a high performance envelope of an industrial building and to emphasize the importance of considering the embodied energy of a material in the early stages of design. The results of the LCA will be of interest to leading researchers and scientists committed to finding sustainable solutions for new construction and high-performance buildings.

Keywords: high performance envelope, life cycle assessment, long term monitoring, passive house, prefabricated panels

Procedia PDF Downloads 162
2300 KSVD-SVM Approach for Spontaneous Facial Expression Recognition

Authors: Dawood Al Chanti, Alice Caplier

Abstract:

Sparse representations of signals have received a great deal of attention in recent years. In this paper, the interest of using sparse representation as a mean for performing sparse discriminative analysis between spontaneous facial expressions is demonstrated. An automatic facial expressions recognition system is presented. It uses a KSVD-SVM approach which is made of three main stages: A pre-processing and feature extraction stage, which solves the problem of shared subspace distribution based on the random projection theory, to obtain low dimensional discriminative and reconstructive features; A dictionary learning and sparse coding stage, which uses the KSVD model to learn discriminative under or over dictionaries for sparse coding; Finally a classification stage, which uses a SVM classifier for facial expressions recognition. Our main concern is to be able to recognize non-basic affective states and non-acted expressions. Extensive experiments on the JAFFE static acted facial expressions database but also on the DynEmo dynamic spontaneous facial expressions database exhibit very good recognition rates.

Keywords: dictionary learning, random projection, pose and spontaneous facial expression, sparse representation

Procedia PDF Downloads 305
2299 An Algorithm for Determining the Arrival Behavior of a Secondary User to a Base Station in Cognitive Radio Networks

Authors: Danilo López, Edwin Rivas, Leyla López

Abstract:

This paper presents the development of an algorithm that predicts the arrival of a secondary user (SU) to a base station (BS) in a cognitive network based on infrastructure, requesting a Best Effort (BE) or Real Time (RT) type of service with a determined bandwidth (BW) implementing neural networks. The algorithm dynamically uses a neural network construction technique using the geometric pyramid topology and trains a Multilayer Perceptron Neural Networks (MLPNN) based on the historical arrival of an SU to estimate future applications. This will allow efficiently managing the information in the BS, since it precedes the arrival of the SUs in the stage of selection of the best channel in CRN. As a result, the software application determines the probability of arrival at a future time point and calculates the performance metrics to measure the effectiveness of the predictions made.

Keywords: cognitive radio, base station, best effort, MLPNN, prediction, real time

Procedia PDF Downloads 331
2298 Intrusion Detection System Using Linear Discriminant Analysis

Authors: Zyad Elkhadir, Khalid Chougdali, Mohammed Benattou

Abstract:

Most of the existing intrusion detection systems works on quantitative network traffic data with many irrelevant and redundant features, which makes detection process more time’s consuming and inaccurate. A several feature extraction methods, such as linear discriminant analysis (LDA), have been proposed. However, LDA suffers from the small sample size (SSS) problem which occurs when the number of the training samples is small compared with the samples dimension. Hence, classical LDA cannot be applied directly for high dimensional data such as network traffic data. In this paper, we propose two solutions to solve SSS problem for LDA and apply them to a network IDS. The first method, reduce the original dimension data using principal component analysis (PCA) and then apply LDA. In the second solution, we propose to use the pseudo inverse to avoid singularity of within-class scatter matrix due to SSS problem. After that, the KNN algorithm is used for classification process. We have chosen two known datasets KDDcup99 and NSLKDD for testing the proposed approaches. Results showed that the classification accuracy of (PCA+LDA) method outperforms clearly the pseudo inverse LDA method when we have large training data.

Keywords: LDA, Pseudoinverse, PCA, IDS, NSL-KDD, KDDcup99

Procedia PDF Downloads 227
2297 Analysis on Prediction Models of TBM Performance and Selection of Optimal Input Parameters

Authors: Hang Lo Lee, Ki Il Song, Hee Hwan Ryu

Abstract:

An accurate prediction of TBM(Tunnel Boring Machine) performance is very difficult for reliable estimation of the construction period and cost in preconstruction stage. For this purpose, the aim of this study is to analyze the evaluation process of various prediction models published since 2000 for TBM performance, and to select the optimal input parameters for the prediction model. A classification system of TBM performance prediction model and applied methodology are proposed in this research. Input and output parameters applied for prediction models are also represented. Based on these results, a statistical analysis is performed using the collected data from shield TBM tunnel in South Korea. By performing a simple regression and residual analysis utilizinFg statistical program, R, the optimal input parameters are selected. These results are expected to be used for development of prediction model of TBM performance.

Keywords: TBM performance prediction model, classification system, simple regression analysis, residual analysis, optimal input parameters

Procedia PDF Downloads 309
2296 Journals' Productivity in the Literature on Malaria in Africa

Authors: Yahya Ibrahim Harande

Abstract:

The purpose of this study was to identify the journals that published articles on malaria disease in Africa and to determine the core of productive journals from the identified journals. The data for the study were culled out from African Index Medicus (AIM) database. A total of 529 articles was gathered from 115 journal titles from 1979-2011. In order to obtain the core of productive journals, Bradford`s law was applied to the collected data. Five journal titles were identified and determined as core journals. The data used for the study was analyzed and that, the subject matter used, Malaria was in conformity with the Bradford`s law. On the aspect dispersion of the literature, English was found to be the dominant language of the journals. (80.9%) followed by French (16.5%). Followed by Portuguese (1.7%) and German (0.9%). Recommendation is hereby proposed for the medical libraries to acquire these five journals that constitute the core in malaria literature for the use of their clients. It could also help in streamlining their acquision and selection exercises. More researches in the subject area using Bibliometrics approaches are hereby recommended.

Keywords: productive journals, malaria disease literature, Bradford`s law, core journals, African scholars

Procedia PDF Downloads 345
2295 Tapered Double Cantilever Beam: Evaluation of the Test Set-up for Self-Healing Polymers

Authors: Eleni Tsangouri, Xander Hillewaere, David Garoz Gómez, Dimitrios Aggelis, Filip Du Prez, Danny Van Hemelrijck

Abstract:

Tapered Double Cantilever Beam (TDCB) is the most commonly used test set-up to evaluate the self-healing feature of thermoset polymers autonomously activated in the presence of crack. TDCB is a modification of the established fracture mechanics set-up of Double Cantilever Beam and is designed to provide constant strain energy release rate with crack length under stable load evolution (mode-I). In this study, the damage of virgin and autonomously healed TDCB polymer samples is evaluated considering the load-crack opening diagram, the strain maps provided by Digital Image Correlation technique and the fractography maps given by optical microscopy. It is shown that the pre-crack introduced prior to testing (razor blade tapping), the loading rate and the length of the side groove are the features that dominate the crack propagation and lead to inconstant fracture energy release rate.

Keywords: polymers, autonomous healing, fracture, tapered double cantilever beam

Procedia PDF Downloads 351
2294 Factors Affecting Attitude of Community Pharmacists Towards Locally Manufactured Pharmaceutical Products in Addisababa: A Cross-sectional Study

Authors: Gelila Tamyalew, Asres Abitie

Abstract:

Community Pharmacists (CPs) have a significant part in consumer choice in the rational use of LMPPs. The opinion of pharmacists regarding branded and generic medications can offer a perception of the potential obstacles that might have to be overcome to advance generic medicine utilization. Many factors affect CPs' attitudes negatively toward LMPPs. Therefore, the current study assessed factors that can affect CPs' attitudes toward LMPPs. In the regression analysis of variables, three variables were associated with CPs' attitudes toward LMPPs. These are; maximum educational status, professional status, and year of experience in community pharmacy practice. Moreover, lack of belief in LMPPs, substitution agreement with the prescriber, cost-effectiveness of LMPPs, and consumer preference/demand were the most influencing reasons for the selection of LMPPs. In conclusion, the attitude of CPs seems suboptimal that requires an intervention to optimize LMPP utilization.

Keywords: locally manufactured pharmaceutical products, attitude, community pharmacist, Ethiopia

Procedia PDF Downloads 84
2293 Construction Quality Perception of Construction Professionals and Their Expectations from a Quality Improvement Technique in Pakistan

Authors: Muhammad Yousaf Sadiq

Abstract:

The complexity arises in defining the construction quality due to its perception, based on inherent market conditions and their requirements, the diversified stakeholders itself and their desired output. An quantitative survey based approach was adopted in this constructive study. A questionnaire-based survey was conducted for the assessment of construction Quality perception and expectations in the context of quality improvement technique. The survey feedback of professionals of the leading construction organizations/companies of Pakistan construction industry were analyzed. The financial capacity, organizational structure, and construction experience of the construction firms formed basis for their selection. The quality perception was found to be project-scope-oriented and considered as an excess cost for a construction project. Any quality improvement technique was expected to maximize the profit for the employer, by improving the productivity in a construction project. The study is beneficial for the construction professionals to assess the prevailing construction quality perception and the expectations from implementation of any quality improvement technique in construction projects.

Keywords: construction quality, expectation, improvement, perception

Procedia PDF Downloads 476
2292 Geographic Information Systems and a Breath of Opportunities for Supply Chain Management: Results from a Systematic Literature Review

Authors: Anastasia Tsakiridi

Abstract:

Geographic information systems (GIS) have been utilized in numerous spatial problems, such as site research, land suitability, and demographic analysis. Besides, GIS has been applied in scientific fields like geography, health, and economics. In business studies, GIS has been used to provide insights and spatial perspectives in demographic trends, spending indicators, and network analysis. To date, the information regarding the available usages of GIS in supply chain management (SCM) and how these analyses can benefit businesses is limited. A systematic literature review (SLR) of the last 5-year peer-reviewed academic literature was conducted, aiming to explore the existing usages of GIS in SCM. The searches were performed in 3 databases (Web of Science, ProQuest, and Business Source Premier) and reported using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology. The analysis resulted in 79 papers. The results indicate that the existing GIS applications used in SCM were in the following domains: a) network/ transportation analysis (in 53 of the papers), b) location – allocation site search/ selection (multiple-criteria decision analysis) (in 45 papers), c) spatial analysis (demographic or physical) (in 34 papers), d) combination of GIS and supply chain/network optimization tools (in 32 papers), and e) visualization/ monitoring or building information modeling applications (in 8 papers). An additional categorization of the literature was conducted by examining the usage of GIS in the supply chain (SC) by the business sectors, as indicated by the volume of the papers. The results showed that GIS is mainly being applied in the SC of the biomass biofuel/wood industry (33 papers). Other industries that are currently utilizing GIS in their SC were the logistics industry (22 papers), the humanitarian/emergency/health care sector (10 papers), the food/agro-industry sector (5 papers), the petroleum/ coal/ shale gas sector (3 papers), the faecal sludge sector (2 papers), the recycle and product footprint industry (2 papers), and the construction sector (2 papers). The results were also presented by the geography of the included studies and the GIS software used to provide critical business insights and suggestions for future research. The results showed that research case studies of GIS in SCM were conducted in 26 countries (mainly in the USA) and that the most prominent GIS software provider was the Environmental Systems Research Institute’s ArcGIS (in 51 of the papers). This study is a systematic literature review of the usage of GIS in SCM. The results showed that the GIS capabilities could offer substantial benefits in SCM decision-making by providing key insights to cost minimization, supplier selection, facility location, SC network configuration, and asset management. However, as presented in the results, only eight industries/sectors are currently using GIS in their SCM activities. These findings may offer essential tools to SC managers who seek to optimize the SC activities and/or minimize logistic costs and to consultants and business owners that want to make strategic SC decisions. Furthermore, the findings may be of interest to researchers aiming to investigate unexplored research areas where GIS may improve SCM.

Keywords: supply chain management, logistics, systematic literature review, GIS

Procedia PDF Downloads 142
2291 Dissolved Oxygen Prediction Using Support Vector Machine

Authors: Sorayya Malek, Mogeeb Mosleh, Sharifah M. Syed

Abstract:

In this study, Support Vector Machine (SVM) technique was applied to predict the dichotomized value of Dissolved oxygen (DO) from two freshwater lakes namely Chini and Bera Lake (Malaysia). Data sample contained 11 parameters for water quality features from year 2005 until 2009. All data parameters were used to predicate the dissolved oxygen concentration which was dichotomized into 3 different levels (High, Medium, and Low). The input parameters were ranked, and forward selection method was applied to determine the optimum parameters that yield the lowest errors, and highest accuracy. Initial results showed that pH, water temperature, and conductivity are the most important parameters that significantly affect the predication of DO. Then, SVM model was applied using the Anova kernel with those parameters yielded 74% accuracy rate. We concluded that using SVM models to predicate the DO is feasible, and using dichotomized value of DO yields higher prediction accuracy than using precise DO value.

Keywords: dissolved oxygen, water quality, predication DO, support vector machine

Procedia PDF Downloads 290