Search results for: distributed artificial intelligence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4583

Search results for: distributed artificial intelligence

2963 General Mood and Emotional Regulation as Predictors of Bullying Behaviors among Adolescent Males: Basis for a Proposed Bullying Intervention Program

Authors: Angelyn Del Mundo

Abstract:

Bullying cases are a proliferating issue that schools need to address. This calls for a challenge in providing effective measures to reduce bullying. The study aimed to determine which among the socio-emotional aspects of adolescent males could predict bullying. The respondents of the study were the grades 10 and 11 level and the selection of the respondents was based on the names listed by the teachers and guidance counselors through the Student Nomination Questionnaire. The Bullying Survey Questionnaire Checklist was answered by the respondents to be able to identify their most observed bullying behavior. On the other hand, the level of their mental ability was measured through the use of Otis-Lennon School Ability Test, while their socio-emotional aspects was is classified into 2 contexts: emotional intelligence and personality traits which were determined with the use of Bar-On Emotional Quotient Inventory: Youth Version (BarOn EQ-i:YV) and the Five-Factor Personality Inventory-Children (FFPI-C). Results indicated that majority of the respondents have average level of mental ability and socio-emotional aspects. However, many students have low to markedly low level interpersonal scale. Furthermore, general mood and emotional regulation were found as predictors of bullying behaviors. These findings became the basis for a proposed bullying intervention program.

Keywords: bullying, emotional intelligence, mental ability, personality traits

Procedia PDF Downloads 282
2962 Obtaining Triploid Plants of Sprekelia formosissima by Artificial Hybridization

Authors: Jose Manuel Rodriguez-Dominguez, Rodrigo Barba-Gonzalez, Ernesto Tapia-Campos

Abstract:

Sprekelia formosissima (L.) Herbert is a bulbous ornamental species of the monocotyledonous Amaryllidaceae family, and it is a perennial, herbaceous monotypic plant commonly known as ‘Aztec Lily’ or ‘Jacobean Lily’; it is distributed through Mexico and Guatemala. Its scarlet flowers with curved petals have made it an exceptional ornamental pot plant. Cytogenetic studies in this species have shown differences in chromosome number (2n=60, 120, 150, 180) with a basic number x=30. Different reports have shown a variable ploidy level (diploid, tetraploid, pentaploid and hexaploid); however, triploid plants have not been reported. In this work, triploid plants of S. formosissima were obtained by crossing tetraploid (2n=4x=120) with diploid (2n=2x=60) genotypes of this species; the seeds obtained from the crosses were placed in pots with a moist substrate made of Peat Moss: Vermiculite (7:3) for germination. Root tips were collected, and metaphasic chromosome preparations were performed. For chromosome counting, the best five metaphases obtained were photographed with a Leica DMRA2 microscope (Leica Microsystems, Germany) microscopy coupled to an Evolution QEI camera under phase contrast (Media-Cybernetics). Chromosomes counting in root-tip cells showed that 100% of the plants were triploid (2n=3x=90). Although tetraploid or pentaploid plants of S. formosissima are highly appreciated, they usually have lower growth rates than related diploid ones. For this reason, it is important to obtain triploid plants, which have advantages such as higher growth rates than tetraploid and pentaploid, larger flowers than those of the diploid plants and they are expected to not be able to produce seeds because their gametes are aneuploids. Furthermore, triploids may become very important for genomic research in the future, creating opportunities for discovering and monitoring genomic and transcriptomic changes in unbalanced genomes, hence the importance of this work.

Keywords: Amaryllidaceae, cytogenetics, ornamental, ploidy level

Procedia PDF Downloads 193
2961 Methaheuristic Bat Algorithm in Training of Feed-Forward Neural Network for Stock Price Prediction

Authors: Marjan Golmaryami, Marzieh Behzadi

Abstract:

Recent developments in stock exchange highlight the need for an efficient and accurate method that helps stockholders make better decision. Since stock markets have lots of fluctuations during the time and different effective parameters, it is difficult to make good decisions. The purpose of this study is to employ artificial neural network (ANN) which can deal with time series data and nonlinear relation among variables to forecast next day stock price. Unlike other evolutionary algorithms which were utilized in stock exchange prediction, we trained our proposed neural network with metaheuristic bat algorithm, with fast and powerful convergence and applied it in stock price prediction for the first time. In order to prove the performance of the proposed method, this research selected a 7 year dataset from Parsian Bank stocks and after imposing data preprocessing, used 3 types of ANN (back propagation-ANN, particle swarm optimization-ANN and bat-ANN) to predict the closed price of stocks. Afterwards, this study engaged MATLAB to simulate 3 types of ANN, with the scoring target of mean absolute percentage error (MAPE). The results may be adapted to other companies stocks too.

Keywords: artificial neural network (ANN), bat algorithm, particle swarm optimization algorithm (PSO), stock exchange

Procedia PDF Downloads 546
2960 The Implications of Technological Advancements on the Constitutional Principles of Contract Law

Authors: Laura Çami (Vorpsi), Xhon Skënderi

Abstract:

In today's rapidly evolving technological landscape, the traditional principles of contract law are facing significant challenges. The emergence of new technologies, such as electronic signatures, smart contracts, and online dispute resolution mechanisms, is transforming the way contracts are formed, interpreted, and enforced. This paper examines the implications of these technological advancements on the constitutional principles of contract law. One of the fundamental principles of contract law is freedom of contract, which ensures that parties have the autonomy to negotiate and enter into contracts as they see fit. However, the use of technology in the contracting process has the potential to disrupt this principle. For example, online platforms and marketplaces often offer standard-form contracts, which may not reflect the specific needs or interests of individual parties. This raises questions about the equality of bargaining power between parties and the extent to which parties are truly free to negotiate the terms of their contracts. Another important principle of contract law is the requirement of consideration, which requires that each party receives something of value in exchange for their promise. The use of digital assets, such as cryptocurrencies, has created new challenges in determining what constitutes valuable consideration in a contract. Due to the ambiguity in this area, disagreements about the legality and enforceability of such contracts may arise. Furthermore, the use of technology in dispute resolution mechanisms, such as online arbitration and mediation, may raise concerns about due process and access to justice. The use of algorithms and artificial intelligence to determine the outcome of disputes may also raise questions about the impartiality and fairness of the process. Finally, it should be noted that there are many different and complex effects of technical improvements on the fundamental constitutional foundations of contract law. As technology continues to evolve, it will be important for policymakers and legal practitioners to consider the potential impacts on contract law and to ensure that the principles of fairness, equality, and access to justice are preserved in the contracting process.

Keywords: technological advancements, constitutional principles, contract law, smart contracts, online dispute resolution, freedom of contract

Procedia PDF Downloads 148
2959 Maturity Classification of Oil Palm Fresh Fruit Bunches Using Thermal Imaging Technique

Authors: Shahrzad Zolfagharnassab, Abdul Rashid Mohamed Shariff, Reza Ehsani, Hawa Ze Jaffar, Ishak Aris

Abstract:

Ripeness estimation of oil palm fresh fruit is important processes that affect the profitableness and salability of oil palm fruits. The adulthood or ripeness of the oil palm fruits influences the quality of oil palm. Conventional procedure includes physical grading of Fresh Fruit Bunches (FFB) maturity by calculating the number of loose fruits per bunch. This physical classification of oil palm FFB is costly, time consuming and the results may have human error. Hence, many researchers try to develop the methods for ascertaining the maturity of oil palm fruits and thereby, deviously the oil content of distinct palm fruits without the need for exhausting oil extraction and analysis. This research investigates the potential of infrared images (Thermal Images) as a predictor to classify the oil palm FFB ripeness. A total of 270 oil palm fresh fruit bunches from most common cultivar of oil palm bunches Nigresens according to three maturity categories: under ripe, ripe and over ripe were collected. Each sample was scanned by the thermal imaging cameras FLIR E60 and FLIR T440. The average temperature of each bunches were calculated by using image processing in FLIR Tools and FLIR ThermaCAM researcher pro 2.10 environment software. The results show that temperature content decreased from immature to over mature oil palm FFBs. An overall analysis-of-variance (ANOVA) test was proved that this predictor gave significant difference between underripe, ripe and overripe maturity categories. This shows that the temperature as predictors can be good indicators to classify oil palm FFB. Classification analysis was performed by using the temperature of the FFB as predictors through Linear Discriminant Analysis (LDA), Mahalanobis Discriminant Analysis (MDA), Artificial Neural Network (ANN) and K- Nearest Neighbor (KNN) methods. The highest overall classification accuracy was 88.2% by using Artificial Neural Network. This research proves that thermal imaging and neural network method can be used as predictors of oil palm maturity classification.

Keywords: artificial neural network, maturity classification, oil palm FFB, thermal imaging

Procedia PDF Downloads 360
2958 Multi Biomertric Personal Identification System Based On Hybird Intellegence Method

Authors: Laheeb M. Ibrahim, Ibrahim A. Salih

Abstract:

Biometrics is a technology that has been widely used in many official and commercial identification applications. The increased concerns in security during recent years (especially during the last decades) have essentially resulted in more attention being given to biometric-based verification techniques. Here, a novel fusion approach of palmprint, dental traits has been suggested. These traits which are authentication techniques have been employed in a range of biometric applications that can identify any postmortem PM person and antemortem AM. Besides improving the accuracy, the fusion of biometrics has several advantages such as increasing, deterring spoofing activities and reducing enrolment failure. In this paper, a first unimodel biometric system has been made by using (palmprint and dental) traits, for each one classification applying an artificial neural network and a hybrid technique that combines swarm intelligence and neural network together, then attempt has been made to combine palmprint and dental biometrics. Principally, the fusion of palmprint and dental biometrics and their potential application has been explored as biometric identifiers. To address this issue, investigations have been carried out about the relative performance of several statistical data fusion techniques for integrating the information in both unimodal and multimodal biometrics. Also the results of the multimodal approach have been compared with each one of these two traits authentication approaches. This paper studies the features and decision fusion levels in multimodal biometrics. To determine the accuracy of GAR to parallel system decision-fusion including (AND, OR, Majority fating) has been used. The backpropagation method has been used for classification and has come out with result (92%, 99%, 97%) respectively for GAR, while the GAR) for this algorithm using hybrid technique for classification (95%, 99%, 98%) respectively. To determine the accuracy of the multibiometric system for feature level fusion has been used, while the same preceding methods have been used for classification. The results have been (98%, 99%) respectively while to determine the GAR of feature level different methods have been used and have come out with (98%).

Keywords: back propagation neural network BP ANN, multibiometric system, parallel system decision-fusion, practical swarm intelligent PSO

Procedia PDF Downloads 531
2957 Analytical Modelling of Surface Roughness during Compacted Graphite Iron Milling Using Ceramic Inserts

Authors: Ş. Karabulut, A. Güllü, A. Güldaş, R. Gürbüz

Abstract:

This study investigates the effects of the lead angle and chip thickness variation on surface roughness during the machining of compacted graphite iron using ceramic cutting tools under dry cutting conditions. Analytical models were developed for predicting the surface roughness values of the specimens after the face milling process. Experimental data was collected and imported to the artificial neural network model. A multilayer perceptron model was used with the back propagation algorithm employing the input parameters of lead angle, cutting speed and feed rate in connection with chip thickness. Furthermore, analysis of variance was employed to determine the effects of the cutting parameters on surface roughness. Artificial neural network and regression analysis were used to predict surface roughness. The values thus predicted were compared with the collected experimental data, and the corresponding percentage error was computed. Analysis results revealed that the lead angle is the dominant factor affecting surface roughness. Experimental results indicated an improvement in the surface roughness value with decreasing lead angle value from 88° to 45°.

Keywords: CGI, milling, surface roughness, ANN, regression, modeling, analysis

Procedia PDF Downloads 447
2956 Simulation-Based Optimization of a Non-Uniform Piezoelectric Energy Harvester with Stack Boundary

Authors: Alireza Keshmiri, Shahriar Bagheri, Nan Wu

Abstract:

This research presents an analytical model for the development of an energy harvester with piezoelectric rings stacked at the boundary of the structure based on the Adomian decomposition method. The model is applied to geometrically non-uniform beams to derive the steady-state dynamic response of the structure subjected to base motion excitation and efficiently harvest the subsequent vibrational energy. The in-plane polarization of the piezoelectric rings is employed to enhance the electrical power output. A parametric study for the proposed energy harvester with various design parameters is done to prepare the dataset required for optimization. Finally, simulation-based optimization technique helps to find the optimum structural design with maximum efficiency. To solve the optimization problem, an artificial neural network is first trained to replace the simulation model, and then, a genetic algorithm is employed to find the optimized design variables. Higher geometrical non-uniformity and length of the beam lowers the structure natural frequency and generates a larger power output.

Keywords: piezoelectricity, energy harvesting, simulation-based optimization, artificial neural network, genetic algorithm

Procedia PDF Downloads 121
2955 Effects of Artificial Nectar Feeders on Bird Distribution and Erica Visitation Rate in the Cape Fynbos

Authors: Monique Du Plessis, Anina Coetzee, Colleen L. Seymour, Claire N. Spottiswoode

Abstract:

Artificial nectar feeders are used to attract nectarivorous birds to gardens and are increasing in popularity. The costs and benefits of these feeders remain controversial, however. Nectar feeders may have positive effects by attracting nectarivorous birds towards suburbia, facilitating their urban adaptation, and supplementing bird diets when floral resources are scarce. However, this may come at the cost of luring them away from the plants they pollinate in neighboring indigenous vegetation. This study investigated the effect of nectar feeders on an African pollinator-plant mutualism. Given that birds are important pollinators to many fynbos plant species, this study was conducted in gardens and natural vegetation along the urban edge of the Cape Peninsula. Feeding experiments were carried out to compare relative bird abundance and local distribution patterns for nectarivorous birds (i.e., sunbirds and sugarbirds) between feeder and control treatments. Resultant changes in their visitation rates to Erica flowers in the natural vegetation were tested by inspection of their anther ring status. Nectar feeders attracted higher densities of nectarivores to gardens relative to natural vegetation and decreased their densities in the neighboring fynbos, even when floral abundance in the neighboring vegetation was high. The consequent changes to their distribution patterns and foraging behavior decreased their visitation to at least Erica plukenetii flowers (but not to Erica abietina). This study provides evidence that nectar feeders may have positive effects for birds themselves by reducing their urban sensitivity but also highlights the unintended negative effects feeders may have on the surrounding fynbos ecosystem. Given that nectar feeders appear to compete with the flowers of Erica plukenetii, and perhaps those of other Erica species, artificial feeding may inadvertently threaten bird-plant pollination networks.

Keywords: avian nectarivores, bird feeders, bird pollination, indirect effects in human-wildlife interactions, sugar water feeders, supplementary feeding

Procedia PDF Downloads 153
2954 Optimum Dimensions of Hydraulic Structures Foundation and Protections Using Coupled Genetic Algorithm with Artificial Neural Network Model

Authors: Dheyaa W. Abbood, Rafa H. AL-Suhaili, May S. Saleh

Abstract:

A model using the artificial neural networks and genetic algorithm technique is developed for obtaining optimum dimensions of the foundation length and protections of small hydraulic structures. The procedure involves optimizing an objective function comprising a weighted summation of the state variables. The decision variables considered in the optimization are the upstream and downstream cutoffs length sand their angles of inclination, the foundation length, and the length of the downstream soil protection. These were obtained for a given maximum difference in head, depth of impervious layer and degree of anisotropy.The optimization carried out subjected to constraints that ensure a safe structure against the uplift pressure force and sufficient protection length at the downstream side of the structure to overcome an excessive exit gradient. The Geo-studios oft ware, was used to analyze 1200 different cases. For each case the length of protection and volume of structure required to satisfy the safety factors mentioned previously were estimated. An ANN model was developed and verified using these cases input-output sets as its data base. A MatLAB code was written to perform a genetic algorithm optimization modeling coupled with this ANN model using a formulated optimization model. A sensitivity analysis was done for selecting the cross-over probability, the mutation probability and level ,the number of population, the position of the crossover and the weights distribution for all the terms of the objective function. Results indicate that the most factor that affects the optimum solution is the number of population required. The minimum value that gives stable global optimum solution of this parameters is (30000) while other variables have little effect on the optimum solution.

Keywords: inclined cutoff, optimization, genetic algorithm, artificial neural networks, geo-studio, uplift pressure, exit gradient, factor of safety

Procedia PDF Downloads 324
2953 Isolation and Identification of Salmonella spp and Salmonella enteritidis, from Distributed Chicken Samples in the Tehran Province using Culture and PCR Techniques

Authors: Seyedeh Banafsheh Bagheri Marzouni, Sona Rostampour Yasouri

Abstract:

Salmonella is one of the most important common pathogens between humans and animals worldwide. Globally, the prevalence of the disease in humans is due to the consumption of food contaminated with animal-derived Salmonella. These foods include eggs, red meat, chicken, and milk. Contamination of chicken and its products with Salmonella may occur at any stage of the chicken processing chain. Salmonella infection is usually not fatal. However, its occurrence is considered dangerous in some individuals, such as infants, children, the elderly, pregnant women, or individuals with weakened immune systems. If Salmonella infection enters the bloodstream, the possibility of contamination of tissues throughout the body will arise. Therefore, determining the potential risk of Salmonella at various stages is essential from the perspective of consumers and public health. The aim of this study is to isolate and identify Salmonella from chicken samples distributed in the Tehran market using the Gold standard culture method and PCR techniques based on specific genes, invA and ent. During the years 2022-2023, sampling was performed using swabs from the liver and intestinal contents of distributed chickens in the Tehran province, with a total of 120 samples taken under aseptic conditions. The samples were initially enriched in buffered peptone water (BPW) for pre-enrichment overnight. Then, the samples were incubated in selective enrichment media, including TT broth and RVS medium, at temperatures of 37°C and 42°C, respectively, for 18 to 24 hours. Organisms that grew in the liquid medium and produced turbidity were transferred to selective media (XLD and BGA) and incubated overnight at 37°C for isolation. Suspicious Salmonella colonies were selected for DNA extraction, and PCR technique was performed using specific primers that targeted the invA and ent genes in Salmonella. The results indicated that 94 samples were Salmonella using the PCR technique. Of these, 71 samples were positive based on the invA gene, and 23 samples were positive based on the ent gene. Although the culture technique is the Gold standard, PCR is a faster and more accurate method. Rapid detection through PCR can enable the identification of Salmonella contamination in food items and the implementation of necessary measures for disease control and prevention.

Keywords: culture, PCR, salmonella spp, salmonella enteritidis

Procedia PDF Downloads 70
2952 E-Learning Platform for School Kids

Authors: Gihan Thilakarathna, Fernando Ishara, Rathnayake Yasith, Bandara A. M. R. Y.

Abstract:

E-learning is a crucial component of intelligent education. Even in the midst of a pandemic, E-learning is becoming increasingly important in the educational system. Several e-learning programs are accessible for students. Here, we decided to create an e-learning framework for children. We've found a few issues that teachers are having with their online classes. When there are numerous students in an online classroom, how does a teacher recognize a student's focus on academics and below-the-surface behaviors? Some kids are not paying attention in class, and others are napping. The teacher is unable to keep track of each and every student. Key challenge in e-learning is online exams. Because students can cheat easily during online exams. Hence there is need of exam proctoring is occurred. In here we propose an automated online exam cheating detection method using a web camera. The purpose of this project is to present an E-learning platform for math education and include games for kids as an alternative teaching method for math students. The game will be accessible via a web browser. The imagery in the game is drawn in a cartoonish style. This will help students learn math through games. Everything in this day and age is moving towards automation. However, automatic answer evaluation is only available for MCQ-based questions. As a result, the checker has a difficult time evaluating the theory solution. The current system requires more manpower and takes a long time to evaluate responses. It's also possible to mark two identical responses differently and receive two different grades. As a result, this application employs machine learning techniques to provide an automatic evaluation of subjective responses based on the keyword provided to the computer as student input, resulting in a fair distribution of marks. In addition, it will save time and manpower. We used deep learning, machine learning, image processing and natural language technologies to develop these research components.

Keywords: math, education games, e-learning platform, artificial intelligence

Procedia PDF Downloads 155
2951 Superordinated Control for Increasing Feed-in Capacity and Improving Power Quality in Low Voltage Distribution Grids

Authors: Markus Meyer, Bastian Maucher, Rolf Witzmann

Abstract:

The ever increasing amount of distributed generation in low voltage distribution grids (mainly PV and micro-CHP) can lead to reverse load flows from low to medium/high voltage levels at times of high feed-in. Reverse load flow leads to rising voltages that may even exceed the limits specified in the grid codes. Furthermore, the share of electrical loads connected to low voltage distribution grids via switched power supplies continuously increases. In combination with inverter-based feed-in, this results in high harmonic levels reducing overall power quality. Especially high levels of third-order harmonic currents can lead to neutral conductor overload, which is even more critical if lines with reduced neutral conductor section areas are used. This paper illustrates a possible concept for smart grids in order to increase the feed-in capacity, improve power quality and to ensure safe operation of low voltage distribution grids at all times. The key feature of the concept is a hierarchically structured control strategy that is run on a superordinated controller, which is connected to several distributed grid analyzers and inverters via broad band powerline (BPL). The strategy is devised to ensure both quick response time as well as the technically and economically reasonable use of the available inverters in the grid (PV-inverters, batteries, stepless line voltage regulators). These inverters are provided with standard features for voltage control, e.g. voltage dependent reactive power control. In addition they can receive reactive power set points transmitted by the superordinated controller. To further improve power quality, the inverters are capable of active harmonic filtering, as well as voltage balancing, whereas the latter is primarily done by the stepless line voltage regulators. By additionally connecting the superordinated controller to the control center of the grid operator, supervisory control and data acquisition capabilities for the low voltage distribution grid are enabled, which allows easy monitoring and manual input. Such a low voltage distribution grid can also be used as a virtual power plant.

Keywords: distributed generation, distribution grid, power quality, smart grid, virtual power plant, voltage control

Procedia PDF Downloads 266
2950 Legal Responsibility of the External Auditor Qualitative Case Study of Libyan Environment

Authors: Bubaker F. Shareia

Abstract:

The aim of this paper is to determine a general frame of the auditor's legal responsibilities in Libya which were implied in professional codes and rules, these codes and rules were concerned with the auditor's rights and duties in conducting his professional duties. This will provide a background for the Libyan accounting profession, and the challenges in tailoring Auditors to meet third party's needs. Being informed of the kinds of legal responsibilities which the external auditors could face during conducting their duties. The study is based on a literature review and archival research, reinforced by a qualitative case study comprised of interviews, questionnaire and a study of internal documents. To reach such an understanding, the researcher designed two questionnaires for collecting the data. One questionnaire was distributed among the certified public accountant firms in Libya and the second was distributed among a group of randomly selected lawyers and judges in the same country. Most auditors agreed upon the determination of their responsibilities toward the state and they emphasized that their responsibilities toward their clients were limited to the accepted standards of auditing. Moreover, all auditors who were surveyed emphasized that there has never been any juridical claims against them, and as a consequence they have never paid any legal fines. This study focuses on one country, which does limit its generalisability. However, it also suggests fruitful research areas in considering the impact and challenge of the historic factors in the accounting profession in emerging economies.

Keywords: accounting, external auditor, legal responsibilities, libyan accounting profession

Procedia PDF Downloads 146
2949 Concept for Determining the Focus of Technology Monitoring Activities

Authors: Guenther Schuh, Christina Koenig, Nico Schoen, Markus Wellensiek

Abstract:

Identification and selection of appropriate product and manufacturing technologies are key factors for competitiveness and market success of technology-based companies. Therefore many companies perform technology intelligence (TI) activities to ensure the identification of evolving technologies at the right time. Technology monitoring is one of the three base activities of TI, besides scanning and scouting. As the technological progress is accelerating, more and more technologies are being developed. Against the background of limited resources it is therefore necessary to focus TI activities. In this paper, we propose a concept for defining appropriate search fields for technology monitoring. This limitation of search space leads to more concentrated monitoring activities. The concept will be introduced and demonstrated through an anonymized case study conducted within an industry project at the Fraunhofer Institute for Production Technology. The described concept provides a customized monitoring approach, which is suitable for use in technology-oriented companies especially those that have not yet defined an explicit technology strategy. It is shown in this paper that the definition of search fields and search tasks are suitable methods to define topics of interest and thus to direct monitoring activities. Current as well as planned product, production and material technologies as well as existing skills, capabilities and resources form the basis of the described derivation of relevant search areas. To further improve the concept of technology monitoring the proposed concept should be extended during future research e.g. by the definition of relevant monitoring parameters.

Keywords: monitoring radar, search field, technology intelligence, technology monitoring

Procedia PDF Downloads 472
2948 Improving Grade Control Turnaround Times with In-Pit Hyperspectral Assaying

Authors: Gary Pattemore, Michael Edgar, Andrew Job, Marina Auad, Kathryn Job

Abstract:

As critical commodities become more scarce, significant time and resources have been used to better understand complicated ore bodies and extract their full potential. These challenging ore bodies provide several pain points for geologists and engineers to overcome, poor handling of these issues flows downs stream to the processing plant affecting throughput rates and recovery. Many open cut mines utilise blast hole drilling to extract additional information to feed back into the modelling process. This method requires samples to be collected during or after blast hole drilling. Samples are then sent for assay with turnaround times varying from 1 to 12 days. This method is time consuming, costly, requires human exposure on the bench and collects elemental data only. To address this challenge, research has been undertaken to utilise hyperspectral imaging across a broad spectrum to scan samples, collars or take down hole measurements for minerals and moisture content and grade abundances. Automation of this process using unmanned vehicles and on-board processing reduces human in pit exposure to ensure ongoing safety. On-board processing allows data to be integrated into modelling workflows with immediacy. The preliminary results demonstrate numerous direct and indirect benefits from this new technology, including rapid and accurate grade estimates, moisture content and mineralogy. These benefits allow for faster geo modelling updates, better informed mine scheduling and improved downstream blending and processing practices. The paper presents recommendations for implementation of the technology in open cut mining environments.

Keywords: grade control, hyperspectral scanning, artificial intelligence, autonomous mining, machine learning

Procedia PDF Downloads 111
2947 Low Back Pain and Patients Lifting Behaviors among Nurses Working in Al Sadairy Hospital, Aljouf

Authors: Fatma Abdel Moneim Al Tawil

Abstract:

Low back pain (LBP) among nurses has been the subject of research studies worldwide. However, evidence of the influence of patients lifting behaviors and LBP among nurses in Saudi Arabia remains scarce. The purpose of this study was to investigate the relationship between LBP and nurses lifting behaviors. LBP questionnaire was distributed to 100 nurses working in Alsadairy Hospital distributed as Emergency unit(9),Coronary Care unit (9), Intensive Care Unit (7), Dialysis unit (30), Burn unit (5), surgical unit (11), Medical (14) and, X-ray unit (15). The questionnaire included demographic data, attitude scale, Team work scale, Back pain history and Knowledge scale. Regarding to emergency unit, there is appositive significant relation between teamwork scale and Knowledge as r = (0.807) and P =0.05. Regarding to ICU unit, there is a positive significant relation between teamwork scale and attitude scale as r= (0.781) and P =0.05. Regarding to Dialysis unit, there is a positive significant relation between attitude scale and teamwork scale as r=(0.443) and P =0.05. The findings suggest enhanced awareness of occupational safety with safe patient handling practices among nursing students must be emphasized and integrated into their educational curriculum. Moreover, back pain prevention program should incorporate the promotion of an active lifestyle and fitness training the implementation of institutional patient handling policies.

Keywords: low back pain, lifting behaviors, nurses, team work

Procedia PDF Downloads 434
2946 Investigation of the Effects of Visually Disabled and Typical Development Students on Their Multiple Intelligence by Applying Abacus and Right Brain Training

Authors: Sidika Di̇lşad Kaya, Ahmet Seli̇m Kaya, Ibrahi̇m Eri̇k, Havva Yaldiz, Yalçin Kaya

Abstract:

The aim of this study was to reveal the effects of right brain development on reading, comprehension, learning and concentration levels and rapid processing skills in students with low vision and students with standard development, and to explore the effects of right and left brain integration on students' academic success and the permanence of the learned knowledge. A total of 68 students with a mean age of 10.01±0.12 were included in the study, 58 of them with standard development, 9 partially visually impaired and 1 totally visually disabled student. The student with a total visual impairment could not participate in the reading speed test due to her total visual impairment. The following data were measured in the participant students before the project; Reading speed measurement in 1 minute, Reading comprehension questions, Burdon attention test, 50 questions of math quiz timed with a stopwatch. Participants were trained for 3 weeks, 5 days a week, for a total of two hours a day. In this study, right-brain developing exercises were carried out with the use of an abacus, and it was aimed to develop both mathematical and attention of students with questions prepared with numerical data taken from fairy tale activities. Among these problems, the study was supported with multiple-choice, 5W (what, where, who, why, when?), 1H (how?) questions along with true-false and fill-in-the-blank activities. By using memory cards, students' short-term memories were strengthened, photographic memory studies were conducted and their visual intelligence was supported. Auditory intelligence was supported by aiming to make calculations by using the abacus in the minds of the students with the numbers given aurally. When calculating the numbers by touching the real abacus, the development of students' tactile intelligence is enhanced. Research findings were analyzed in SPSS program, Kolmogorov Smirnov test was used for normality analysis. Since the variables did not show normal distribution, Wilcoxon test, one of the non-parametric tests, was used to compare the dependent groups. Statistical significance level was accepted as 0.05. The reading speed of the participants was 83.54±33.03 in the pre-test and 116.25±38.49 in the post-test. Narration pre-test 69.71±25.04 post-test 97.06±6.70; BURDON pretest 84.46±14.35 posttest 95.75±5.67; rapid math processing skills pretest 90.65±10.93, posttest 98.18±2.63 (P<0.05). It was determined that the pre-test and post-test averages of students with typical development and students with low vision were also significant for all four values (p<0.05). As a result of the data obtained from the participants, it is seen that the study was effective in terms of measurement parameters, and the findings were statistically significant. Therefore, it is recommended to use the method widely.

Keywords: Abacus, reading speed, multiple intelligences, right brain training, visually impaired

Procedia PDF Downloads 181
2945 Sustainable Landscape Strategies For The 21st Century Suburb

Authors: William Batson, Yunsik Song, Abel Simie

Abstract:

Recent trends in suburban design and planning have centered on economic efficiency in construction and completion. In doing so, developers, builders, and architects have bypassed free and reliable sustainable solutions to minimize the carbon footprint and improve the environment. Often, suburban areas are designed without landscape features, sidewalks, parks, adequate lighting, or walking space. Much of the design concern involves minimizing construction costs and streamlining streets and utilities. A new development in creating retention ponds to mitigate flooding and slow runoff is one step in the positive direction. However, "if you build them (suburbs), they (fauna) will come." The inevitable flora and fauna that soon propagate and take refuge within these artificial retention ponds create an additional dilemma. Architects, planners, and developers know the requirements and current strategies to provide residents and wildlife with a viable and sustainable environment. This includes habitat for hibernating animals and facilitating opportunities, especially for cold-blooded mammals. Many species that migrate to these artificial ponds struggle to survive, especially during flooding and when the water table drains below the artificial rim, preventing aquatic mammals from climbing on land. This flooding often results from large areas of impervious asphalt and concrete. These impervious surfaces retain and dispense large amounts of rainwater and contaminants that carry industrial pollutants, oil, plastics, animal waste, and fertilizers into storm drains and then deposited in these retention ponds. This paper will identify and show how simple and logical solutions are used to create a sustainable suburb and reduce the carbon footprint using landscape architectural strategies and cost-free design solutions. We will also demonstrate simple changes in the present suburban design model to provide a viable and sustainable suburb for the 21st century.

Keywords: sustainavilty, suburban, flora, fauna, carbon footprint

Procedia PDF Downloads 68
2944 The Tendon Reflexes on the Performance of Flanker Task in the Subjects of Cerebrovascular Accidents

Authors: Harshdeep Singh, Kuljeet Singh Anand

Abstract:

Background: Cerebrovascular Accidents (CVA) cause abnormal or asymmetrical tendon reflexes contributing to motor impairments. Since the tendon reflexes are mediated by the spinal cord, their effects on cognitive performances are overlooked. This study aims to find the contributions of tendon reflexes on the performance of the Flanker task. Methods: A total population of 46 mixed subjects with movement disorders were recruited for the study. Deep tendon reflexes (DTR) of the biceps, triceps and brachioradialis were assessed for both upper extremities. Later, the Flanker task was performed on all the subjects, and the mean Reaction Time (RT) along with both the congruent and incongruent stimuli were evaluated. For the final analysis, the Kruskal Wallis test was performed to see the difference between the DTR and the performance of the Flanker Task. Results: The Kruskal Wallis test results showed a significant difference between the DTR scores, X²(2) = 11.328, p= 0.023 with the mean RT of the flanker task and X²(2) = 9.531, p= 0.049 with mean RT of the Incongruent Stimuli. Whereas the result found a non-significant difference in the mean RT of the Congruent Stimuli. Conclusion: Each DTR score is distributed differently with the mean RT of the flanker task and for the incongruent stimuli as well. Therefore, the tendon reflexes in PD may be contributing to the performance of the Flanker Task and may be an indicator of abnormal cognitive performance. Further research is needed to evaluate how the RTs are distributed with each DTR score.

Keywords: cerebrovascular accidents, deep tendon reflexes, flanker task, reaction time, congruent stimuli, incongruent stimuli

Procedia PDF Downloads 99
2943 Grid and Market Integration of Large Scale Wind Farms using Advanced Predictive Data Mining Techniques

Authors: Umit Cali

Abstract:

The integration of intermittent energy sources like wind farms into the electricity grid has become an important challenge for the utilization and control of electric power systems, because of the fluctuating behaviour of wind power generation. Wind power predictions improve the economic and technical integration of large amounts of wind energy into the existing electricity grid. Trading, balancing, grid operation, controllability and safety issues increase the importance of predicting power output from wind power operators. Therefore, wind power forecasting systems have to be integrated into the monitoring and control systems of the transmission system operator (TSO) and wind farm operators/traders. The wind forecasts are relatively precise for the time period of only a few hours, and, therefore, relevant with regard to Spot and Intraday markets. In this work predictive data mining techniques are applied to identify a statistical and neural network model or set of models that can be used to predict wind power output of large onshore and offshore wind farms. These advanced data analytic methods helps us to amalgamate the information in very large meteorological, oceanographic and SCADA data sets into useful information and manageable systems. Accurate wind power forecasts are beneficial for wind plant operators, utility operators, and utility customers. An accurate forecast allows grid operators to schedule economically efficient generation to meet the demand of electrical customers. This study is also dedicated to an in-depth consideration of issues such as the comparison of day ahead and the short-term wind power forecasting results, determination of the accuracy of the wind power prediction and the evaluation of the energy economic and technical benefits of wind power forecasting.

Keywords: renewable energy sources, wind power, forecasting, data mining, big data, artificial intelligence, energy economics, power trading, power grids

Procedia PDF Downloads 517
2942 An Econometric Analysis of the Impacts of Inflation on the Economic Growth of South Africa

Authors: Gisele Mah, Paul Saah

Abstract:

The rising rates of inflation are hindering economic growth in developing nations. Hence, this study investigated the effects of inflation rates on the economic growth of South Africa using the secondary time series data from 1987 to 2022. The main objectives of this study were to investigate the long run relationship between inflation and economic growth, and also to determine the causality direction between these two variables. The study utilized the Autoregressive Distributed Lag (ARDL) bounds test of co-integration to investigate whether there is a long-run relationship between inflation and economic growth. The Pairwise Granger causality approach was employed to determine the second objective, which is the direction of causality. The study discovered only one co-integration relationship between our variables and it was between inflation and economic growth. The results showed that there is a negative and significant relationship between inflation and economic growth. There appeared to be a positive and significant relationship between economic growth and exchange rate. The interest rates have shown to be negative and insignificant in explaining economic growth. The study also established that inflation does Granger cause economic growth which is given as GDP. Similarly, the study discovered that inflation Granger causes exchange rates. Therefore, the study recommends that inflation should be decreased in South Africa, in order for economic growth to increase. Contrary, this study recommends that South Africa should increase its exchange rates, in order for economic growth to also increase.

Keywords: inflation rate, economic growth, South Africa, autoregressive distributed lag model

Procedia PDF Downloads 46
2941 Argumentation Frameworks and Theories of Judging

Authors: Sonia Anand Knowlton

Abstract:

With the rise of artificial intelligence, computer science is becoming increasingly integrated in virtually every area of life. Of course, the law is no exception. Through argumentation frameworks (AFs), computer scientists have used abstract algebra to structure the legal reasoning process in a way that allows conclusions to be drawn from a formalized system of arguments. In AFs, arguments compete against each other for logical success and are related to one another through the binary operation of the attack. The prevailing arguments make up the preferred extension of the given argumentation framework, telling us what set of arguments must be accepted from a logical standpoint. There have been several developments of AFs since its original conception in the early 90’s in efforts to make them more aligned with the human reasoning process. Generally, these developments have sought to add nuance to the factors that influence the logical success of competing arguments (e.g., giving an argument more logical strength based on the underlying value it promotes). The most cogent development was that of the Extended Argumentation Framework (EAF), in which attacks can themselves be attacked by other arguments, and the promotion of different competing values can be formalized within the system. This article applies the logical structure of EAFs to current theoretical understandings of judicial reasoning to contribute to theories of judging and to the evolution of AFs simultaneously. The argument is that the main limitation of EAFs, when applied to judicial reasoning, is that they require judges to themselves assign values to different arguments and then lexically order these values to determine the given framework’s preferred extension. Drawing on John Rawls’ Theory of Justice, the examination that follows is whether values are lexical and commensurable to this extent. The analysis that follows then suggests a potential extension of the EAF system with an approach that formalizes different “planes of attack” for competing arguments that promote lexically ordered values. This article concludes with a summary of how these insights contribute to theories of judging and of legal reasoning more broadly, specifically in indeterminate cases where judges must turn to value-based approaches.

Keywords: computer science, mathematics, law, legal theory, judging

Procedia PDF Downloads 59
2940 Autonomous Exploration, Navigation and Mapping Payload Integrated on a Quadruped Robot

Authors: Julian Y. Raheema, Michael R. Hess, Raymond C. Provost, Mark Bilinski

Abstract:

The world is rapidly moving towards advancing and utilizing artificial intelligence and autonomous robotics. The ground-breaking Boston Dynamics quadruped robot, SPOT, was designed for industrial and commercial tasks requiring limited autonomous navigation. Out of the box, SPOT has route memorization and playback – it can repeat a path that it has been manually piloted through, but it cannot autonomously navigate an area that has not been previously explored. The presented SPOT payload package is built on ROS framework to support autonomous navigation and mapping of an unexplored environment. The package is fully integrated with SPOT to take advantage of motor controls and collision avoidance that comes natively with the robot. The payload runs all computations onboard, takes advantage of visual odometry SLAM and uses an Intel RealSense depth camera and Velodyne LiDAR sensor to generate 2D and 3D maps while in autonomous navigation mode. These maps are fused into the navigation stack to generate a costmap to enable the robot to safely navigate the environment without causing damage to the surroundings or the robot. The operator defines the operational zone and start location and then sends the explore command to have SPOT explore, generate 2D and 3D maps of the environment and return to the start location to await the operator's next command. The benefit of the presented package is that it is much lighter weight and less expensive than previous approaches and, importantly, operates in GPS-denied scenarios, which is ideal for indoor mapping. There are numerous applications that are hazardous to humans for SPOT enhanced with the autonomy payload, including disaster response, nuclear inspection, mine inspection, and so on. Other less extreme uses cases include autonomous 3D and 2D scanning of facilities for inspection, engineering and construction purposes.

Keywords: autonomous, SLAM, quadruped, mapping, exploring, ROS, robotics, navigation

Procedia PDF Downloads 88
2939 Scour Depth Prediction around Bridge Piers Using Neuro-Fuzzy and Neural Network Approaches

Authors: H. Bonakdari, I. Ebtehaj

Abstract:

The prediction of scour depth around bridge piers is frequently considered in river engineering. One of the key aspects in efficient and optimum bridge structure design is considered to be scour depth estimation around bridge piers. In this study, scour depth around bridge piers is estimated using two methods, namely the Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN). Therefore, the effective parameters in scour depth prediction are determined using the ANN and ANFIS methods via dimensional analysis, and subsequently, the parameters are predicted. In the current study, the methods’ performances are compared with the nonlinear regression (NLR) method. The results show that both methods presented in this study outperform existing methods. Moreover, using the ratio of pier length to flow depth, ratio of median diameter of particles to flow depth, ratio of pier width to flow depth, the Froude number and standard deviation of bed grain size parameters leads to optimal performance in scour depth estimation.

Keywords: adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN), bridge pier, scour depth, nonlinear regression (NLR)

Procedia PDF Downloads 217
2938 Host Status of Pitaya Genotypes Fruit to Meloidogyne enterolobii and M. incognita

Authors: Freitas Vania Moreira, Rodrigues B. B., Araujo M.B., Silva D. R., Sousa A. C., Araujo K. P., Pimentel R. R., Cares J. E., Junqueira N. T. V.

Abstract:

The Pitahayas are cactus native from America and abundant in arid regions. The cultivation is based mainly on the following species: Hylocereus undatus, H. polyrhizus, H. setaceus and H. megalanthus, being H. undatus the most cultivated in Brazil. The pitahaya cultivation is recent in Brazil and is concentrated in São Paulo. Meloidogyne enterolobii is of unknown origin being distributed in several countries. This nematode has recently been detected in Brazil causing damage in several crops. Similarly, M. incognita is a widely distributed pathogen in Brazil. The objective of this study is to evaluate the following accesses of pitahaya to M. enterolobii: CPAC- Py H. hundatus 01, 02, 03, 04, 05, 06, 07 and 08; CPAC - Py H. costaricense 8A; CPAC - Py Selenicereus setaceus 17 and CPAC - Py S. megalantus 22. And the following accesses to M. incognita: CPAC- Py H. hundatus 05; CPAC - Py H. costaricense 8A; CPAC - Py S. setaceus 17 and CPAC - Py S. megalantus 22. According to the results, CPAC – Py H. hundatus 01, 02, 03, 04 and 07 were considered resistant. While CPAC - Py 05 and 08 was susceptible. CPAC-Py 06 also was considered susceptible, because there was the reaction of susceptibility in one of the trials. Given this wide diversity in H. hundatus and being this species the most cultivated in Brazil it is suggested to work more with this material in Embrapa Cerrados. CPAC - Py H. costaricense 8A behaved as susceptible in one of the trials. CPAC - Py S. setaceus 17 and CPAC – Py S. megalantus 22 were considered highly susceptible. The susceptibility of S. megalantus is widely described in the literature. In relation to M. incognita, there were differences between the results in both experiments, but all behaved as susceptible in at least one of the tests.

Keywords: pitaya, meloidogyne, fruit, resistance

Procedia PDF Downloads 180
2937 Optimal Simultaneous Sizing and Siting of DGs and Smart Meters Considering Voltage Profile Improvement in Active Distribution Networks

Authors: T. Sattarpour, D. Nazarpour

Abstract:

This paper investigates the effect of simultaneous placement of DGs and smart meters (SMs), on voltage profile improvement in active distribution networks (ADNs). A substantial center of attention has recently been on responsive loads initiated in power system problem studies such as distributed generations (DGs). Existence of responsive loads in active distribution networks (ADNs) would have undeniable effect on sizing and siting of DGs. For this reason, an optimal framework is proposed for sizing and siting of DGs and SMs in ADNs. SMs are taken into consideration for the sake of successful implementing of demand response programs (DRPs) such as direct load control (DLC) with end-side consumers. Looking for voltage profile improvement, the optimization procedure is solved by genetic algorithm (GA) and tested on IEEE 33-bus distribution test system. Different scenarios with variations in the number of DG units, individual or simultaneous placing of DGs and SMs, and adaptive power factor (APF) mode for DGs to support reactive power have been established. The obtained results confirm the significant effect of DRPs and APF mode in determining the optimal size and site of DGs to be connected in ADN resulting to the improvement of voltage profile as well.

Keywords: active distribution network (ADN), distributed generations (DGs), smart meters (SMs), demand response programs (DRPs), adaptive power factor (APF)

Procedia PDF Downloads 301
2936 Obstacle Avoidance Using Image-Based Visual Servoing Based on Deep Reinforcement Learning

Authors: Tong He, Long Chen, Irag Mantegh, Wen-Fang Xie

Abstract:

This paper proposes an image-based obstacle avoidance and tracking target identification strategy in GPS-degraded or GPS-denied environment for an Unmanned Aerial Vehicle (UAV). The traditional force algorithm for obstacle avoidance could produce local minima area, in which UAV cannot get away obstacle effectively. In order to eliminate it, an artificial potential approach based on harmonic potential is proposed to guide the UAV to avoid the obstacle by using the vision system. And image-based visual servoing scheme (IBVS) has been adopted to implement the proposed obstacle avoidance approach. In IBVS, the pixel accuracy is a key factor to realize the obstacle avoidance. In this paper, the deep reinforcement learning framework has been applied by reducing pixel errors through constant interaction between the environment and the agent. In addition, the combination of OpenTLD and Tensorflow based on neural network is used to identify the type of tracking target. Numerical simulation in Matlab and ROS GAZEBO show the satisfactory result in target identification and obstacle avoidance.

Keywords: image-based visual servoing, obstacle avoidance, tracking target identification, deep reinforcement learning, artificial potential approach, neural network

Procedia PDF Downloads 141
2935 Hybrid CNN-SAR and Lee Filtering for Enhanced InSAR Phase Unwrapping and Coherence Optimization

Authors: Hadj Sahraoui Omar, Kebir Lahcen Wahib, Bennia Ahmed

Abstract:

Interferometric Synthetic Aperture Radar (InSAR) coherence is a crucial parameter for accurately monitoring ground deformation and environmental changes. However, coherence can be degraded by various factors such as temporal decorrelation, atmospheric disturbances, and geometric misalignments, limiting the reliability of InSAR measurements (Omar Hadj‐Sahraoui and al. 2019). To address this challenge, we propose an innovative hybrid approach that combines artificial intelligence (AI) with advanced filtering techniques to optimize interferometric coherence in InSAR data. Specifically, we introduce a Convolutional Neural Network (CNN) integrated with the Lee filter to enhance the performance of radar interferometry. This hybrid method leverages the strength of CNNs to automatically identify and mitigate the primary sources of decorrelation, while the Lee filter effectively reduces speckle noise, improving the overall quality of interferograms. We develop a deep learning-based model trained on multi-temporal and multi-frequency SAR datasets, enabling it to predict coherence patterns and enhance low-coherence regions. This hybrid CNN-SAR with Lee filtering significantly reduces noise and phase unwrapping errors, leading to more precise deformation maps. Experimental results demonstrate that our approach improves coherence by up to 30% compared to traditional filtering techniques, making it a robust solution for challenging scenarios such as urban environments, vegetated areas, and rapidly changing landscapes. Our method has potential applications in geohazard monitoring, urban planning, and environmental studies, offering a new avenue for enhancing InSAR data reliability through AI-powered optimization combined with robust filtering techniques.

Keywords: CNN-SAR, Lee Filter, hybrid optimization, coherence, InSAR phase unwrapping, speckle noise reduction

Procedia PDF Downloads 6
2934 The Impact of Artificial Intelligence on Student’s Behavior and Mind

Authors: Makarios Mosaad Thabet Ibrahim

Abstract:

the existing context paper targets to give the important position of ‘scholar voice’ and the track trainer inside the study room, which contributes to greater scholar-focused song training. The goal is to consciousness at the capabilities of the scholar voice via the tune spectrum, which has been born in the music school room, and the instructor’s methodologies and techniques used within the song classroom. The tune curriculum, the principles of pupil-centered song schooling, and the function of students and teachers as tune ambassadors have been taken into consideration the essential song parameters of scholar voice. The scholar- voice is a well worth-mentioning factor of a scholar-focused training, and all instructors have to take into account and sell its life in their lecture room. student affairs services play a critical function in contributing to the wholistic development and success of college students as they progress through their educational careers. The examine incorporates a multifaceted examination of student affairs carrier offerings among 10 personal and three public Baghdad universities. scholar affairs administrators (thirteen) have been surveyed together with over 300 students to determine university-subsidized services and pupil pride and attention. The pupil affairs service studies findings various drastically among non-public and public establishments and people that observed a country wide and international curriculum. Universities need to persist to conform to changing demographics and technological improvements to enhance students' private and academic successes, and pupil affairs services are key to preparing graduates to thrive in a diverse international world.

Keywords: college student-athletes, self-concept, use of social media training, social networking student affairs, student success, higher education, Iraq, universities, Baghdad student's voice, student-centered education, music ambassadors, music teachers

Procedia PDF Downloads 31