Search results for: silane coupling agent
641 Magnetoelastically Induced Perpendicular Magnetic Anisotropy and Perpendicular Exchange Bias of CoO/CoPt Multilayer Films
Authors: Guo Lei, Wang Yue, Nakamura Yoshio, Shi Ji
Abstract:
Recently, perpendicular exchange bias (PEB) is introduced as an active topic attracting continuous efforts. Since its discovery, extrinsic control of PEB has been proposed, due to its scientific significance in spintronic devices and potential application in high density magnetic random access memory with perpendicular magnetic tunneling junction (p-MTJ). To our knowledge, the researches aiming to controlling PEB so far are focused mainly on enhancing the interfacial exchange coupling by adjusting the FM/AFM interface roughness, or optimizing the crystalline structures of FM or AFM layer by employing different seed layers. In present work, the effects of magnetoelastically induced PMA on PEB have been explored in [CoO5nm/CoPt5nm]5 multilayer films. We find the PMA strength of FM layer also plays an important role on PEB at the FM/AFM interface and it is effective to control PEB of [CoO5nm/CoPt5nm]5 multilayer films by changing the magnetoelastically induced PMA of CoPt layer. [CoO5nm/CoPt5nm]5 multilayer films were deposited by magnetron sputtering on fused quartz substrate at room temperature, then annealed at 100°C, 250°C, 300°C and 375°C for 3h, respectively. XRD results reveal that all the samples are well crystallized with preferred fcc CoPt (111) orientation. The continuous multilayer structure with sharp component transition at the CoO5nm/CoPt5nm interface are identified clearly by transmission electron microscopy (TEM), x-ray reflectivity (XRR) and atomic force microscope (AFM). CoPt layer in-plane tensile stress is calculated by sin2φ method, and we find it increases gradually upon annealing from 0.99 GPa (as-deposited) up to 3.02 GPa (300oC-annealed). As to the magnetic property, significant enhancement of PMA is achieved in [CoO5nm/CoPt5nm]5 multilayer films after annealing due to the increase of CoPt layer in-plane tensile stress. With the enhancement of magnetoelastically induced PMA, great improvement of PEB is also achieved in [CoO5nm/CoPt5nm]5 multilayer films, which increases from 130 Oe (as-deposited) up to 1060 Oe (300oC-annealed), showing the same change tendency as PMA and the strong correlation with CoPt layer in-plane tensile stress. We consider it is the increase of CoPt layer in-plane tensile stress that leads to the enhancement of PMA, and thus the enhancement of magnetoelastically induced PMA results in the improvement of PEB in [CoO5nm/CoPt5nm]5 multilayer films.Keywords: perpendicular exchange bias, magnetoelastically induced perpendicular magnetic anisotropy, CoO5nm/CoPt5nm]5 multilayer film with in-plane stress, perpendicular magnetic tunneling junction
Procedia PDF Downloads 462640 Integration of a Microbial Electrolysis Cell and an Oxy-Combustion Boiler
Authors: Ruth Diego, Luis M. Romeo, Antonio Morán
Abstract:
In the present work, a study of the coupling of a Bioelectrochemical System together with an oxy-combustion boiler is carried out; specifically, it proposes to connect the combustion gas outlet of a boiler with a microbial electrolysis cell (MEC) where the CO2 from the gases are transformed into methane in the cathode chamber, and the oxygen produced in the anode chamber is recirculated to the oxy-combustion boiler. The MEC mainly consists of two electrodes (anode and cathode) immersed in an aqueous electrolyte; these electrodes are separated by a proton exchange membrane (PEM). In this case, the anode is abiotic (where oxygen is produced), and it is at the cathode that an electroactive biofilm is formed with microorganisms that catalyze the CO2 reduction reactions. Real data from an oxy-combustion process in a boiler of around 20 thermal MW have been used for this study and are combined with data obtained on a smaller scale (laboratory-pilot scale) to determine the yields that could be obtained considering the system as environmentally sustainable energy storage. In this way, an attempt is made to integrate a relatively conventional energy production system (oxy-combustion) with a biological system (microbial electrolysis cell), which is a challenge to be addressed in this type of new hybrid scheme. In this way, a novel concept is presented with the basic dimensioning of the necessary equipment and the efficiency of the global process. In this work, it has been calculated that the efficiency of this power-to-gas system based on MEC cells when coupled to industrial processes is of the same order of magnitude as the most promising equivalent routes. The proposed process has two main limitations, the overpotentials in the electrodes that penalize the overall efficiency and the need for storage tanks for the process gases. The results of the calculations carried out in this work show that certain real potentials achieve an acceptable performance. Regarding the tanks, with adequate dimensioning, it is possible to achieve complete autonomy. The proposed system called OxyMES provides energy storage without energetically penalizing the process when compared to an oxy-combustion plant with conventional CO2 capture. According to the results obtained, this system can be applied as a measure to decarbonize an industry, changing the original fuel of the oxy-combustion boiler to the biogas generated in the MEC cell. It could also be used to neutralize CO2 emissions from industry by converting it to methane and then injecting it into the natural gas grid.Keywords: microbial electrolysis cells, oxy-combustion, co2, power-to-gas
Procedia PDF Downloads 108639 Induction of Cytotoxicity and Apoptosis in Ovarian Cancer Cell Line (CAOV-3) by an Isoquinoline Alkaloid Isolated from Enicosanthellum pulchrum (King) Heusden
Authors: Noraziah Nordin, Najihah Mohd Hashim, Nazia Abdul Majid, Mashitoh Abdul Rahman, Hamed Karimian, Hapipah Mohd Ali
Abstract:
Enicosanthellum pulchrum belongs to family Annonaceae is also known as family of 'mempisang' in Malaysia. Liriodenine was isolated by prep-HPLC method. This method was first technique used for the isolation of this compound. The structure of the liriodenine was elucidated by 1D and 2D spectroscopy techniques. Liriodenine was tested on ovarian cancer cells line (CAOV-3) for MTT, AO/PI and cytotoxicity 3 assays. The MTT assay was performed to determine the cytotoxicity effect of lirodenine on CAOV-3 cells. The morphological changes on CAOV-3 cells were observed by AO/PI assay for the early and late stage of apoptosis, as well as necrosis. Meanwhile, the measurement of cell loss, nuclear morphology, DNA content, cell membrane permeability, mitochondrial membrane potential changes and cytochrome c release from mitochondria were detected through cytotoxicity 3 assay. The IC50 results showed liriodenine inhibits the growth of CAOV-3 cells after 24 h of treatment at 10.25 ± 1.06 µg/mL. After 48 and 72 h of treatments, the IC50 values were decreased to 7.65 ± 0:07 and 6.35 ± 1.62 µg/mL, respectively. The morphology changes can be seen on CAOV-3 with a production of cell membrane blebbing, cromatin condensation and apoptotic bodies with increasing time of treatment from 24 to 72 h. Evaluation of cytotoxicity 3 on CAOV-3 cells after treated with liriodenine, resulting loss of mitochondrial membrane potential and release of cytochrome c from mitochondria. The results demonstrated the capability of liriodenine as a promising anticancer agent, particularly on human ovarian cancer.Keywords: Enicosanthellum pulchrum, ovarian cancer, apoptosis, cytotoxicity
Procedia PDF Downloads 444638 Experimental Study on Two-Step Pyrolysis of Automotive Shredder Residue
Authors: Letizia Marchetti, Federica Annunzi, Federico Fiorini, Cristiano Nicolella
Abstract:
Automotive shredder residue (ASR) is a mixture of waste that makes up 20-25% of end-of-life vehicles. For many years, ASR was commonly disposed of in landfills or incinerated, causing serious environmental problems. Nowadays, thermochemical treatments are a promising alternative, although the heterogeneity of ASR still poses some challenges. One of the emerging thermochemical treatments for ASR is pyrolysis, which promotes the decomposition of long polymeric chains by providing heat in the absence of an oxidizing agent. In this way, pyrolysis promotes the conversion of ASR into solid, liquid, and gaseous phases. This work aims to improve the performance of a two-step pyrolysis process. After the characterization of the analysed ASR, the focus is on determining the effects of residence time on product yields and gas composition. A batch experimental setup that reproduces the entire process was used. The setup consists of three sections: the pyrolysis section (made of two reactors), the separation section, and the analysis section. Two different residence times were investigated to find suitable conditions for the first sample of ASR. These first tests showed that the products obtained were more sensitive to residence time in the second reactor. Indeed, slightly increasing residence time in the second reactor managed to raise the yield of gas and carbon residue and decrease the yield of liquid fraction. Then, to test the versatility of the setup, the same conditions were applied to a different sample of ASR coming from a different chemical plant. The comparison between the two ASR samples shows that similar product yields and compositions are obtained using the same setup.Keywords: automotive shredder residue, experimental tests, heterogeneity, product yields, two-step pyrolysis
Procedia PDF Downloads 127637 Study of the Non-isothermal Crystallization Kinetics of Polypropylene Homopolymer/Impact Copolymer Composites
Authors: Pixiang Wang, Shaoyang Liu, Yucheng Peng
Abstract:
Polypropylene (PP) is an essential material of numerous applications in different industrial sectors, including packaging, construction, and automotive. Because the application of homopolypropylene (HPP) is limited by its relatively low impact strength and high embrittlement temperature, various types of impact copolymer PP (ICPP) that incorporate elastomers/rubbers into HPP to increase impact strength have been successfully commercialized. Crystallization kinetics of an isotactic HPP, an ICPP, and their composites were studied in this work understand the composites’ behaviors better. The Avrami-Jeziorny model was used to describe the crystallization process. For most samples, the Avrami exponent, n, was greater than 3, indicating the crystal grew in three dimensions with spherical geometry. However, the n value could drop below 3 when the ICPP content was 80 wt.% or higher and the cooling rate was 7.5°C/min or lower, implying that the crystals could grow in two dimensions and some lamella structures could be formed under those conditions. The nucleation activity increased with the increase of the ICPP content, demonstrating that the rubber phase in the ICPP acted as a nucleation agent and facilitated the nucleation process. The decrease in crystallization rate after the ICPP content exceeded 60 wt.% might be caused by the excessive amount of crystal nuclei induced by the high ICPP content, which caused strong crystal-crystal interactions and limited the crystal growth space. The nucleation activity and the n value showed high correlations to the mechanical and thermal properties of the materials. The quantitative study of the kinetics of crystallization in this work could be a helpful reference for manufacturing ICPP and HPP/ICPP mixtures.Keywords: polypropylene, crystallization kinetics, Avrami-Jeziorny model, crystallization activation energy, Nucleation activity
Procedia PDF Downloads 86636 Structural and Optical Characterization of Rice-Husk-Derived SiO₂ Crystals-reinforced PVA Composites
Authors: Suminar Pratapa, Agus Riyanto, Silmi Machmudah, Sri Yani Purwaningsih
Abstract:
The objective of this study was to investigate the optical properties of polyvinyl alcohol (PVA) and its prospective applications by adding crystalline silica which is usually used as a reinforcing agent. To do this, we synthesized and evaluated PVA-based composites reinforced with silica crystals, namely cristobalite, derived from rice husk. The experimental procedure involved the production of SiO2 particles using rice husk precursors, which were subsequently subjected to calcination at a rate of 10 °C/min for a duration of 3 hours. This process primarily resulted in the formation of SiO2 crystals in the cristobalite phase, according to X-ray diffraction (XRD). Following this, the crystals were incorporated into polyvinyl alcohol (PVA) via a casting technique, resulting in the formation of composite sheets. The SiO2 contents in the composites were 0, 2.5, 5.0, and 10.%. XRD and Fourier-transform infrared spectroscopy (FTIR) techniques provided confirmation of the composites' successful synthesis, i.e., it did not yield any indications of chemical bonding between polyvinyl alcohol (PVA) and silicon dioxide (SiO2), indicating that the interaction was limited to interfacial reactions. The incorporation of SiO2 crystals resulted in a notable enhancement in UV-vis light absorption and a decrease in the optical band gap. Addition of 2.5, 5.0, and 10.% SiO2, for example, decreases the direct optical band gap of the composites form 5.37, 5.19, and 5.02 eV respectively, while the indirect band gaps of the samples were 4.44, 4.84, and 4.48 eV, correspondingly. These findings emphasize the efficacy of rice husk-derived SiO2 crystals as both reinforcement agents and modifiers of optical properties in the polymer composites, showcasing their significant potential to modify the composite's structural and optical characteristics.Keywords: rice husk, cristaline SiO₂, PVA-based composites, structural characteristics, optical properties.
Procedia PDF Downloads 46635 Observation of Inverse Blech Length Effect during Electromigration of Cu Thin Film
Authors: Nalla Somaiah, Praveen Kumar
Abstract:
Scaling of transistors and, hence, interconnects is very important for the enhanced performance of microelectronic devices. Scaling of devices creates significant complexity, especially in the multilevel interconnect architectures, wherein current crowding occurs at the corners of interconnects. Such a current crowding creates hot-spots at the respective corners, resulting in non-uniform temperature distribution in the interconnect as well. This non-uniform temperature distribution, which is exuberated with continued scaling of devices, creates a temperature gradient in the interconnect. In particular, the increased current density at corners and the associated temperature rise due to Joule heating accelerate the electromigration induced failures in interconnects, especially at corners. This has been the classic reliability issue associated with metallic interconnects. Herein, it is generally understood that electromigration induced damages can be avoided if the length of interconnect is smaller than a critical length, often termed as Blech length. Interestingly, the effect of non-negligible temperature gradients generated at these corners in terms of thermomigration and electromigration-thermomigration coupling has not attracted enough attention. Accordingly, in this work, the interplay between the electromigration and temperature gradient induced mass transport was studied using standard Blech structure. In this particular sample structure, the majority of the current is forcefully directed into the low resistivity metallic film from a high resistivity underlayer film, resulting in current crowding at the edges of the metallic film. In this study, 150 nm thick Cu metallic film was deposited on 30 nm thick W underlayer film in the configuration of Blech structure. Series of Cu thin strips, with lengths of 10, 20, 50, 100, 150 and 200 μm, were fabricated. Current density of ≈ 4 × 1010 A/m² was passed through Cu and W films at a temperature of 250ºC. Herein, along with expected forward migration of Cu atoms from the cathode to the anode at the cathode end of the Cu film, backward migration from the anode towards the center of Cu film was also observed. Interestingly, smaller length samples consistently showed enhanced migration at the cathode end, thus indicating the existence of inverse Blech length effect in presence of temperature gradient. A finite element based model showing the interplay between electromigration and thermomigration driving forces has been developed to explain this observation.Keywords: Blech structure, electromigration, temperature gradient, thin films
Procedia PDF Downloads 256634 Synthesis and Preparation of Carbon Ferromagnetic Nanocontainers for Cancer Therapy
Authors: L. Szymanski, Z. Kolacinski, Z. Kamiński, G. Raniszewski, J. Fraczyk, L. Pietrzak
Abstract:
In the article the development and demonstration of method and the model device for hyperthermic selective destruction of cancer cells are presented. This method was based on the synthesis and functionalization of carbon nanotubes serving as ferromagnetic material nano containers. Methodology of the production carbon - ferromagnetic nanocontainers includes: the synthesis of carbon nanotubes, chemical and physical characterization, increasing the content of ferromagnetic material and biochemical functionalization involving the attachment of the key addresses. Biochemical functionalization of ferromagnetic nanocontainers is necessary in order to increase the binding selectively with receptors presented on the surface of tumour cells. Multi-step modification procedure was finally used to attach folic acid on the surface of ferromagnetic nanocontainers. Folic acid is ligand of folate receptors which is overexpresion in tumor cells. The presence of ligand should ensure the specificity of the interaction between ferromagnetic nanocontainers and tumor cells. The chemical functionalization contains several step: oxidation reaction, transformation of carboxyl groups into more reactive ester or amide groups, incorporation of spacer molecule (linker), attaching folic acid. Activation of carboxylic groups was prepared with triazine coupling reagent (preparation of superactive ester attached on the nanocontainers). The spacer molecules were designed and synthesized. In order to ensure biocompatibillity of linkers they were built from amino acids or peptides. Spacer molecules were synthesized using the SPPS method. Synthesis was performed on 2-Chlorotrityl resin. The linker important feature is its length. Due to that fact synthesis of peptide linkers containing from 2 to 4 -Ala- residues was carried out. Independent synthesis of the conjugate of foilic acid with 6-aminocaproic acid was made. Final step of synthesis was connecting conjugat with spacer molecules and attaching it on the ferromagnetic nanocontainer surface. This article contains also information about special CVD and microvave plasma system to produce nanotubes and ferromagnetic nanocontainers. The first tests in the device for hyperthermal RF generator will be presented. The frequency of RF generator was in the ranges from 10 to 14Mhz and from 265 to 621kHz.Keywords: synthesis of carbon nanotubes, hyperthermia, ligands, carbon nanotubes
Procedia PDF Downloads 286633 Electrochemical Detection of the Chemotherapy Agent Methotrexate in vitro from Physiological Fluids Using Functionalized Carbon Nanotube past Electrodes
Authors: Shekher Kummari, V. Sunil Kumar, K. Vengatajalabathy Gobi
Abstract:
A simple, cost-effective, reusable and reagent-free electrochemical biosensor is developed with functionalized multiwall carbon nanotube paste electrode (f-CNTPE) for the sensitive and selective determination of the important chemotherapeutic drug methotrexate (MTX), which is widely used for the treatment of various cancer and autoimmune diseases. The electrochemical response of the fabricated electrode towards the detection of MTX is examined by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and square wave voltammetry (SWV). CV studies have shown that f-CNTPE electrode system exhibited an excellent electrocatalytic activity towards the oxidation of MTX in phosphate buffer (0.2 M) compared with a conventional carbon paste electrode (CPE). The oxidation peak current is enhanced by nearly two times in magnitude. Applying the DPV method under optimized conditions, a linear calibration plot is achieved over a wide range of concentration from 4.0×10⁻⁷ M to 5.5×10⁻⁶ M with the detection limit 1.6×10⁻⁷ M. further, by applying the SWV method a parabolic calibration plot was achieved starting from a very low concentration of 1.0×10⁻⁸ M, and the sensor could detect as low as 2.9×10⁻⁹ M MTX in 10 s and 10 nM were detected in steady state current-time analysis. The f-CNTPE shows very good selectivity towards the specific recognition of MTX in the presence of important biological interference. The electrochemical biosensor detects MTX in-vitro directly from pharmaceutical sample, undiluted urine and human blood serum samples at a concentration range 5.0×10⁻⁷ M with good recovery limits.Keywords: amperometry, electrochemical detection, human blood serum, methotrexate, MWCNT, SWV
Procedia PDF Downloads 309632 Speciation, Preconcentration, and Determination of Iron(II) and (III) Using 1,10-Phenanthroline Immobilized on Alumina-Coated Magnetite Nanoparticles as a Solid Phase Extraction Sorbent in Pharmaceutical Products
Authors: Hossein Tavallali, Mohammad Ali Karimi, Gohar Deilamy-Rad
Abstract:
The proposed method for speciation, preconcentration and determination of Fe(II) and Fe(III) in pharmaceutical products was developed using of alumina-coated magnetite nanoparticles (Fe3O4/Al2O3 NPs) as solid phase extraction (SPE) sorbent in magnetic mixed hemimicell solid phase extraction (MMHSPE) technique followed by flame atomic absorption spectrometry analysis. The procedure is based on complexation of Fe(II) with 1, 10-phenanthroline (OP) as complexing reagent for Fe(II) that immobilized on the modified Fe3O4/Al2O3 NPs. The extraction and concentration process for pharmaceutical sample was carried out in a single step by mixing the extraction solvent, magnetic adsorbents under ultrasonic action. Then, the adsorbents were isolated from the complicated matrix easily with an external magnetic field. Fe(III) ions determined after facility reduced to Fe(II) by added a proper reduction agent to sample solutions. Compared with traditional methods, the MMHSPE method simplified the operation procedure and reduced the analysis time. Various influencing parameters on the speciation and preconcentration of trace iron, such as pH, sample volume, amount of sorbent, type and concentration of eluent, were studied. Under the optimized operating conditions, the preconcentration factor of the modified nano magnetite for Fe(II) 167 sample was obtained. The detection limits and linear range of this method for iron were 1.0 and 9.0 - 175 ng.mL−1, respectively. Also the relative standard deviation for five replicate determinations of 30.00 ng.mL-1 Fe2+ was 2.3%.Keywords: Alumina-Coated magnetite nanoparticles, Magnetic Mixed Hemimicell Solid-Phase Extraction, Fe(ΙΙ) and Fe(ΙΙΙ), pharmaceutical sample
Procedia PDF Downloads 292631 Bio-Surfactant Production and Its Application in Microbial EOR
Authors: A. Rajesh Kanna, G. Suresh Kumar, Sathyanaryana N. Gummadi
Abstract:
There are various sources of energies available worldwide and among them, crude oil plays a vital role. Oil recovery is achieved using conventional primary and secondary recovery methods. In-order to recover the remaining residual oil, technologies like Enhanced Oil Recovery (EOR) are utilized which is also known as tertiary recovery. Among EOR, Microbial enhanced oil recovery (MEOR) is a technique which enables the improvement of oil recovery by injection of bio-surfactant produced by microorganisms. Bio-surfactant can retrieve unrecoverable oil from the cap rock which is held by high capillary force. Bio-surfactant is a surface active agent which can reduce the interfacial tension and reduce viscosity of oil and thereby oil can be recovered to the surface as the mobility of the oil is increased. Research in this area has shown promising results besides the method is echo-friendly and cost effective compared with other EOR techniques. In our research, on laboratory scale we produced bio-surfactant using the strain Pseudomonas putida (MTCC 2467) and injected into designed simple sand packed column which resembles actual petroleum reservoir. The experiment was conducted in order to determine the efficiency of produced bio-surfactant in oil recovery. The column was made of plastic material with 10 cm in length. The diameter was 2.5 cm. The column was packed with fine sand material. Sand was saturated with brine initially followed by oil saturation. Water flooding followed by bio-surfactant injection was done to determine the amount of oil recovered. Further, the injection of bio-surfactant volume was varied and checked how effectively oil recovery can be achieved. A comparative study was also done by injecting Triton X 100 which is one of the chemical surfactant. Since, bio-surfactant reduced surface and interfacial tension oil can be easily recovered from the porous sand packed column.Keywords: bio-surfactant, bacteria, interfacial tension, sand column
Procedia PDF Downloads 402630 Antifungal Potential of the Plant Growth-Promoting Rhizobacteria Infecting Kidney Beans
Authors: Zhazira Shemsheyeva, Zhanara Suleimenova, Olga Shemshura, Gulnaz Mombekova, Zhanar Rakhmetova
Abstract:
Bacteria that colonize plant roots and promote plant growth are referred to as plant growth-promoting rhizobacteria (PGPR). They not only provide nutrients to the plants (direct plant growth promotion) and protect plants against the phytopathogens (indirect plant growth promotion) but also increase the soil fertility. Indirectly PGPRs improve the plant growth by becoming a biocontrol agent for a fungal pathogen. The antifungal activities of the PGPrhizobacteria were assayed against different species of phytopathogenic fungi such as Fusarium tricinctum, Fusarium oxysporum, Sclerotiniasclerotiorum, and Botrytis cinerea. Pseudomonas putidaSM-1, Azotobacter sp., and Bacillus thuringiensis AKS/16 strains have been used in experimental tests on growth inhibition of phytopathogenic fungi infecting Kidney beans. Agar well diffusion method was used in this study. Diameters of the zones of inhibition were measured in millimeters. It was found that Bacillus thuringiensis AKS/16 strain showed the lowest antifungal activity against all fungal pathogens tested. Zones of inhibition were 15-18 mm. In contrast, Pseudomonas putida SM-1 exhibited good antifungal activity against Fusarium oxysporum and Fusarium tricinctum by producing 29-30 mm clear zones of inhibition. The moderate inhibitory effect was shown by Azotobacter sp. against all fungal pathogens tested with zones of inhibition from24 to 26 mm. In summary, Pseudomonas putida SM-1 strain demonstrated the potential of controlling root rot diseases in kidney beans.Keywords: PGPR, pseudomonas putida, kindey beans, antifungal activity
Procedia PDF Downloads 154629 The Bacteriocin Produced by Lactic Acid Bacteria as an Antibacterial of Sub Clinic Mastitis on Dairy Cows
Authors: Nenny Harijani, Dhandy Koesoemo Wardhana
Abstract:
The aim of this study is to know the bacteriocin as antimicrobial activity produced by Lactic Acid Bacteria (LAB) as Antibacterial of Sub Clinic Mastitis on Dairy Cows. The antimicrobial is produced by LAB which isolates from cattle intestine can inhibit the growth Staphylococcus aureus, Steptocococcus agalactiae an Escherichia coli which were caused by dairy cattle subclinical mastitis. The failure of this bacteria growth was indicated by the formation of a clear zone surrounding the colonies on Brain Heart Infusion Agar plate. The bacteriocin was produced by Lactic Acid Bacteria (LAB) as antimicrobial, which could inhibit the growth of indicator bacteria Staphylococcus aureus, S.aglactiae and E.coli. This study was also developed bacteriocin to be used as a therapeutic of subclinical mastitis on dairy cows. The method used in this study was isolation, selection and identification of LAB using Mann Rogosa Sharp Medium, followed by characterization of the bacteriocin produced by LAB. The result of the study showed that bacteriocin isolated from beef cattle’s intestine could inhibit the growth Staphylococcus aureus, S. agalactiae, an Escherichia coli, which was indicated by clear zone surrounding the colonies on Brain Heart Infusion Agar plate. Characteristics of bacteriocin were heat-stable exposed to 80 0C for 30 minutes and 100 ⁰C for 15 minutes and inactivated by proteolytic enzymes such as trypsin. This approach has suggested the development of bacteriocin as a therapeutic agent for subclinical mastitis in dairy cattle.Keywords: lactic acid bacteria, bacteriocin, staphylococcus aureus, S. agalactiae, E. coli, sub
Procedia PDF Downloads 134628 Enhancement of 2, 4-Dichlorophenoxyacetic Acid Solubility via Solid Dispersion Technique
Authors: Tamer M. Shehata, Heba S. Elsewedy, Mashel Al Dosary, Alaa Elshehry, Mohamed A. Khedr, Maged E. Mohamed
Abstract:
Objective: 2,4-Dichlorophenoxy acetic acid (2,4-D) is a well-known herbicide widely used as a weed killer. Recently, 2,4-D was rediscovered as a new anti-inflammatory agent through in silico as well as in-vivo experiments. However, poor solubility of 2,4-D could represent a problems during pharmaceutical development in addition to lower bioavailability. Solid dispersion (SD) refers to a group of solid products consisting of at least two different components, usually a hydrophobic drug and hydrophilic matrix. It is well known technique for enhancing drug solubility. Therefore, selecting SD as a tool for enhancing 2,4-D could be of great interest to the formulator. Method: In our project, several polymers were investigated (such as PEG, HPMC, citric acid and others) in addition to drug polymer ratios and its effect on solubility. Evaluation of drug polymer interaction was investigated through both Fourier Transform Infrared (FTIR) and Differential Scanning Calorimetry (DSC). Finally, in-vivo evaluation was performed for the best selected preparation through inflammatory response of rat induce hind paw. Results: Results indicated that, citric acid 2,4-D and in ratio of 0.75 : 1 showed modified the dissolution profile of the drug. The FTIR resltes indicated no significant chemical interaction, however DSC showed shifting of the drug melting point. Finally, Carragenan induced rat hind paw edema showed significant reduction of the drug solid dispersion in comparison to the pure drug, indicating rapid and complete absorption of the drug in solid dispersion form. Conclusion: Solid dispersion technology can be utilized efficiently to enhance the solubility of 2,4-D.Keywords: solid dispersion, 2, 4-D solubility, carragenan induced edema
Procedia PDF Downloads 453627 The Effect of Green Power Trading Mechanism on Interregional Power Generation and Transmission in China
Authors: Yan-Shen Yang, Bai-Chen Xie
Abstract:
Background and significance of the study: Both green power trading schemes and interregional power transmission are effective ways to increase green power absorption and achieve renewable power development goals. China accelerates the construction of interregional power transmission lines and the green power market. A critical issue focusing on the close interaction between these two approaches arises, which can heavily affect the green power quota allocation and renewable power development. Existing studies have not discussed this issue adequately, so it is urgent to figure out their relationship to achieve a suitable power market design and a more reasonable power grid construction.Basic methodologies: We develop an equilibrium model of the power market in China to analyze the coupling effect of these two approaches as well as their influence on power generation and interregional transmission in China. Our model considers both the Tradable green certificate (TGC) and green power market, which consists of producers, consumers in the market, and an independent system operator (ISO) minimizing the total system cost. Our equilibrium model includes the decision optimization process of each participant. To reformulate the models presented as a single-level one, we replace the producer, consumer, ISO, and market equilibrium problems with their Karush-Kuhn-Tucker (KKT) conditions, which is further reformulated as a mixed-integer linear programming (MILP) and solved in Gurobi solver. Major findings: The result shows that: (1) the green power market can significantly promote renewable power absorption while the TGC market provides a more flexible way for green power trading. (2) The phenomena of inefficient occupation and no available transmission lines appear simultaneously. The existing interregional transmission lines cannot fully meet the demand for wind and solar PV power trading in some areas while the situation is vice versa in other areas. (3) Synchronous implementation of green power and TGC trading mechanism can benefit the development of green power as well as interregional power transmission. (4) The green power transaction exacerbates the unfair distribution of carbon emissions. The Carbon Gini Coefficient is up to 0.323 under the green power market which shows a high Carbon inequality. The eastern coastal region will benefit the most due to its huge demand for external power.Keywords: green power market, tradable green certificate, interregional power transmission, power market equilibrium model
Procedia PDF Downloads 147626 Nanoceutical Intervention (Nanodrug) of Neonatal Hyperbilirubinemias Compared to Conventional Phototherapy
Authors: Samir Kumar Pal
Abstract:
Background: Targeted rapid degradation of bilirubin has the potential to thwart incipient bilirubin encephalopathy. Uncontrolled hyperbilirubinemia is a potential problem in developing countries, including India, because of the lack of reliable healthcare institutes for conventional phototherapy. In India, most of the rural subjects duel in the exchange limit during transport, leading to a risk of kernicterus when they arrive at the treatment centre. Thus, an alternative pharmaceutical agent is needed for the hours. Objective: Exploration of a distinct therapeutic strategy for the control of neonatal hyperbilirubinemia compared to conventional phototherapy in a clinical setting. Method: We synthesized, characterized and investigated a spinel-structured Manganese citrate nanocomplex (C-Mn₃O₄ NC, the nanodrug) along with conventional phototherapy in neonatal subjects. We have also observed BIND scores in order to assess neurological dysfunctions. Results: Our observational study clearly reveals that the rate of declination of bilirubin in neonatal subjects with nanodrug oral administration and phototherapy is faster compared to that in the case of phototherapy only. The associated neural dysfunctions were also found to be significantly lower in the case of combined therapy. Conclusion: This study demonstrates that combined therapy works better than conventional phototherapy only for the control of hyperbilirubinemia. We have observed that a significant portion of neonatal subjects requiring blood exchange has been prevented with the combined therapeutic strategy. Further compilation of a drug-safety-dossier is warranted to translate this novel therapeutic chemo preventive approach to clinical settings.Keywords: nanodrug, nanoparticle, Neonatal hyperbilirubinemia, alternative to phototherapy, redox modulation, redox medicine
Procedia PDF Downloads 59625 Microwave Synthesis and Molecular Docking Studies of Azetidinone Analogous Bearing Diphenyl Ether Nucleus as a Potent Antimycobacterial and Antiprotozoal Agent
Authors: Vatsal M. Patel, Navin B. Patel
Abstract:
The present studies deal with the developing a series bearing a diphenyl ethers nucleus using structure-based drug design concept. A newer series of diphenyl ether based azetidinone namely N-(3-chloro-2-oxo-4-(3-phenoxyphenyl)azetidin-1-yl)-2-(substituted amino)acetamide (2a-j) have been synthesized by condensation of m-phenoxybenzaldehyde with 2-(substituted-phenylamino)acetohydrazide followed by the cyclisation of resulting Schiff base (1a-j) by conventional method as well as microwave heating approach as a part of an environmentally benign synthetic protocol. All the synthesized compounds were characterized by spectral analysis and were screened for in vitro antimicrobial, antitubercular and antiprotozoal activity. The compound 2f was found to be most active M. tuberculosis (6.25 µM) MIC value in the primary screening as well as this same derivative has been found potency against L. mexicana and T. cruzi with MIC value 2.09 and 6.69 µM comparable to the reference drug Miltefosina and Nifurtimox. To provide understandable evidence to predict binding mode and approximate binding energy of a compound to a target in the terms of ligand-protein interaction, all synthesized compounds were docked against an enoyl-[acyl-carrier-protein] reductase of M. tuberculosis (PDB ID: 4u0j). The computational studies revealed that azetidinone derivatives have a high affinity for the active site of enzyme which provides a strong platform for new structure-based design efforts. The Lipinski’s parameters showed good drug-like properties and can be developed as an oral drug candidate.Keywords: antimycobacterial, antiprotozoal, azetidinone, diphenylether, docking, microwave
Procedia PDF Downloads 161624 An Interactive Institutional Framework for Evolution of Enterprise Technological Innovation Capabilities System: A Complex Adaptive Systems Approach
Authors: Sohail Ahmed, Ke Xing
Abstract:
This research theoretically explored the evolution mechanism of enterprise technological innovation capability system (ETICS) from the perspective of complex adaptive systems (CAS). This research proposed an analytical framework for ETICS, its concepts, and theory by integrating CAS methodology into the management of the technological innovation capability of enterprises and discusses how to use the principles of complexity to analyze the composition, evolution, and realization of the technological innovation capabilities in complex dynamic environments. This paper introduces the concept and interaction of multi-agent, the theoretical background of CAS, and summarizes the sources of technological innovation, the elements of each subject, and the main clusters of adaptive interactions and innovation activities. The concept of multi-agents is applied through the linkages of enterprises, research institutions, and government agencies with the leading enterprises in industrial settings. The study was exploratory and based on CAS theory. Theoretical model is built by considering technological and innovation literature from foundational to state of the art projects of technological enterprises. On this basis, the theoretical model is developed to measure the evolution mechanism of the enterprise's technological innovation capability system. This paper concludes that the main characteristics for evolution in technological systems are based on the enterprise’s research and development personnel, investments in technological processes, and innovation resources are responsible for the evolution of enterprise technological innovation performance. The research specifically enriched the application process of technological innovation in institutional networks related to enterprises.Keywords: complex adaptive system, echo model, enterprise technological innovation capability system, research institutions, multi-agents
Procedia PDF Downloads 137623 Effect of Recycled Grey Water on Bacterial Concrete
Authors: T. Deepa, S. R. Inchara, S. V. Venkatesh, Seema Tharannum
Abstract:
Concrete is the most widely used structural material. It is made using locally available materials. However, Concrete has low tensile strength and may crack in the early days with exothermic hydration. Bacillus subtilis bacteria that form endospores is the biological agent considered in this study for Biomineralization or MICP (Microbially Induced Calcite Precipitation) Technique and to address the increased Construction water demand, Recycled Grey Water which is obtained from STP of PES University, opted in place of Potable water. In this work, M30 grade conventional concrete is designed using OPC 53 grade cement, Manufactured Sand, Natural coarse aggregates, and Potable water. Conventional Concrete (CC), Bacterial Concrete with Potable water (BS), and Recycled Grey Water concrete (RGW) are the three different concrete specimens casted. Experimental studies such as the strength test and the surface hardness test are conducted on Conventional and Bacterial concrete samples after 7, 28, and 56 days of curing. Concrete cubes are subjected to a temperature of 50° C to investigate the effect of higher temperature. Cracked cube specimens are observed for Self-healing - as well as microstructure analysis with Scanning Electron Microscope (SEM), Energy Dispersive X-Ray Analysis (EDAX), and X-Ray Diffraction Analysis (XRD).Noticeable Calcium salt deposition is observed on the surface of BS and RGW cracked specimen. Surface hardness and EDAX test gave promising result on the advantage of using spore-forming bacteria in concrete. This is followed by the strength gain in Compression and Flexure. Results also indicate that Recycled Grey Water can be a substitute for Normal water in concrete.Keywords: bacillus subtilis, bacterial concrete, recycled grey water, self-healing, surface hardness of concrete
Procedia PDF Downloads 135622 Study on Spatial Structure and Evolvement Process of Traditional Villages’ Courtyard Based on Clannism
Abstract:
The origination and development of Chinese traditional villages have a strong link with clan society. Thousands of traditional villages are constituted by one big family who have the same surname. Villages’ basic social relationships are built on the basis of family kinship. Clan power controls family courtyards’ spatial structure and influences their evolvement process. Compared with other countries, research from perspective of clanism is a particular and universally applicable manner to recognize Chinese traditional villages’ space features. This paper takes traditional villages in astern Zhejiang province as examples, especially a single-clan village named Zoumatang. Through combining rural sociology with architecture, it clarifies the coupling relationship between clan structure and village space, reveals spatial composition and evolvement logic of family courtyards. Clan society pays much attention to the patrilineal kinship and genealogy. In astern Zhejiang province, clan is usually divided to ‘clan-branches-families’ three levels. Its structural relationship looks like pyramid, which results in ‘center-margin’ structure when projecting to villages’ space. Due to the cultural tradition of ancestor worship, family courtyards’ space exist similar ‘center-margin’ structure. Ancestor hall and family temple are respectively the space core of village and courtyard. Other parts of courtyard also shows order of superiority and inferiority. Elder and men must be the first. However, along with the disintegration of clan society, family courtyard gradually appears fragmentation trend. Its spatial structure becomes more and more flexible and its scale becomes smaller and smaller. Living conditions rather than ancestor worship turn out to be primary consideration. As a result, there are different courtyard historical prototype in different historic period. To some extent, Chinese present traditional villages’ conservation ignore the impact of clan society. This paper discovers the social significance of courtyard’s spatial texture and rebuilds the connection between society and space. It is expected to promote Chinese traditional villages’ conservation paying more attention to authenticity which defined in the historical process and integrity which built on the basis of social meaning.Keywords: China, clanism, courtyard, evolvement process, spatial structure, traditional village
Procedia PDF Downloads 320621 Impact of the Oxygen Content on the Optoelectronic Properties of the Indium-Tin-Oxide Based Transparent Electrodes for Silicon Heterojunction Solar Cells
Authors: Brahim Aissa
Abstract:
Transparent conductive oxides (TCOs) used as front electrodes in solar cells must feature simultaneously high electrical conductivity, low contact resistance with the adjacent layers, and an appropriate refractive index for maximal light in-coupling into the device. However, these properties may conflict with each other, motivating thereby the search for TCOs with high performance. Additionally, due to the presence of temperature sensitive layers in many solar cell designs (for example, in thin-film silicon and silicon heterojunction (SHJ)), low-temperature deposition processes are more suitable. Several deposition techniques have been already explored to fabricate high-mobility TCOs at low temperatures, including sputter deposition, chemical vapor deposition, and atomic layer deposition. Among this variety of methods, to the best of our knowledge, magnetron sputtering deposition is the most established technique, despite the fact that it can lead to damage of underlying layers. The Sn doped In₂O₃ (ITO) is the most commonly used transparent electrode-contact in SHJ technology. In this work, we studied the properties of ITO thin films grown by RF sputtering. Using different oxygen fraction in the argon/oxygen plasma, we prepared ITO films deposited on glass substrates, on one hand, and on a-Si (p and n-types):H/intrinsic a-Si/glass substrates, on the other hand. Hall Effect measurements were systematically conducted together with total-transmittance (TT) and total-reflectance (TR) spectrometry. The electrical properties were drastically affected whereas the TT and TR were found to be slightly impacted by the oxygen variation. Furthermore, the time of flight-secondary ion mass spectrometry (TOF-SIMS) technique was used to determine the distribution of various species throughout the thickness of the ITO and at various interfaces. The depth profiling of indium, oxygen, tin, silicon, phosphorous, boron and hydrogen was investigated throughout the various thicknesses and interfaces, and obtained results are discussed accordingly. Finally, the extreme conditions were selected to fabricate rear emitter SHJ devices, and the photovoltaic performance was evaluated; the lower oxygen flow ratio was found to yield the best performance attributed to lower series resistance.Keywords: solar cell, silicon heterojunction, oxygen content, optoelectronic properties
Procedia PDF Downloads 159620 Assessment of in vitro Antioxidant and Anti-Inflammatory Potentials of Methanol Extract of Chrysophyllum albidum Cotyledon
Authors: Christianah Adebimpe Dare, Nelson Oghenebrorhie Elvis
Abstract:
This study was aimed at analysing the phytochemicals in Chrysophyllum albidum cotyledon extract and their in vitro antioxidant and anti-inflammatory effects. The star apple fruit was bought at Igbona market Osogbo, Osun State, Nigeria. The seed from the fruit was removed and defatted. The residue was exhaustively extracted with methanol. The Chrysophyllum albidum cotyledon methanol extract (CCME) was phytochemically screened, flavonoids and phenol contents, antioxidant and anti-inflammatory assays were carried out on the extract using standard procedures. Phytochemicals analysis revealed the presence of steroids, tannins, flavonoid, saponin, triterpenes, and xanthoproteins. The phenolic concentration, total flavonoids concentration, and total sugar concentration were found to be 26.72 ± 0.048 µgTAE/mg, 23.12 ± 1.92µg of Rutin equivalent (RTE)/mg (10.49 ± 1.12µg of Quercetin equivalent (QE/mg) and 778.38 ± 12.82 µg of glucose/ml, respectively. The extract demonstrated significant inhibitory effect compared with the standards as potent antioxidant with percentage inhibition of DPPH as 38.10 %-39.51 %, lipid peroxidation as 45.85 %-65.85 %; ferric reducing power showed linear correlation to the standard and the anti-inflammatory potential with 22.06 %-26.37 % protection of the human red blood membrane and the percentage inhibition of denaturation of albumin 3.42 %-7.32 %. The study showed that C. albidum cotyledon methanol extract is a potent antioxidant and anti-inflammatory agent to combat oxidative stress and pathological diseases caused by reactive species.Keywords: albumin denaturation, free radicals, lipid peroxidation, reactive species
Procedia PDF Downloads 139619 Relative Importance of Different Mitochondrial Components in Maintaining the Barrier Integrity of Retinal Endothelial Cells: Implications for Vascular-associated Retinal Diseases
Authors: Shaimaa Eltanani, Thangal Yumnamcha, Ahmed S. Ibrahim
Abstract:
Purpose: Mitochondria dysfunction is central to breaking the barrier integrity of retinal endothelial cells (RECs) in various blinding eye diseases such as diabetic retinopathy and retinopathy of prematurity. Therefore, we aimed to dissect the role of different mitochondrial components, specifically, those of oxidative phosphorylation (OxPhos), in maintaining the barrier function of RECs. Methods: Electric cell-substrate impedance sensing (ECIS) technology was used to assess in real-time the role of different mitochondrial components in the total impedance (Z) of human RECs (HRECs) and its components; the capacitance (C) and the total resistance (R). HRECs were treated with specific mitochondrial inhibitors that target different steps in OxPhos: Rotenone for complex I; Oligomycin for ATP synthase; and FCCP for uncoupling OxPhos. Furthermore, data were modeled to investigate the effects of these inhibitors on the three parameters that govern the total resistance of cells: cell-cell interactions (Rb), cell-matrix interactions (α), and cell membrane permeability (Cm). Results: Rotenone (1 µM) produced the greatest reduction in the Z, followed by FCCP (1 µM), whereas no reduction in the Z was observed after the treatment with Oligomycin (1 µM). Following this further, we deconvoluted the effect of these inhibitors on Rb, α, and Cm. Firstly, rotenone (1 µM) completely abolished the resistance contribution of Rb, as the Rb became zero immediately after the treatment. Secondly, FCCP (1 µM) eliminated the resistance contribution of Rb only after 2.5 hours and increased Cm without considerable effect on α. Lastly, Oligomycin had the lowest impact among these inhibitors on Rb, which became similar to the control group at the end of the experiment without noticeable effects on Cm or α. Conclusion: These results demonstrate differential roles for complex I, complex V, and coupling of OxPhos in maintaining the barrier functionality of HRECs, in which complex I being the most important component in regulating the barrier functionality and the spreading behavior of HRECs. Such differences can be used in investigating gene expression as well as for screening selective agents that improve the functionality of complex I to be used in the therapeutic approach for treating REC-related retinal diseases.Keywords: human retinal endothelial cells (hrecs), rotenone, oligomycin, fccp, oxidative phosphorylation, oxphos, capacitance, impedance, ecis modeling, rb resistance, α resistance, and barrier integrity
Procedia PDF Downloads 100618 Assessing the Recycling Potential of Cupriavidus Necator for Space Travel: Production of Single Cell Proteins and Polyhydroxyalkanoates From Organic Waste
Authors: P. Joris, E. Lombard, X. Cameleyre, G. Navarro, A. Paillet, N. Gorret, S. E. Guillouet
Abstract:
Today, on the international space station, multiple supplies are needed per year to supply food and spare parts and to take out waste. But as it is planned to go longer and further into space these supplies will no longer be possible. The astronaut life support system must be able of continuously transform waste into valuable compounds. Two types of production were identified as critical and could be be supplemented by microorganisms. On the one hand, since microgravity causes rapid muscle loss, single cell proteins (SCPs) could be used as protein rich feed or food. On the other hand, having enough building materials to build an advanced habitat will not be possible only by transporting space goods from earth to mars for example. The bacterium Cupriavidus. necator is well known for its ability to produce a large amount of proteins or of polyhydroxyalkanoate biopolymers (PHAs) depending on its implementation. By coupling the life support system to a 3D-printer, astronauts could be supplied with an unlimited amount of building materials. Additionally, based on the design of the life support system, waste streams have been identified: urea from the crew urine and volatile fatty acids (VFAs) from a first stage of organic waste (excrement and food waste) treatment through anaerobic digestion. Thus, the objective of this, within the Spaceship.Fr project, was to demonstrate the feasibility of producing SCPs and PHAs from VFAs and urea in bioreactor. Because life support systems operate continuously as loops, continuous culture experiments were chosen and the effect of the bioreactor dilution rate on biomass composition was investigated. Total transformation of the carbon source into biomass with high SCP or PHA content was achieved in all cases. We will present the transformation performances of VFAs and urea by the bacteria in bioreactor in terms of titers, yields and productivities but also in terms of the quality of SCP and PHA produced, nucleic acid content. We will further discuss the envisioned integration of our process within life support systems.Keywords: life support system, space travel, waste treatment, single cell proteins, polyhydroxyalkanoates, bioreactor
Procedia PDF Downloads 121617 Effects of a Bioactive Subfraction of Strobilanthes Crispus on the Tumour Growth, Body Weight and Haematological Parameters in 4T1-Induced Breast Cancer Model
Authors: Yusha'u Shu'aibu Baraya, Kah Keng Wong, Nik Soriani Yaacob
Abstract:
Strobilanthes crispus (S. crispus), is a Malaysian herb locally known as ‘Pecah kaca’ or ‘Jin batu’ which have demonstrated potent anticancer effects in both in vitro and in vivo models. In particular, S. crispus subfraction (SCS) significantly reduced tumor growth in N-methyl-N-Nitrosourea-induced breast cancer rat model. However, there is paucity of information on the effects of SCS in breast cancer metastasis. Thus, in this study, the antimetastatic effects of SCS (100 mg/kg) was investigated following 30 days of treatment in 4T1-induced mammary tumor (n = 5) model. The response to treatment was assessed based on the outcome of the tumour growth, body weight and hematological parameters. The results demonstrated that tumor bearing mice treated with SCS (TM-S) had significant (p<0.05) reduction in the mean tumor number and tumor volume as well as tumor weight compared to the tumor bearing mice (TM), i.e. tumor untreated group. Also, there was no secondary tumor formation or tumor-associated lesions in the major organs of TM-S compared to the TM group. Similarly, comparable body weights were observed among the TM-S, normal (uninduced) mice treated with SCS and normal (untreated/control) mice (NM) groups compared to the TM group (p<0.05). Furthermore, SCS administration does not cause significant changes in the hematological parameters as compared to the NM group, which indicates no sign of anemia and toxicity related effects. In conclusion, SCS significantly inhibited the overall tumor growth and metastasis in 4T1-induced breast cancer mouse model suggesting its promising potentials as therapeutic agent for breast cancer treatment.Keywords: 4T1-cells, breast cancer, metastasis, Strobilanthes crispus
Procedia PDF Downloads 151616 Full-Face Hyaluronic Acid Implants Assisted by Artificial Intelligence-Generated Post-treatment 3D Models
Authors: Ciro Cursio, Pio Luigi Cursio, Giulia Cursio, Isabella Chiardi, Luigi Cursio
Abstract:
Introduction: Full-face aesthetic treatments often present a difficult task: since different patients possess different anatomical and tissue characteristics, there is no guarantee that the same treatment will have the same effect on multiple patients; additionally, full-face rejuvenation and beautification treatments require not only a high degree of technical skill but also the ability to choose the right product for each area and a keen artistic eye. Method: We present an artificial intelligence-based algorithm that can generate realistic post-treatment 3D models based on the patient’s requests together with the doctor’s input. These 3-dimensional predictions can be used by the practitioner for two purposes: firstly, they help ensure that the patient and the doctor are completely aligned on the expectations of the treatment; secondly, the doctor can use them as a visual guide, obtaining a natural result that would normally stem from the practitioner's artistic skills. To this end, the algorithm is able to predict injection zones, the type and quantity of hyaluronic acid, the injection depth, and the technique to use. Results: Our innovation consists in providing an objective visual representation of the patient that is helpful in the patient-doctor dialogue. The patient, based on this information, can express her desire to undergo a specific treatment or make changes to the therapeutic plan. In short, the patient becomes an active agent in the choices made before the treatment. Conclusion: We believe that this algorithm will reveal itself as a useful tool in the pre-treatment decision-making process to prevent both the patient and the doctor from making a leap into the dark.Keywords: hyaluronic acid, fillers, full face, artificial intelligence, 3D
Procedia PDF Downloads 89615 Development and Optimization of Colon Targeted Drug Delivery System of Ayurvedic Churna Formulation Using Eudragit L100 and Ethyl Cellulose as Coating Material
Authors: Anil Bhandari, Imran Khan Pathan, Peeyush K. Sharma, Rakesh K. Patel, Suresh Purohit
Abstract:
The purpose of this study was to prepare time and pH dependent release tablets of Ayurvedic Churna formulation and evaluate their advantages as colon targeted drug delivery system. The Vidangadi Churna was selected for this study which contains Embelin and Gallic acid. Embelin is used in Helminthiasis as therapeutic agent. Embelin is insoluble in water and unstable in gastric environment so it was formulated in time and pH dependent tablets coated with combination of two polymers Eudragit L100 and ethyl cellulose. The 150mg of core tablet of dried extract and lactose were prepared by wet granulation method. The compression coating was used in the polymer concentration of 150mg for both the layer as upper and lower coating tablet was investigated. The results showed that no release was found in 0.1 N HCl and pH 6.8 phosphate buffers for initial 5 hours and about 98.97% of the drug was released in pH 7.4 phosphate buffer in total 17 hours. The in vitro release profiles of drug from the formulation could be best expressed first order kinetics as highest linearity (r2= 0.9943). The results of the present study have demonstrated that the time and pH dependent tablets system is a promising vehicle for preventing rapid hydrolysis in gastric environment and improving oral bioavailability of Embelin and Gallic acid for treatment of Helminthiasis.Keywords: embelin, gallic acid, Vidangadi Churna, colon targeted drug delivery
Procedia PDF Downloads 360614 A Multi-Cluster Enterprise Framework for Evolution of Knowledge System among Enterprises, Governments and Research Institutions
Authors: Sohail Ahmed, Ke Xing
Abstract:
This research theoretically explored the evolution mechanism of enterprise technological innovation capability system (ETICS) from the perspective of complex adaptive systems (CAS). Starting from CAS theory, this study proposed an analytical framework for ETICS, its concepts and theory by integrating CAS methodology into the management of technological innovation capability of enterprises and discusses how to use the principles of complexity to analyze the composition, evolution and realization of the technological innovation capabilities in complex dynamic environment. This paper introduces the concept and interaction of multi-agent, the theoretical background of CAS and summarizes the sources of technological innovation, the elements of each subject and the main clusters of adaptive interactions and innovation activities. The concept of multi-agents is applied through the linkages of enterprises, research institutions and government agencies with the leading enterprises in industrial settings. The study was exploratory based on CAS theory. Theoretical model is built by considering technological and innovation literature from foundational to state of the art projects of technological enterprises. On this basis, the theoretical model is developed to measure the evolution mechanism of enterprise technological innovation capability system. This paper concludes that the main characteristics for evolution in technological systems are based on enterprise’s research and development personal, investments in technological processes and innovation resources are responsible for the evolution of enterprise technological innovation performance. The research specifically enriched the application process of technological innovation in institutional networks related to enterprises.Keywords: complex adaptive system, echo model, enterprise knowledge system, research institutions, multi-agents.
Procedia PDF Downloads 69613 Nutritional Importance and Functional Properties of Baobab Leaves
Authors: Khadijat Ayanpeju Abdulsalam, Bolanle Mary Olawoye, Paul Babatunde Ayoola
Abstract:
The potential of Baobab leaves is understudied and not yet fully documented. The purpose of this work is to highlight the important nutritional value and practical qualities of baobab leaves. In this research, proximate analysis was studied to determine the macronutrient quantitative analysis in baobab leaves. Studies were also conducted on other characteristics, such as moisture content, which is significant to the food business since it affects food quality, preservation, and resistance to deterioration. Dietary fiber, which was also studied, has important health benefits, such as lowering blood cholesterol levels by lowering low-density lipoprotein or "bad" cholesterol. It functions as an anti-obesity and anti-diabetic agent, lowering the likelihood of haemorrhoids developing. Additionally, increasing face bulk and short-chain fatty acid synthesis improves gastrointestinal health and overall wellness. Baobab leaves had a moisture content of 6.4%, fat of 16.1%, ash of 3.2%, protein of 18.7%, carbohydrate 57.2% and crude fiber of 4.1%. The minerals determined in the sample of baobab leaves are Ca, Fe, Mg, K, Na, P, and Zn with Potassium (347.6±0.70) as the most abundant mineral while Zn (9.31±0.60) is the least abundant. The functional properties studied include pH, gelation temperature, bulk density, water absorption capacity, oil absorption capacity, foaming property, emulsifying property, and stability and swelling capacity, which are 8.72, 29, 0.39, 138, 98.20, 0.80, 72.80, and 73.50 respectively. The Fourier Transform InfraRed absorption spectra show bands like C=O, C-Cl and N-H. Baobab leaves are edible, nutritious, and non-toxic, as the mineral contents are within the required range.Keywords: dietary fibre, proximate analysis, macronutrients, minerals, baobab leaves, frequency range
Procedia PDF Downloads 70612 In vivo Antidiarrheal and ex-vivo Spasmolytic Activities of the Aqueous Extract of the Roots of Echinops kebericho Mesfin in Rodents and Isolated Guinea-Pig Ileum
Authors: Fisseha Shiferie (Bpharm, Mpharm)
Abstract:
Diarrhea is a common gastrointestinal disorder characterized by an increase in stool frequency and a change in stool consistency. Inspite of the availability of many drugs as antidiarrheal agents, the search for a drug with affordable cost and better efficacy is essential to overcome diarrheal problems. The root extract of Echinops kebericho, is used by traditional practitioners for the treatment of diarrhea. However, the scientific basis for this usage has not been yet established. The purpose of the present study was to evaluate the antidiarrheal and spasmolytic activities of the aqueous extract of the roots of E. kebericho in rodents and isolated guinea-pig ileum preparations. In the castor oil induced intestinal transit test, E. kebericho produced a significant (p < 0.01) dose dependent decrease in propulsion with peristaltic index values of 45.05±3.3, 42.71±2.25 and 33.17±3.3%, respectively at doses of 100, 200 and 400 mg/kg compared with 63.43±7.3% for control. In the castor oil-induced diarrhea test, the mean defecation was reduced from 1.81±0.18 to 0.99 ± 0.21 compared with 2.59 ±0.81 for control. The extract (at doses stated above) significantly decreased the volume of intestinal fluid secretion induced by castor oil (2.31±0.1 to 2.01±0.2) in relation to 3.28±0.3 for control. When tested on a guinea-pig ileum, root extract of Echinops kebericho exhibited a dose dependent spasmolytic effect, 23.07 % being its highest inhibitory effect. The results obtained in this study give some scientific support to the use of Echinops kebericho as an antidiarrheal agent due to its inhibitory effects on the different diarrheal parameters used in this study.Keywords: antidiarrheal activity, E. kebericho, traditional medicine, diarrhea, enteropooling, and intestinal transit
Procedia PDF Downloads 319