Search results for: sensor fault
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1935

Search results for: sensor fault

345 Real-Time Gesture Recognition System Using Microsoft Kinect

Authors: Ankita Wadhawan, Parteek Kumar, Umesh Kumar

Abstract:

Gesture is any body movement that expresses some attitude or any sentiment. Gestures as a sign language are used by deaf people for conveying messages which helps in eliminating the communication barrier between deaf people and normal persons. Nowadays, everybody is using mobile phone and computer as a very important gadget in their life. But there are some physically challenged people who are blind/deaf and the use of mobile phone or computer like device is very difficult for them. So, there is an immense need of a system which works on body gesture or sign language as input. In this research, Microsoft Kinect Sensor, SDK V2 and Hidden Markov Toolkit (HTK) are used to recognize the object, motion of object and human body joints through Touch less NUI (Natural User Interface) in real-time. The depth data collected from Microsoft Kinect has been used to recognize gestures of Indian Sign Language (ISL). The recorded clips are analyzed using depth, IR and skeletal data at different angles and positions. The proposed system has an average accuracy of 85%. The developed Touch less NUI provides an interface to recognize gestures and controls the cursor and click operation in computer just by waving hand gesture. This research will help deaf people to make use of mobile phones, computers and socialize among other persons in the society.

Keywords: gesture recognition, Indian sign language, Microsoft Kinect, natural user interface, sign language

Procedia PDF Downloads 306
344 Disaggregation of Coarser Resolution Radiometer Derived Soil Moisture to Finer Scales

Authors: Gurjeet Singh, Rabindra K. Panda

Abstract:

Soil moisture is a key hydrologic state variable and is intrinsically linked to the Earth's water, climate and carbon cycles. On ecological point of view, the soil moisture is a fundamental natural resource providing the transpirable water for plants. Soil moisture varies both temporally and spatially due to spatiotemporal variation in rainfall, vegetation cover, soil properties and topography. Satellite derived soil moisture provides spatio-temporal extensive data. However, the spatial resolution of a typical satellite (L-band radiometry) is of the order of tens of kilometers, which is not good enough for developing efficient agricultural water management schemes at the field scale. In the present study, the soil moisture from radiometer data has been disaggregated using blending approach to achieve higher resolution soil moisture data. The radiometer estimates of soil moisture at a 40 km resolution have been disaggregated to 10 km, 5 km and 1 km resolutions. The disaggregated soil moisture was compared with the observed data, consisting of continuous sensor based soil moisture profile measurements, at three monitoring sites and extensive spatial near-surface soil moisture measurements, concurrent with satellite monitoring in the 500 km2 study watershed in the Eastern India. The estimated soil moisture status at different spatial scales can help in developing efficient agricultural water management schemes to increase the crop production and water use efficiency.

Keywords: disaggregation, eastern India, radiometers, soil moisture, water use efficiency

Procedia PDF Downloads 276
343 Reactive Power Control Strategy for Z-Source Inverter Based Reconfigurable Photovoltaic Microgrid Architectures

Authors: Reshan Perera, Sarith Munasinghe, Himali Lakshika, Yasith Perera, Hasitha Walakadawattage, Udayanga Hemapala

Abstract:

This research presents a reconfigurable architecture for residential microgrid systems utilizing Z-Source Inverter (ZSI) to optimize solar photovoltaic (SPV) system utilization and enhance grid resilience. The proposed system addresses challenges associated with high solar power penetration through various modes, including current control, voltage-frequency control, and reactive power control. It ensures uninterrupted power supply during grid faults, providing flexibility and reliability for grid-connected SPV customers. Challenges and opportunities in reactive power control for microgrids are explored, with simulation results and case studies validating proposed strategies. From a control and power perspective, the ZSI-based inverter enhances safety, reduces failures, and improves power quality compared to traditional inverters. Operating seamlessly in grid-connected and islanded modes guarantees continuous power supply during grid disturbances. Moreover, the research addresses power quality issues in long distribution feeders during off-peak and night-peak hours or fault conditions. Using the Distributed Static Synchronous Compensator (DSTATCOM) for voltage stability, the control objective is nighttime voltage regulation at the Point of Common Coupling (PCC). In this mode, disconnection of PV panels, batteries, and the battery controller allows the ZSI to operate in voltage-regulating mode, with critical loads remaining connected. The study introduces a structured controller for Reactive Power Controlling mode, contributing to a comprehensive and adaptable solution for residential microgrid systems. Mathematical modeling and simulations confirm successful maximum power extraction, controlled voltage, and smooth voltage-frequency regulation.

Keywords: reconfigurable architecture, solar photovoltaic, microgrids, z-source inverter, STATCOM, power quality, battery storage system

Procedia PDF Downloads 7
342 An Analytical Formulation of Pure Shear Boundary Condition for Assessing the Response of Some Typical Sites in Mumbai

Authors: Raj Banerjee, Aniruddha Sengupta

Abstract:

An earthquake event, associated with a typical fault rupture, initiates at the source, propagates through a rock or soil medium and finally daylights at a surface which might be a populous city. The detrimental effects of an earthquake are often quantified in terms of the responses of superstructures resting on the soil. Hence, there is a need for the estimation of amplification of the bedrock motions due to the influence of local site conditions. In the present study, field borehole log data of Mangalwadi and Walkeswar sites in Mumbai city are considered. The data consists of variation of SPT N-value with the depth of soil. A correlation between shear wave velocity (Vₛ) and SPT N value for various soil profiles of Mumbai city has been developed using various existing correlations which is used further for site response analysis. MATLAB program is developed for studying the ground response analysis by performing two dimensional linear and equivalent linear analysis for some of the typical Mumbai soil sites using pure shear (Multi Point Constraint) boundary condition. The model is validated in linear elastic and equivalent linear domain using the popular commercial program, DEEPSOIL. Three actual earthquake motions are selected based on their frequency contents and durations and scaled to a PGA of 0.16g for the present ground response analyses. The results are presented in terms of peak acceleration time history with depth, peak shear strain time history with depth, Fourier amplitude versus frequency, response spectrum at the surface etc. The peak ground acceleration amplification factors are found to be about 2.374, 3.239 and 2.4245 for Mangalwadi site and 3.42, 3.39, 3.83 for Walkeswar site using 1979 Imperial Valley Earthquake, 1989 Loma Gilroy Earthquake and 1987 Whitter Narrows Earthquake, respectively. In the absence of any site-specific response spectrum for the chosen sites in Mumbai, the generated spectrum at the surface may be utilized for the design of any superstructure at these locations.

Keywords: deepsoil, ground response analysis, multi point constraint, response spectrum

Procedia PDF Downloads 180
341 NprRX Regulation on Surface Spreading Motility in Bacillus cereus

Authors: Yan-Shiang Chiou, Yi-Huang Hsueh

Abstract:

Bacillus cereus is a foodborne pathogen that causes two types of foodborne illness, the emetic and diarrheal syndromes. B. cereus consistently ranks among the top three among bacterial foodborne outbreaks in the ten years of 2001 to 2010 in Taiwan. Foodborne outbreak caused by B. cereus has been increased, and recently it ranks second foodborne pathogen after Vibrio parahaemolyticus. This pathogen is difficult to control due to its ubiquitousness in the environment, the psychrotrophic nature of many strains, and the heat resistance of their spores. Because complete elimination of biofilms is difficult, a better understanding of the molecular mechanisms of biofilm formation by B. cereus will help to develop better strategies to control this pathogen. Surface translocation can be an important factor in biofilm formation. In B. cereus, NprR is a quorum sensor, and its apo NprR is a dimer and changes to a tetramer in the presence of NprX. The small peptide NprX may induce conformational change allowing the apo dimer to switch to an active tetramer specifically recognizing target DNA sequences. Our result showed that mutation of nprRX causes surface spreading deficiency. Mutation of flagella, pili and surfactant genes (flgAB, bcpAB, krsABC), did not abolish spreading motility. Under nprRX mutant, mutation of spo0A restored the spreading deficiency. This suggests that spreading motility is not related surfactant, pili and flagella but other unknown mechanism and Spo0A, a sporulation initiation protein, inhibits spreading motility.

Keywords: Bacillus cereus, nprRX, spo0A, spreading motility

Procedia PDF Downloads 256
340 Performance Comparison of Resource Allocation without Feedback in Wireless Body Area Networks by Various Pseudo Orthogonal Sequences

Authors: Ojin Kwon, Yong-Jin Yoon, Liu Xin, Zhang Hongbao

Abstract:

Wireless Body Area Network (WBAN) is a short-range wireless communication around human body for various applications such as wearable devices, entertainment, military, and especially medical devices. WBAN attracts the attention of continuous health monitoring system including diagnostic procedure, early detection of abnormal conditions, and prevention of emergency situations. Compared to cellular network, WBAN system is more difficult to control inter- and inner-cell interference due to the limited power, limited calculation capability, mobility of patient, and non-cooperation among WBANs. In this paper, we compare the performance of resource allocation scheme based on several Pseudo Orthogonal Codewords (POCs) to mitigate inter-WBAN interference. Previously, the POCs are widely exploited for a protocol sequence and optical orthogonal code. Each POCs have different properties of auto- and cross-correlation and spectral efficiency according to its construction of POCs. To identify different WBANs, several different pseudo orthogonal patterns based on POCs exploits for resource allocation of WBANs. By simulating these pseudo orthogonal resource allocations of WBANs on MATLAB, we obtain the performance of WBANs according to different POCs and can analyze and evaluate the suitability of POCs for the resource allocation in the WBANs system.

Keywords: wireless body area network, body sensor network, resource allocation without feedback, interference mitigation, pseudo orthogonal pattern

Procedia PDF Downloads 353
339 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications

Authors: Atish Bagchi, Siva Chandrasekaran

Abstract:

Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.

Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning

Procedia PDF Downloads 150
338 Structural, Electrochemical and Electrocatalysis Studies of a New 2D Metal-Organic Coordination Polymer of Ni (II) Constructed by Naphthalene-1,4-Dicarboxylic Acid; Oxidation and Determination of Fructose

Authors: Zohreh Derikvand

Abstract:

One new 2D metal-organic coordination polymer of Ni(II) namely [Ni2(ndc)2(DMSO)4(H2O)]n, where ndc = naphthalene-1,4-dicarboxylic acid and DMSO= dimethyl sulfoxide has been synthesized and characterized by elemental analysis, spectral (IR, UV-Vis), thermal (TG/DTG) analysis and single crystal X-ray diffraction. Compound 1 possesses a 2D layer structure constructed from dinuclear nickel(II) building blocks in which two crystallographically independent Ni2+ ions are bridged by ndc2– ligands and water molecule. The ndc2– ligands adopt μ3 bridging modes, linking the metal centers into a two-dimensional coordination framework. The two independent NiII cations are surrounded by dimethyl sulfoxide and naphthalene-1,4-dicarboxylate molecules in distorted octahedron geometry. In the crystal structures of 1 there are non-classical hydrogen bonding arrangements and C-H–π stacking interactions. Electrochemical behavior of [Ni2(ndc)2(DMSO)4(H2O)]n, (Ni-NDA) on the surface of carbon nanotube (CNTs) glassy carbon electrode (GCE) was described. The surface structure and composition of the sensor were characterized by scanning electron microscopy (SEM). Oxidation of fructose on the surface of modified electrode was investigated with cyclic voltammetry and electrochemical impedance spectroscopy (EIS) and the results showed that the Ni-NDA/CNTs film displays excellent electrochemical catalytic activities towards fructose oxidation.

Keywords: naphthalene-1, 4-dicarboxylic acid, crystal structure, coordination polymer, electrocatalysis, impedance spectroscopy

Procedia PDF Downloads 332
337 Sub-Pixel Mapping Based on New Mixed Interpolation

Authors: Zeyu Zhou, Xiaojun Bi

Abstract:

Due to the limited environmental parameters and the limited resolution of the sensor, the universal existence of the mixed pixels in the process of remote sensing images restricts the spatial resolution of the remote sensing images. Sub-pixel mapping technology can effectively improve the spatial resolution. As the bilinear interpolation algorithm inevitably produces the edge blur effect, which leads to the inaccurate sub-pixel mapping results. In order to avoid the edge blur effect that affects the sub-pixel mapping results in the interpolation process, this paper presents a new edge-directed interpolation algorithm which uses the covariance adaptive interpolation algorithm on the edge of the low-resolution image and uses bilinear interpolation algorithm in the low-resolution image smooth area. By using the edge-directed interpolation algorithm, the super-resolution of the image with low resolution is obtained, and we get the percentage of each sub-pixel under a certain type of high-resolution image. Then we rely on the probability value as a soft attribute estimate and carry out sub-pixel scale under the ‘hard classification’. Finally, we get the result of sub-pixel mapping. Through the experiment, we compare the algorithm and the bilinear algorithm given in this paper to the results of the sub-pixel mapping method. It is found that the sub-pixel mapping method based on the edge-directed interpolation algorithm has better edge effect and higher mapping accuracy. The results of the paper meet our original intention of the question. At the same time, the method does not require iterative computation and training of samples, making it easier to implement.

Keywords: remote sensing images, sub-pixel mapping, bilinear interpolation, edge-directed interpolation

Procedia PDF Downloads 229
336 Autonomous Ground Vehicle Navigation Based on a Single Camera and Image Processing Methods

Authors: Auday Al-Mayyahi, Phil Birch, William Wang

Abstract:

A vision system-based navigation for autonomous ground vehicle (AGV) equipped with a single camera in an indoor environment is presented. A proposed navigation algorithm has been utilized to detect obstacles represented by coloured mini- cones placed in different positions inside a corridor. For the recognition of the relative position and orientation of the AGV to the coloured mini cones, the features of the corridor structure are extracted using a single camera vision system. The relative position, the offset distance and steering angle of the AGV from the coloured mini-cones are derived from the simple corridor geometry to obtain a mapped environment in real world coordinates. The corridor is first captured as an image using the single camera. Hence, image processing functions are then performed to identify the existence of the cones within the environment. Using a bounding box surrounding each cone allows to identify the locations of cones in a pixel coordinate system. Thus, by matching the mapped and pixel coordinates using a projection transformation matrix, the real offset distances between the camera and obstacles are obtained. Real time experiments in an indoor environment are carried out with a wheeled AGV in order to demonstrate the validity and the effectiveness of the proposed algorithm.

Keywords: autonomous ground vehicle, navigation, obstacle avoidance, vision system, single camera, image processing, ultrasonic sensor

Procedia PDF Downloads 302
335 Cracks Detection and Measurement Using VLP-16 LiDAR and Intel Depth Camera D435 in Real-Time

Authors: Xinwen Zhu, Xingguang Li, Sun Yi

Abstract:

Crack is one of the most common damages in buildings, bridges, roads and so on, which may pose safety hazards. However, cracks frequently happen in structures of various materials. Traditional methods of manual detection and measurement, which are known as subjective, time-consuming, and labor-intensive, are gradually unable to meet the needs of modern development. In addition, crack detection and measurement need be safe considering space limitations and danger. Intelligent crack detection has become necessary research. In this paper, an efficient method for crack detection and quantification using a 3D sensor, LiDAR, and depth camera is proposed. This method works even in a dark environment, which is usual in real-world applications. The LiDAR rapidly spins to scan the surrounding environment and discover cracks through lasers thousands of times per second, providing a rich, 3D point cloud in real-time. The LiDAR provides quite accurate depth information. The precision of the distance of each point can be determined within around  ±3 cm accuracy, and not only it is good for getting a precise distance, but it also allows us to see far of over 100m going with the top range models. But the accuracy is still large for some high precision structures of material. To make the depth of crack is much more accurate, the depth camera is in need. The cracks are scanned by the depth camera at the same time. Finally, all data from LiDAR and Depth cameras are analyzed, and the size of the cracks can be quantified successfully. The comparison shows that the minimum and mean absolute percentage error between measured and calculated width are about 2.22% and 6.27%, respectively. The experiments and results are presented in this paper.

Keywords: LiDAR, depth camera, real-time, detection and measurement

Procedia PDF Downloads 224
334 Comprehensive Multilevel Practical Condition Monitoring Guidelines for Power Cables in Industries: Case Study of Mobarakeh Steel Company in Iran

Authors: S. Mani, M. Kafil, E. Asadi

Abstract:

Condition Monitoring (CM) of electrical equipment has gained remarkable importance during the recent years; due to huge production losses, substantial imposed costs and increases in vulnerability, risk and uncertainty levels. Power cables feed numerous electrical equipment such as transformers, motors, and electric furnaces; thus their condition assessment is of a very great importance. This paper investigates electrical, structural and environmental failure sources, all of which influence cables' performances and limit their uptimes; and provides a comprehensive framework entailing practical CM guidelines for maintenance of cables in industries. The multilevel CM framework presented in this study covers performance indicative features of power cables; with a focus on both online and offline diagnosis and test scenarios, and covers short-term and long-term threats to the operation and longevity of power cables. The study, after concisely overviewing the concept of CM, thoroughly investigates five major areas of power quality, Insulation Quality features of partial discharges, tan delta and voltage withstand capabilities, together with sheath faults, shield currents and environmental features of temperature and humidity; and elaborates interconnections and mutual impacts between those areas; using mathematical formulation and practical guidelines. Detection, location, and severity identification methods for every threat or fault source are also elaborated. Finally, the comprehensive, practical guidelines presented in the study are presented for the specific case of Electric Arc Furnace (EAF) feeder MV power cables in Mobarakeh Steel Company (MSC), the largest steel company in MENA region, in Iran. Specific technical and industrial characteristics and limitations of a harsh industrial environment like MSC EAF feeder cable tunnels are imposed on the presented framework; making the suggested package more practical and tangible.

Keywords: condition monitoring, diagnostics, insulation, maintenance, partial discharge, power cables, power quality

Procedia PDF Downloads 228
333 Linear Prediction System in Measuring Glucose Level in Blood

Authors: Intan Maisarah Abd Rahim, Herlina Abdul Rahim, Rashidah Ghazali

Abstract:

Diabetes is a medical condition that can lead to various diseases such as stroke, heart disease, blindness and obesity. In clinical practice, the concern of the diabetic patients towards the blood glucose examination is rather alarming as some of the individual describing it as something painful with pinprick and pinch. As for some patient with high level of glucose level, pricking the fingers multiple times a day with the conventional glucose meter for close monitoring can be tiresome, time consuming and painful. With these concerns, several non-invasive techniques were used by researchers in measuring the glucose level in blood, including ultrasonic sensor implementation, multisensory systems, absorbance of transmittance, bio-impedance, voltage intensity, and thermography. This paper is discussing the application of the near-infrared (NIR) spectroscopy as a non-invasive method in measuring the glucose level and the implementation of the linear system identification model in predicting the output data for the NIR measurement. In this study, the wavelengths considered are at the 1450 nm and 1950 nm. Both of these wavelengths showed the most reliable information on the glucose presence in blood. Then, the linear Autoregressive Moving Average Exogenous model (ARMAX) model with both un-regularized and regularized methods was implemented in predicting the output result for the NIR measurement in order to investigate the practicality of the linear system in this study. However, the result showed only 50.11% accuracy obtained from the system which is far from the satisfying results that should be obtained.

Keywords: diabetes, glucose level, linear, near-infrared, non-invasive, prediction system

Procedia PDF Downloads 159
332 Enhanced Planar Pattern Tracking for an Outdoor Augmented Reality System

Authors: L. Yu, W. K. Li, S. K. Ong, A. Y. C. Nee

Abstract:

In this paper, a scalable augmented reality framework for handheld devices is presented. The presented framework is enabled by using a server-client data communication structure, in which the search for tracking targets among a database of images is performed on the server-side while pixel-wise 3D tracking is performed on the client-side, which, in this case, is a handheld mobile device. Image search on the server-side adopts a residual-enhanced image descriptors representation that gives the framework a scalability property. The tracking algorithm on the client-side is based on a gravity-aligned feature descriptor which takes the advantage of a sensor-equipped mobile device and an optimized intensity-based image alignment approach that ensures the accuracy of 3D tracking. Automatic content streaming is achieved by using a key-frame selection algorithm, client working phase monitoring and standardized rules for content communication between the server and client. The recognition accuracy test performed on a standard dataset shows that the method adopted in the presented framework outperforms the Bag-of-Words (BoW) method that has been used in some of the previous systems. Experimental test conducted on a set of video sequences indicated the real-time performance of the tracking system with a frame rate at 15-30 frames per second. The presented framework is exposed to be functional in practical situations with a demonstration application on a campus walk-around.

Keywords: augmented reality framework, server-client model, vision-based tracking, image search

Procedia PDF Downloads 275
331 Evaluation of DNA Oxidation and Chemical DNA Damage Using Electrochemiluminescent Enzyme/DNA Microfluidic Array

Authors: Itti Bist, Snehasis Bhakta, Di Jiang, Tia E. Keyes, Aaron Martin, Robert J. Forster, James F. Rusling

Abstract:

DNA damage from metabolites of lipophilic drugs and pollutants, generated by enzymes, represents a major toxicity pathway in humans. These metabolites can react with DNA to form either 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodG), which is the oxidative product of DNA or covalent DNA adducts, both of which are genotoxic and hence considered important biomarkers to detect cancer in humans. Therefore, detecting reactions of metabolites with DNA is an effective approach for the safety assessment of new chemicals and drugs. Here we describe a novel electrochemiluminescent (ECL) sensor array which can detect DNA oxidation and chemical DNA damage in a single array, facilitating a more accurate diagnostic tool for genotoxicity screening. Layer-by-layer assembly of DNA and enzyme are assembled on the pyrolytic graphite array which is housed in a microfluidic device for sequential detection of two type of the DNA damages. Multiple enzyme reactions are run on test compounds using the array, generating toxic metabolites in situ. These metabolites react with DNA in the films to cause DNA oxidation and chemical DNA damage which are detected by ECL generating osmium compound and ruthenium polymer, respectively. The method is further validated by the formation of 8-oxodG and DNA adduct using similar films of DNA/enzyme on magnetic bead biocolloid reactors, hydrolyzing the DNA, and analyzing by liquid chromatography-mass spectrometry (LC-MS). Hence, this combined DNA/enzyme array/LC-MS approach can efficiently explore metabolic genotoxic pathways for drugs and environmental chemicals.

Keywords: biosensor, electrochemiluminescence, DNA damage, microfluidic array

Procedia PDF Downloads 367
330 Hand Gesture Interface for PC Control and SMS Notification Using MEMS Sensors

Authors: Keerthana E., Lohithya S., Harshavardhini K. S., Saranya G., Suganthi S.

Abstract:

In an epoch of expanding human-machine interaction, the development of innovative interfaces that bridge the gap between physical gestures and digital control has gained significant momentum. This study introduces a distinct solution that leverages a combination of MEMS (Micro-Electro-Mechanical Systems) sensors, an Arduino Mega microcontroller, and a PC to create a hand gesture interface for PC control and SMS notification. The core of the system is an ADXL335 MEMS accelerometer sensor integrated with an Arduino Mega, which communicates with a PC via a USB cable. The ADXL335 provides real-time acceleration data, which is processed by the Arduino to detect specific hand gestures. These gestures, such as left, right, up, down, or custom patterns, are interpreted by the Arduino, and corresponding actions are triggered. In the context of SMS notifications, when a gesture indicative of a new SMS is recognized, the Arduino relays this information to the PC through the serial connection. The PC application, designed to monitor the Arduino's serial port, displays these SMS notifications in the serial monitor. This study offers an engaging and interactive means of interfacing with a PC by translating hand gestures into meaningful actions, opening up opportunities for intuitive computer control. Furthermore, the integration of SMS notifications adds a practical dimension to the system, notifying users of incoming messages as they interact with their computers. The use of MEMS sensors, Arduino, and serial communication serves as a promising foundation for expanding the capabilities of gesture-based control systems.

Keywords: hand gestures, multiple cables, serial communication, sms notification

Procedia PDF Downloads 69
329 A Flute Tracking System for Monitoring the Wear of Cutting Tools in Milling Operations

Authors: Hatim Laalej, Salvador Sumohano-Verdeja, Thomas McLeay

Abstract:

Monitoring of tool wear in milling operations is essential for achieving the desired dimensional accuracy and surface finish of a machined workpiece. Although there are numerous statistical models and artificial intelligence techniques available for monitoring the wear of cutting tools, these techniques cannot pin point which cutting edge of the tool, or which insert in the case of indexable tooling, is worn or broken. Currently, the task of monitoring the wear on the tool cutting edges is carried out by the operator who performs a manual inspection, causing undesirable stoppages of machine tools and consequently resulting in costs incurred from lost productivity. The present study is concerned with the development of a flute tracking system to segment signals related to each physical flute of a cutter with three flutes used in an end milling operation. The purpose of the system is to monitor the cutting condition for individual flutes separately in order to determine their progressive wear rates and to predict imminent tool failure. The results of this study clearly show that signals associated with each flute can be effectively segmented using the proposed flute tracking system. Furthermore, the results illustrate that by segmenting the sensor signal by flutes it is possible to investigate the wear in each physical cutting edge of the cutting tool. These findings are significant in that they facilitate the online condition monitoring of a cutting tool for each specific flute without the need for operators/engineers to perform manual inspections of the tool.

Keywords: machining, milling operation, tool condition monitoring, tool wear prediction

Procedia PDF Downloads 302
328 Quranic Recitation Listening Relate to Memory Processing, Language Selectivity and Attentional Process

Authors: Samhani Ismail, Tahamina Begum, Faruque Reza, Zamzuri Idris, Hafizan Juahir, Jafri Malin Abdullah

Abstract:

Holy Quran, a rhymed prosed scripture has a complete literary structure that exemplifies the peak of literary beauty. Memorizing of its verses could enhance one’s memory capacity and cognition while those who are listening to its recitation it is also believed that the Holy Quran alter brainwave producing neuronal excitation engaging with cognitive processes. 28 normal healthy subjects (male =14 & female = 14) were recruited and EEG recording was done using 128-electrode sensor net (Electrical Geosics, Inc.) with the impedance of ≤ 50kΩ. They listened to Sura Fatiha recited by Sheikh Qari Abdul Basit bin Abdus Samad. Arabic news and no sound were chosen as positive and negative control, respectively. The waveform was analysed by Fast Fourier Transform (FFT) to get the power in frequency bands. Bilateral frontal (F7, F8) and temporal region (T7, T8) showed decreased power significantly in alpha wave band in respondent stimulated by Sura Fatihah recitation reflects acoustic attention processing. However, decreased in alpha power in selective attention to memorized, and in familial but not memorized language, reveals the memorial processing in long-term memory. As a conclusion, Quranic recitation relates both cognitive element of memory and language in its listeners and memorizers.

Keywords: auditory stimulation, cognition, EEG, linguistic, memory, Quranic recitation

Procedia PDF Downloads 341
327 A Sensitive Approach on Trace Analysis of Methylparaben in Wastewater and Cosmetic Products Using Molecularly Imprinted Polymer

Authors: Soukaina Motia, Nadia El Alami El Hassani, Alassane Diouf, Benachir Bouchikhi, Nezha El Bari

Abstract:

Parabens are the antimicrobial molecules largely used in cosmetic products as a preservative agent. Among them, the methylparaben (MP) is the most frequently used ingredient in cosmetic preparations. Nevertheless, their potential dangers led to the development of sensible and reliable methods for their determination in environmental samples. Firstly, a sensitive and selective molecular imprinted polymer (MIP) based on screen-printed gold electrode (Au-SPE), assembled on a polymeric layer of carboxylated poly(vinyl-chloride) (PVC-COOH), was developed. After the template removal, the obtained material was able to rebind MP and discriminate it among other interfering species such as glucose, sucrose, and citric acid. The behavior of molecular imprinted sensor was characterized by Cyclic Voltammetry (CV), Differential Pulse Voltammetry (DPV) and Electrochemical Impedance Spectroscopy (EIS) techniques. Then, the biosensor was found to have a linear detection range from 0.1 pg.mL-1 to 1 ng.mL-1 and a low limit of detection of 0.12 fg.mL-1 and 5.18 pg.mL-1 by DPV and EIS, respectively. For applications, this biosensor was employed to determine MP content in four wastewaters in Meknes city and two cosmetic products (shower gel and shampoo). The operational reproducibility and stability of this biosensor were also studied. Secondly, another MIP biosensor based on tungsten trioxide (WO3) functionalized by gold nanoparticles (Au-NPs) assembled on a polymeric layer of PVC-COOH was developed. The main goal was to increase the sensitivity of the biosensor. The developed MIP biosensor was successfully applied for the MP determination in wastewater samples and cosmetic products.

Keywords: cosmetic products, methylparaben, molecularly imprinted polymer, wastewater

Procedia PDF Downloads 319
326 Analysis of Weld Crack of Main Steam Governing Valve Steam Turbine Case

Authors: Sarakorn Sukaviriya

Abstract:

This paper describes the inspection procedure, root cause analysis, the rectification of crack, and how to apply the procedure with other similar plants. During the operation of the steam turbine (620MW), instruments such as speed sensor of steam turbine, the servo valve of main stop valve and electrical wires were malfunction caused by leakage steam from main steam governing valve. Therefore, the power plant decided to shutdown steam turbines for figuring out the cause of leakage steam. Inspection techniques to be applied in this problem were microstructure testing (SEM), pipe stress analysis (FEM) and non-destructive testing. The crack was initially found on main governing valve’s weldment by visual inspection. To analyze more precisely, pipe stress analysis and microstructure testing were applied and results indicated that the crack was intergranular and originated from the weld defect. This weld defect caused the notch with high-stress concentration which created crack and then propagated to steam leakage. The major root cause of this problem was an inappropriate welding process, which created a weld defect. To repair this joint from damage, we used a welding technique by producing refinement of coarse grain HAZ and eliminating stress concentration. After the weldment was completely repaired, other adjacent weldments still had risk. Hence, to prevent any future cracks, non-destructive testing (NDT) shall be applied to all joints in order to ensure that there will be no indication of crack.

Keywords: steam-pipe leakage, steam leakage, weld crack analysis, weld defect

Procedia PDF Downloads 133
325 Coaches Attitudes, Efficacy and Proposed Behaviors towards Athletes with Hidden Disabilities: A Review of Recent Survey Research

Authors: Robbi Beyer, Tiffanye Vargas, Margaret Flores

Abstract:

Within the United States, youths with hidden disabilities (specific learning disabilities, attention deficit hyperactivity disorder, emotional behavioral disorders, mild intellectual disabilities and speech/language disorders) can often be part of the kindergarten through twelfth grade school population. Because individuals with hidden disabilities have no apparent physical disability, learning difficulties may be overlooked and these youths may be mistakenly labeled as unmotivated, or defiant because they don't understand and follow directions, or maintain enough attention to remember and perform. These behaviors are considered especially challenging for youth sport coaches to manage and they often find it difficult to successfully select and deliver effective accommodations for the athletes. These deficits can be remediated and compensated through the use of research-validated strategies and instructional methods. However, while these techniques are commonly included in teacher preparation, they rarely, if ever, are included in coaching preparation. Therefore, the purpose of this presentation is to summarize consecutive research studies that examined coaching education within the United States for youth athletes with hidden disabilities. Each study utilized a questionnaire format to collect data from coaches on attitudes, efficacy and solutions for addressing challenging behaviors. Results indicated that although the majority of coaches’ attitudes were positive and they perceived themselves confident in working with athletes who have hidden disabilities, there were significant differences in the understanding of appropriate teaching strategies and techniques for this population. For example, when asked to describe a videotaped situation of why an athlete is not performing correctly, coaches often found the athlete to be at fault, as opposed to considering the possibility of faulty directions, or the need for accommodations in teaching/coaching style. When considering coaches’ preparation, 83% of participants declared they were inadequately prepared to coach athletes with hidden disabilities and 92% strongly supported improved preparation for coaches. The comprehensive examination of coaches’ perceptions and efficacy in working with youth athletes with hidden disabilities has provided valuable insight and highlights the need for continued research in this area.

Keywords: health, hidden disabilties, physical activity, youth recreational sports

Procedia PDF Downloads 346
324 Polydimethylsiloxane Applications in Interferometric Optical Fiber Sensors

Authors: Zeenat Parveen, Ashiq Hussain

Abstract:

This review paper consists of applications of PDMS (polydimethylsiloxane) materials for enhanced performance, optical fiber sensors in acousto-ultrasonic, mechanical measurements, current applications, sensing, measurements and interferometric optical fiber sensors. We will discuss the basic working principle of fiber optic sensing technology, various types of fiber optic and the PDMS as a coating material to increase the performance. Optical fiber sensing methods for detecting dynamic strain signals, including general sound and acoustic signals, high frequency signals i.e. ultrasonic/ultrasound, and other signals such as acoustic emission and impact induced dynamic strain. Optical fiber sensors have Industrial and civil engineering applications in mechanical measurements. Sometimes it requires different configurations and parameters of sensors. Optical fiber current sensors are based on Faraday Effect due to which we obtain better performance as compared to the conventional current transformer. Recent advancement and cost reduction has simulated interest in optical fiber sensing. Optical techniques are also implemented in material measurement. Fiber optic interferometers are used to sense various physical parameters including temperature, pressure and refractive index. There are four types of interferometers i.e. Fabry–perot, Mach-Zehnder, Michelson, and Sagnac. This paper also describes the future work of fiber optic sensors.

Keywords: fiber optic sensing, PDMS materials, acoustic, ultrasound, current sensor, mechanical measurements

Procedia PDF Downloads 388
323 Challenges and Insights by Electrical Characterization of Large Area Graphene Layers

Authors: Marcus Klein, Martina GrießBach, Richard Kupke

Abstract:

The current advances in the research and manufacturing of large area graphene layers are promising towards the introduction of this exciting material in the display industry and other applications that benefit from excellent electrical and optical characteristics. New production technologies in the fabrication of flexible displays, touch screens or printed electronics apply graphene layers on non-metal substrates and bring new challenges to the required metrology. Traditional measurement concepts of layer thickness, sheet resistance, and layer uniformity, are difficult to apply to graphene production processes and are often harmful to the product layer. New non-contact sensor concepts are required to adapt to the challenges and even the foreseeable inline production of large area graphene. Dedicated non-contact measurement sensors are a pioneering method to leverage these issues in a large variety of applications, while significantly lowering the costs of development and process setup. Transferred and printed graphene layers can be characterized with high accuracy in a huge measurement range using a very high resolution. Large area graphene mappings are applied for process optimization and for efficient quality control for transfer, doping, annealing and stacking processes. Examples of doped, defected and excellent Graphene are presented as quality images and implications for manufacturers are explained.

Keywords: graphene, doping and defect testing, non-contact sheet resistance measurement, inline metrology

Procedia PDF Downloads 307
322 A Simulated Evaluation of Model Predictive Control

Authors: Ahmed AlNouss, Salim Ahmed

Abstract:

Process control refers to the techniques to control the variables in a process in order to maintain them at their desired values. Advanced process control (APC) is a broad term within the domain of control where it refers to different kinds of process control and control related tools, for example, model predictive control (MPC), statistical process control (SPC), fault detection and classification (FDC) and performance assessment. APC is often used for solving multivariable control problems and model predictive control (MPC) is one of only a few advanced control methods used successfully in industrial control applications. Advanced control is expected to bring many benefits to the plant operation; however, the extent of the benefits is plant specific and the application needs a large investment. This requires an analysis of the expected benefits before the implementation of the control. In a real plant simulation studies are carried out along with some experimentation to determine the improvement in the performance of the plant due to advanced control. In this research, such an exercise is undertaken to realize the needs of APC application. The main objectives of the paper are as follows: (1) To apply MPC to a number of simulations set up to realize the need of MPC by comparing its performance with that of proportional integral derivatives (PID) controllers. (2) To study the effect of controller parameters on control performance. (3) To develop appropriate performance index (PI) to compare the performance of different controller and develop novel idea to present tuning map of a controller. These objectives were achieved by applying PID controller and a special type of MPC which is dynamic matrix control (DMC) on the multi-tanks process simulated in loop-pro. Then the controller performance has been evaluated by changing the controller parameters. This performance was based on special indices related to the difference between set point and process variable in order to compare the both controllers. The same principle was applied for continuous stirred tank heater (CSTH) and continuous stirred tank reactor (CSTR) processes simulated in Matlab. However, in these processes some developed programs were written to evaluate the performance of the PID and MPC controllers. Finally these performance indices along with their controller parameters were plotted using special program called Sigmaplot. As a result, the improvement in the performance of the control loops was quantified using relevant indices to justify the need and importance of advanced process control. Also, it has been approved that, by using appropriate indices, predictive controller can improve the performance of the control loop significantly.

Keywords: advanced process control (APC), control loop, model predictive control (MPC), proportional integral derivatives (PID), performance indices (PI)

Procedia PDF Downloads 407
321 Alteration Quartz-Kfeldspar-Apatite-Molybdenite at B Anomaly Prospection with Artificial Neural Network to Determining Molydenite Economic Deposits in Malala District, Western Sulawesi

Authors: Ahmad Lutfi, Nikolas Dhega

Abstract:

The Malala deposit in northwest Sulawesi is the only known porphyry molybdenum and the only source for rhenium, occurrence in Indonesia. The neural network method produces results that correspond very closely to those of the knowledge-based fuzzy logic method and weights of evidence method. This method required data of solid geology, regional faults, airborne magnetic, gamma-ray survey data and GIS data. This interpretation of the network output fits with the intuitive notion that a prospective area has characteristics that closely resemble areas known to contain mineral deposits. Contrasts with the weights of evidence and fuzzy logic methods, where, for a given grid location, each input-parameter value automatically results in an increase in the prospective estimated. Malala District indicated molybdenum anomalies in stream sediments from in excess of 15 km2 were obtained, including the Takudan Fault as most prominent structure with striking 40̊ to 60̊ over a distance of about 30 km and in most places weakly at anomaly B, developed over an area of 4 km2, with a ‘shell’ up to 50 m thick at the intrusive contact with minor mineralization occurring in the Tinombo Formation. Series of NW trending, steeply dipping fracture zones, named the East Zone has an estimated resource of 100 Mt at 0.14% MoS2 and minimum target of 150 Mt 0.25%. The Malala porphyries occur as stocks and dykes with predominantly granitic, with fluorine-poor class of molybdenum deposits and belongs to the plutonic sub-type. Unidirectional solidification textures consisting of subparallel, crenulated layers of quartz that area separated by layers of intrusive material textures. The deuteric nature of the molybdenum mineralization and the dominance of carbonate alteration.The nature of the Stage I with alteration barren quartz K‐feldspar; and Stage II with alteration quartz‐K‐feldspar‐apatite-molybdenite veins combined with the presence of disseminated molybdenite with primary biotite in the host intrusive.

Keywords: molybdenite, Malala, porphyries, anomaly B

Procedia PDF Downloads 153
320 High-Resolution Spatiotemporal Retrievals of Aerosol Optical Depth from Geostationary Satellite Using Sara Algorithm

Authors: Muhammad Bilal, Zhongfeng Qiu

Abstract:

Aerosols, suspended particles in the atmosphere, play an important role in the earth energy budget, climate change, degradation of atmospheric visibility, urban air quality, and human health. To fully understand aerosol effects, retrieval of aerosol optical properties such as aerosol optical depth (AOD) at high spatiotemporal resolution is required. Therefore, in the present study, hourly AOD observations at 500 m resolution were retrieved from the geostationary ocean color imager (GOCI) using the simplified aerosol retrieval algorithm (SARA) over the urban area of Beijing for the year 2016. The SARA requires top-of-the-atmosphere (TOA) reflectance, solar and sensor geometry information and surface reflectance observations to retrieve an accurate AOD. For validation of the GOCI retrieved AOD, AOD measurements were obtained from the aerosol robotic network (AERONET) version 3 level 2.0 (cloud-screened and quality assured) data. The errors and uncertainties were reported using the root mean square error (RMSE), relative percent mean error (RPME), and the expected error (EE = ± (0.05 + 0.15AOD). Results showed that the high spatiotemporal GOCI AOD observations were well correlated with the AERONET AOD measurements with a correlation coefficient (R) of 0.92, RMSE of 0.07, and RPME of 5%, and 90% of the observations were within the EE. The results suggested that the SARA is robust and has the ability to retrieve high-resolution spatiotemporal AOD observations over the urban area using the geostationary satellite.

Keywords: AEORNET, AOD, SARA, GOCI, Beijing

Procedia PDF Downloads 171
319 Designing Offshore Pipelines Facing the Geohazard of Active Seismic Faults

Authors: Maria Trimintziou, Michael Sakellariou, Prodromos Psarropoulos

Abstract:

Nowadays, the exploitation of hydrocarbons reserves in deep seas and oceans, in combination with the need to transport hydrocarbons among countries, has made the design, construction and operation of offshore pipelines very significant. Under this perspective, it is evident that many more offshore pipelines are expected to be constructed in the near future. Since offshore pipelines are usually crossing extended areas, they may face a variety of geohazards that impose substantial permanent ground deformations (PGDs) to the pipeline and potentially threaten its integrity. In case of a geohazard area, there exist three options to proceed. The first option is to avoid the problematic area through rerouting, which is usually regarded as an unfavorable solution due to its high cost. The second is to apply (if possible) mitigation/protection measures in order to eliminate the geohazard itself. Finally, the last appealing option is to allow the pipeline crossing through the geohazard area, provided that the pipeline will have been verified against the expected PGDs. In areas with moderate or high seismicity the design of an offshore pipeline is more demanding due to the earthquake-related geohazards, such as landslides, soil liquefaction phenomena, and active faults. It is worthy to mention that although worldwide there is a great experience in offshore geotechnics and pipeline design, the experience in seismic design of offshore pipelines is rather limited due to the fact that most of the pipelines have been constructed in non-seismic regions (e.g. North Sea, West Australia, Gulf of Mexico, etc.). The current study focuses on the seismic design of offshore pipelines against active faults. After an extensive literature review of the provisions of the seismic norms worldwide and of the available analytical methods, the study simulates numerically (through finite-element modeling and strain-based criteria) the distress of offshore pipelines subjected to PGDs induced by active seismic faults at the seabed. Factors, such as the geometrical properties of the fault, the mechanical properties of the ruptured soil formations, and the pipeline characteristics, are examined. After some interesting conclusions regarding the seismic vulnerability of offshore pipelines, potential cost-effective mitigation measures are proposed taking into account constructability issues.

Keywords: offhore pipelines, seismic design, active faults, permanent ground deformations (PGDs)

Procedia PDF Downloads 588
318 Geomorphology of Leyte, Philippines: Seismic Response and Remote Sensing Analysis and Its Implication to Landslide Hazard Assessment

Authors: Arturo S. Daag, Ira Karrel D. L. San Jose, Mike Gabriel G. Pedrosa, Ken Adrian C. Villarias, Rayfred P. Ingeniero, Cyrah Gale H. Rocamora, Margarita P. Dizon, Roland Joseph B. De Leon, Teresito C. Bacolcol

Abstract:

The province of Leyte consists of various geomorphological landforms: These are: a) landforms of tectonic origin transect large part of the volcanic centers in upper Ormoc area; b) landforms of volcanic origin, several inactive volcanic centers located in Upper Ormoc are transected by Philippine Fault; c) landforms of volcano-denudational and denudational slopes dominates the area where most of the earthquake-induced landslide occurred; and d) Colluvium and alluvial deposits dominate the foot slope of Ormoc and Jaro-Pastrana plain. Earthquake ground acceleration and geotechnical properties of various landforms are crucial for landslide studies. To generate the landslide critical acceleration model of sliding block, various data were considered, these are: geotechnical data (i.e., soil and rock strength parameters), slope, topographic wetness index (TWI), landslide inventory, soil map, geologic maps for the calculation of the factor of safety. Horizontal-to-vertical spectral ratio (HVSR) surveying methods, refraction microtremor (ReMi), and three-component microtremor (3CMT) were conducted to measure site period and surface wave velocity as well as to create a soil thickness model. Critical acceleration model of various geomorphological unit using Remote Sensing, field geotechnical, geophysical, and geospatial data collected from the areas affected by the 06 July 2017 M6.5 Leyte earthquake. Spatial analysis of earthquake-induced landslide from the 06 July 2017, were then performed to assess the relationship between the calculated critical acceleration and peak ground acceleration. The observed trends proved helpful in establishing the role of critical acceleration as a determining factor in the distribution of co-seismic landslides.

Keywords: earthquake-induced landslide, remote sensing, geomorphology, seismic response

Procedia PDF Downloads 128
317 Assessing the Effects of Land Use Spatial Structure on Urban Heat Island Using New Launched Remote Sensing in Shenzhen, China

Authors: Kai Liua, Hongbo Sua, Weimin Wangb, Hong Liangb

Abstract:

Urban heat island (UHI) has attracted attention around the world since they profoundly affect human life and climatological. Better understanding the effects of landscape pattern on UHI is crucial for improving the ecological security and sustainability of cities. This study aims to investigate how landscape composition and configuration would affect UHI in Shenzhen, China, based on the analysis of land surface temperature (LST) in relation landscape metrics, mainly with the aid of three new satellite sensors launched by China. HJ-1B satellite system was utilized to estimate surface temperature and comprehensively explore the urban thermal spatial pattern. The landscape metrics of the high spatial resolution remote sensing satellites (GF-1 and ZY-3) were compared and analyzed to validate the performance of the new launched satellite sensors. Results show that the mean LST is correlated with main landscape metrics involving class-based metrics and landscape-based metrics, suggesting that the landscape composition and the spatial configuration both influence UHI. These relationships also reveal that urban green has a significant effect in mitigating UHI in Shenzhen due to its homogeneous spatial distribution and large spatial extent. Overall, our study not only confirm the applicability and effectiveness of the HJ-1B, GF-1 and ZY-3 satellite system for studying UHI but also reveal the impacts of the urban spatial structure on UHI, which is meaningful for the planning and management of the urban environment.

Keywords: urban heat island, Shenzhen, new remote sensing sensor, remote sensing satellites

Procedia PDF Downloads 406
316 Feature Analysis of Predictive Maintenance Models

Authors: Zhaoan Wang

Abstract:

Research in predictive maintenance modeling has improved in the recent years to predict failures and needed maintenance with high accuracy, saving cost and improving manufacturing efficiency. However, classic prediction models provide little valuable insight towards the most important features contributing to the failure. By analyzing and quantifying feature importance in predictive maintenance models, cost saving can be optimized based on business goals. First, multiple classifiers are evaluated with cross-validation to predict the multi-class of failures. Second, predictive performance with features provided by different feature selection algorithms are further analyzed. Third, features selected by different algorithms are ranked and combined based on their predictive power. Finally, linear explainer SHAP (SHapley Additive exPlanations) is applied to interpret classifier behavior and provide further insight towards the specific roles of features in both local predictions and global model behavior. The results of the experiments suggest that certain features play dominant roles in predictive models while others have significantly less impact on the overall performance. Moreover, for multi-class prediction of machine failures, the most important features vary with type of machine failures. The results may lead to improved productivity and cost saving by prioritizing sensor deployment, data collection, and data processing of more important features over less importance features.

Keywords: automated supply chain, intelligent manufacturing, predictive maintenance machine learning, feature engineering, model interpretation

Procedia PDF Downloads 133