Search results for: philosophy of science
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3128

Search results for: philosophy of science

1538 The Sustainable Blue Economy Innovation and Growth: Data Based on China for 2006-2015 Years

Authors: Mingbao Chen

Abstract:

The blue economy is a new comprehensive marine economy integrated with resources, industries, and regions, and is an upgraded version of the marine economy. The blue economy attaches great importance to the coordinated development of the ecological environment and the economy, which is an emerging economic form advocated by all countries in the world. This paper constructs the model including four variables:natural capital, economic capital, intellectual capital, cultural capital. Theoretically, this paper deduces the function mechanism of variables on economic growth, and empirically calculates the driving force and influence of the blue economy on the national economy by using data of China's 2006-2015 year. The results show that natural capital and economic capital remain the main factors of blue growth in the blue economy. And with the development of economic society and technological progress, the role of intellectual capital and cultural capital is bigger and bigger. Therefore, promoting the development of marine science and technology and culture is the focus of the future blue economic development.

Keywords: blue growth, natural capital, intellectual capital, cultural capital

Procedia PDF Downloads 156
1537 Engineering Design of a Chemical Launcher: An Interdisciplinary Design Activity

Authors: Mei Xuan Tan, Gim-Yang Maggie Pee, Mei Chee Tan

Abstract:

Academic performance, in the form of scoring high grades in enrolled subjects, is not the only significant trait in achieving success. Engineering graduates with experience in working on hands-on projects in a team setting are highly sought after in industry upon graduation. Such projects are typically real world problems that require the integration and application of knowledge and skills from several disciplines. In a traditional university setting, subjects are taught in a silo manner with no cross participation from other departments or disciplines. This may lead to knowledge compartmentalization and students are unable to understand and connect the relevance and applicability of the subject. University instructors thus see this integration across disciplines as a challenging task as they aim to better prepare students in understanding and solving problems for work or future studies. To improve students’ academic performance and to cultivate various skills such as critical thinking, there has been a gradual uptake in the use of an active learning approach in introductory science and engineering courses, where lecturing is traditionally the main mode of instruction. This study aims to discuss the implementation and experience of a hands-on, interdisciplinary project that involves all the four core subjects taught during the term at the Singapore University of Technology Design (SUTD). At SUTD, an interdisciplinary design activity, named 2D, is integrated into the curriculum to help students reinforce the concepts learnt. A student enrolled in SUTD experiences his or her first 2D in Term 1. This activity. which spans over one week in Week 10 of Term 1, highlights the application of chemistry, physics, mathematics, humanities, arts and social sciences (HASS) in designing an engineering product solution. The activity theme for Term 1 2D revolved around “work and play”. Students, in teams of 4 or 5, used a scaled-down model of a chemical launcher to launch a projectile across the room. It involved the use of a small chemical combustion reaction between ethanol (a highly volatile fuel) and oxygen. This reaction generated a sudden and large increase in gas pressure built up in a closed chamber, resulting in rapid gas expansion and ejection of the projectile out of the launcher. Students discussed and explored the meaning of play in their lives in HASS class while the engineering aspects of a combustion system to launch an object using underlying principles of energy conversion and projectile motion were revisited during the chemistry and physics classes, respectively. Numerical solutions on the distance travelled by the projectile launched by the chemical launcher, taking into account drag forces, was developed during the mathematics classes. At the end of the activity, students developed skills in report writing, data collection and analysis. Specific to this 2D activity, students gained an understanding and appreciation on the application and interdisciplinary nature of science, engineering and HASS. More importantly, students were exposed to design and problem solving, where human interaction and discussion are important yet challenging in a team setting.

Keywords: active learning, collaborative learning, first year undergraduate, interdisciplinary, STEAM

Procedia PDF Downloads 122
1536 Seismic Retrofitting of Structures Using Steel Plate Slit Dampers Based on Genetic Algorithm

Authors: Mohamed Noureldin, Jinkoo Kim

Abstract:

In this study, a genetic algorithm was used to find out the optimum locations of the slit dampers satisfying a target displacement. A seismic retrofit scheme for a building structure was presented using steel plate slit dampers. A cyclic loading test was used to verify the energy dissipation capacity of the slit damper. The seismic retrofit of the model structure using the slit dampers was compared with the retrofit with enlarging shear walls. The capacity spectrum method was used to propose a simple damper distribution scheme proportional to the inter-story drifts. The validity of the simple story-wise damper distribution procedure was verified by comparing the results of the genetic algorithm. It was observed that the proposed simple damper distribution pattern was in a good agreement with the optimum distribution obtained from the genetic algorithm. Acknowledgment: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03032809).

Keywords: slit dampers, seismic retrofit, genetic algorithm, optimum design

Procedia PDF Downloads 223
1535 Inferring Human Mobility in India Using Machine Learning

Authors: Asra Yousuf, Ajaykumar Tannirkulum

Abstract:

Inferring rural-urban migration trends can help design effective policies that promote better urban planning and rural development. In this paper, we describe how machine learning algorithms can be applied to predict internal migration decisions of people. We consider data collected from household surveys in Tamil Nadu to train our model. To measure the performance of the model, we use data on past migration from National Sample Survey Organisation of India. The factors for training the model include socioeconomic characteristic of each individual like age, gender, place of residence, outstanding loans, strength of the household, etc. and his past migration history. We perform a comparative analysis of the performance of a number of machine learning algorithm to determine their prediction accuracy. Our results show that machine learning algorithms provide a stronger prediction accuracy as compared to statistical models. Our goal through this research is to propose the use of data science techniques in understanding human decisions and behaviour in developing countries.

Keywords: development, migration, internal migration, machine learning, prediction

Procedia PDF Downloads 271
1534 Professional Ambitions of Students of Faculty of Chemistry, Adam Mickiewicz University in the Context of Teaching Profession

Authors: Malgorzata Bartoszewicz, Grzegorz Krzysko

Abstract:

Chemistry students plan a career path based on their interests, predispositions, and preferences. This study aims to determine what percentage of all chemistry students selected teaching as a career. There is a lack of science teachers (especially physics and chemistry) in Poland, and there is limited research on students' choices and professional preferences. At the Faculty of Chemistry of the Adam Mickiewicz University in the academic year 2019/2020, changes were introduced to the study program resulting from legal regulations and as part of the funds raised from the project "Teacher - competent practitioner, supervisor, expert", No. POWR.03.01.00-00-KN40/18. The aim of the study was to determine how many first-cycle and second-cycle studies students declare the teaching profession as a career. In the case of first-cycle studies students, 9.5% of respondents choose the teaching profession and 9.2% of second-cycle studies students. It was found that the number of students who chose the teacher preparation programme at Faculty of Chemistry of the Adam Mickiewicz University has decreased since 5 years.

Keywords: faculty of chemistry, Adam Mickiewicz University, professional ambitions, students, teacher

Procedia PDF Downloads 144
1533 Maintaining Energy Security in Natural Gas Pipeline Operations by Empowering Process Safety Principles Through Alarm Management Applications

Authors: Huseyin Sinan Gunesli

Abstract:

Process Safety Management is a disciplined framework for managing the integrity of systems and processes that handle hazardous substances. It relies on good design principles, well-implemented automation systems, and operating and maintenance practices. Alarm Management Systems play a critically important role in the safe and efficient operation of modern industrial plants. In that respect, Alarm Management is one of the critical factors feeding the safe operations of the plants in the manner of applying effective process safety principles. Trans Anatolian Natural Gas Pipeline (TANAP) is part of the Southern Gas Corridor, which extends from the Caspian Sea to Italy. TANAP transports Natural Gas from the Shah Deniz gas field of Azerbaijan, and possibly from other neighboring countries, to Turkey and through Trans Adriatic Pipeline (TAP) Pipeline to Europe. TANAP plays a crucial role in maintaining Energy Security for the region and Europe. In that respect, the application of Process Safety principles is vital to deliver safe, reliable and efficient Natural Gas delivery to Shippers both in the region and Europe. Effective Alarm Management is one of those Process Safety principles which feeds safe operations of the TANAP pipeline. Alarm Philosophy was designed and implemented in TANAP Pipeline according to the relevant standards. However, it is essential to manage the alarms received in the control room effectively to maintain safe operations. In that respect, TANAP has commenced Alarm Management & Rationalization program as of February 2022 after transferring to Plateau Regime, reaching the design parameters. While Alarm Rationalization started, there were more than circa 2300 alarms received per hour from one of the compressor stations. After applying alarm management principles such as reviewing and removal of bad actors, standing, stale, chattering, fleeting alarms, comprehensive review and revision of alarm set points through a change management principle, conducting alarm audits/design verification and etc., it has been achieved to reduce down to circa 40 alarms per hour. After the successful implementation of alarm management principles as specified above, the number of alarms has been reduced to industry standards. That significantly improved operator vigilance to focus on mainly important and critical alarms to avoid any excursion beyond safe operating limits leading to any potential process safety events. Following the ‟What Gets Measured, Gets Managed” principle, TANAP has identified key Performance Indicators (KPIs) to manage Process Safety principles effectively, where Alarm Management has formed one of the key parameters of those KPIs. However, review and analysis of the alarms were performed manually. Without utilizing Alarm Management Software, achieving full compliance with international standards is almost infeasible. In that respect, TANAP has started using one of the industry-wide known Alarm Management Applications to maintain full review and analysis of alarms and define actions as required. That actually significantly empowered TANAP’s process safety principles in terms of Alarm Management.

Keywords: process safety principles, energy security, natural gas pipeline operations, alarm rationalization, alarm management, alarm management application

Procedia PDF Downloads 103
1532 A Theory of Vertical Partnerships Model as Responsive Failure in Alternative Arrangement for Infrastructural Development in the Third World Countries: A Comparative Public Administration Analysis

Authors: Cyril Ekuaze

Abstract:

This paper was instigated by a set of assumption drawn at the introduction to a research work on alternative institutional arrangements for sustaining rural infrastructure in developing countries. Of one of such assumption is the one held that, a problem facing developing countries is the sustaining of infrastructural investment long enough to allow the facility to at least repay the cost of the development as been due to insufficient maintenance. On the contrary, this work argues that, most international partnerships relation with developing nations in developing infrastructures is “vertical modeling” with the hierarchical authority and command flow from top to bottom. The work argued that where international donor partners/agencies set out infrastructural development agenda in the developing nations without cognizance of design suitability and capacity for maintenance by the recipient nations; and where public administrative capacity building in the field of science, technology and engineering requisite for design, development and sustenance of infrastructure in the recipient countries are negated, prospective output becomes problematic.

Keywords: vertical partnerships, responsive failure, infrastructural development, developing countries

Procedia PDF Downloads 329
1531 Longitudinal Analysis of Internet Speed Data in the Gulf Cooperation Council Region

Authors: Musab Isah

Abstract:

This paper presents a longitudinal analysis of Internet speed data in the Gulf Cooperation Council (GCC) region, focusing on the most populous cities of each of the six countries – Riyadh, Saudi Arabia; Dubai, UAE; Kuwait City, Kuwait; Doha, Qatar; Manama, Bahrain; and Muscat, Oman. The study utilizes data collected from the Measurement Lab (M-Lab) infrastructure over a five-year period from January 1, 2019, to December 31, 2023. The analysis includes downstream and upstream throughput data for the cities, covering significant events such as the launch of 5G networks in 2019, COVID-19-induced lockdowns in 2020 and 2021, and the subsequent recovery period and return to normalcy. The results showcase substantial increases in Internet speeds across the cities, highlighting improvements in both download and upload throughput over the years. All the GCC countries have achieved above-average Internet speeds that can conveniently support various online activities and applications with excellent user experience.

Keywords: internet data science, internet performance measurement, throughput analysis, internet speed, measurement lab, network diagnostic tool

Procedia PDF Downloads 62
1530 Effects of Starvation Stress on Antioxidant Defense System in Rainbow Trout (Oncorhynchus mykiss)

Authors: Metin Çenesi̇z, Büşra Şahi̇n

Abstract:

The sustainability of aquaculture is possible through the conscious use of resources and minimization of environmental impacts. These can be achieved through science-based planning, ecosystem-based management, strict observations and controls. The ideal water temperature for rainbow trout, which are intensively farmed in the Black Sea Region of Turkey, should be below 20 oC. In summer, the water temperature exceeds this value in some dams where production is carried out. For this reason, it has become obligatory to transfer to dams where the water temperature is low in order to provide suitable temperature conditions. There are many factors that may cause stress to trout during transportation. Some of these stress factors are starvation of the fish for a while to avoid contamination of the water, mobility and noise during transportation and loading, dissolved oxygen content and composition of the water in the transportation tanks, etc. The starvation stress caused by starvation/lack of food during transportation causes a certain amount of loss of macronutrients such as carbohydrates, proteins and fats in the tissues. This situation causes changes in metabolic activities and the energy balance of fish species. In this study, oxidant-antioxidant values and stress markers of rainbow trout starved before transplantation will be evaluated.

Keywords: oncorhynchus mykiss, starvation stress, TAS, TOS

Procedia PDF Downloads 81
1529 Customer Relationship Management on Social Media Affecting Brand Loyalty of Siam Commercial Bank in Bangkok

Authors: Charawee Butbumrung

Abstract:

The purpose of this research was to study customer relationship management on social media affecting brand loyalty of Siam Commercial Bank in Bangkok. The statistics used in data analysis were frequency, mean, standard deviation, and Pearson’s correlation coefficient based on social science statistic program. The result of the study found that the majority of the respondents were female, 37–47 years old of age, bachelor degree of education and monthly income between 10,001 and 15,000 Baht. In addition, customer relationship management in the overall and by each aspect of formulating, maintaining, and extending the customer relationship had a high score. Furthermore, the result of hypothesis testing showed that the difference of the customer’s age, education, occupation, average monthly income had the difference in brand loyalty with the statistical significance level of 0.05 and customer relationship management had related with brand loyalty in the same direction with the low level of statistical significance 0.05.

Keywords: brand loyalty, customer relationship management, Siam Commercial bank, social media

Procedia PDF Downloads 247
1528 Impact of Natural Language Processing in Educational Setting: An Effective Approach towards Improved Learning

Authors: Khaled M. Alhawiti

Abstract:

Natural Language Processing (NLP) is an effective approach for bringing improvement in educational setting. This involves initiating the process of learning through the natural acquisition in the educational systems. It is based on following effective approaches for providing the solution for various problems and issues in education. Natural Language Processing provides solution in a variety of different fields associated with the social and cultural context of language learning. It is based on involving various tools and techniques such as grammar, syntax, and structure of text. It is effective approach for teachers, students, authors, and educators for providing assistance for writing, analysis, and assessment procedure. Natural Language Processing is widely integrated in the large number of educational contexts such as research, science, linguistics, e-learning, evaluations system, and various other educational settings such as schools, higher education system, and universities. Natural Language Processing is based on applying scientific approach in the educational settings. In the educational settings, NLP is an effective approach to ensure that students can learn easily in the same way as they acquired language in the natural settings.

Keywords: natural language processing, education, application, e-learning, scientific studies, educational system

Procedia PDF Downloads 503
1527 Effectiveness of an Intervention to Increase Physics Students' STEM Self-Efficacy: Results of a Quasi-Experimental Study

Authors: Stephanie J. Sedberry, William J. Gerace, Ian D. Beatty, Michael J. Kane

Abstract:

Increasing the number of US university students who attain degrees in STEM and enter the STEM workforce is a national priority. Demographic groups vary in their rates of participation in STEM, and the US produces just 10% of the world’s science and engineering degrees (2014 figures). To address these gaps, we have developed and tested a practical, 30-minute, single-session classroom-based intervention to improve students’ self-efficacy and academic performance in University STEM courses. Self-efficacy is a psychosocial construct that strongly correlates with academic success. Self-efficacy is a construct that is internal and relates to the social, emotional, and psychological aspects of student motivation and performance. A compelling body of research demonstrates that university students’ self-efficacy beliefs are strongly related to their selection of STEM as a major, aspirations for STEM-related careers, and persistence in science. The development of an intervention to increase students’ self-efficacy is motivated by research showing that short, social-psychological interventions in education can lead to large gains in student achievement. Our intervention addresses STEM self-efficacy via two strong, but previously separate, lines of research into attitudinal/affect variables that influence student success. The first is ‘attributional retraining,’ in which students learn to attribute their successes and failures to internal rather than external factors. The second is ‘mindset’ about fixed vs. growable intelligence, in which students learn that the brain remains plastic throughout life and that they can, with conscious effort and attention to thinking skills and strategies, become smarter. Extant interventions for both of these constructs have significantly increased academic performance in the classroom. We developed a 34-item questionnaire (Likert scale) to measure STEM Self-efficacy, Perceived Academic Control, and Growth Mindset in a University STEM context, and validated it with exploratory factor analysis, Rasch analysis, and multi-trait multi-method comparison to coded interviews. Four iterations of our 42-week research protocol were conducted across two academic years (2017-2018) at three different Universities in North Carolina, USA (UNC-G, NC A&T SU, and NCSU) with varied student demographics. We utilized a quasi-experimental prospective multiple-group time series research design with both experimental and control groups, and we are employing linear modeling to estimate the impact of the intervention on Self-Efficacy,wth-Mindset, Perceived Academic Control, and final course grades (performance measure). Preliminary results indicate statistically significant effects of treatment vs. control on Self-Efficacy, Growth-Mindset, Perceived Academic Control. Analyses are ongoing and final results pending. This intervention may have the potential to increase student success in the STEM classroom—and ownership of that success—to continue in a STEM career. Additionally, we have learned a great deal about the complex components and dynamics of self-efficacy, their link to performance, and the ways they can be impacted to improve students’ academic performance.

Keywords: academic performance, affect variables, growth mindset, intervention, perceived academic control, psycho-social variables, self-efficacy, STEM, university classrooms

Procedia PDF Downloads 127
1526 Intelligent Earthquake Prediction System Based On Neural Network

Authors: Emad Amar, Tawfik Khattab, Fatma Zada

Abstract:

Predicting earthquakes is an important issue in the study of geography. Accurate prediction of earthquakes can help people to take effective measures to minimize the loss of personal and economic damage, such as large casualties, destruction of buildings and broken of traffic, occurred within a few seconds. United States Geological Survey (USGS) science organization provides reliable scientific information of Earthquake Existed throughout history & Preliminary database from the National Center Earthquake Information (NEIC) show some useful factors to predict an earthquake in a seismic area like Aleutian Arc in the U.S. state of Alaska. The main advantage of this prediction method that it does not require any assumption, it makes prediction according to the future evolution of object's time series. The article compares between simulation data result from trained BP and RBF neural network versus actual output result from the system calculations. Therefore, this article focuses on analysis of data relating to real earthquakes. Evaluation results show better accuracy and higher speed by using radial basis functions (RBF) neural network.

Keywords: BP neural network, prediction, RBF neural network, earthquake

Procedia PDF Downloads 496
1525 Methodology for Obtaining Food Licenses in India

Authors: Rathna Malhotra Gaur

Abstract:

Owing to multiplicity and competition in the Indian food industry, it was always important for the government of India to bring in reforms that would protect the interest of the consumer and also the food operator. To further this objective, Food Safety, and Standards Act, 2006 (hereinafter referred to as FSSAI) was enacted for laying down science-based standards for articles and food and to regulate their storage, distribution, manufacture, same and import and to ensure safe food availability to the citizens of India. One of the safeguards towards consumer interest is the enactment of Food Safety and Standards (Licensing and Registration of Food Businesses, Regulation, 2011 within the mandate of FSSAI. It is mandatory for every food operator in India to get the registration certificate and procurement of food Licenses before starting operations in the country. All the nuances pertaining to the procurement of licenses are dealt with under these regulations. These regulations also lay down detailed provisions with regard to the conditions that the operator has to adhere to once the License is procured, going to the integrities of the safety and hygiene standards to be maintained by the food operators. This paper is an exhaustive effort to examine the provisions of obtaining the registration and License in India and the conditions that need to be fulfilled subsequently and further on the validity and renewal of these Food Licenses.

Keywords: food laws, food licenses, food registration, penalty

Procedia PDF Downloads 177
1524 Medicompills Architecture: A Mathematical Precise Tool to Reduce the Risk of Diagnosis Errors on Precise Medicine

Authors: Adriana Haulica

Abstract:

Powered by Machine Learning, Precise medicine is tailored by now to use genetic and molecular profiling, with the aim of optimizing the therapeutic benefits for cohorts of patients. As the majority of Machine Language algorithms come from heuristics, the outputs have contextual validity. This is not very restrictive in the sense that medicine itself is not an exact science. Meanwhile, the progress made in Molecular Biology, Bioinformatics, Computational Biology, and Precise Medicine, correlated with the huge amount of human biology data and the increase in computational power, opens new healthcare challenges. A more accurate diagnosis is needed along with real-time treatments by processing as much as possible from the available information. The purpose of this paper is to present a deeper vision for the future of Artificial Intelligence in Precise medicine. In fact, actual Machine Learning algorithms use standard mathematical knowledge, mostly Euclidian metrics and standard computation rules. The loss of information arising from the classical methods prevents obtaining 100% evidence on the diagnosis process. To overcome these problems, we introduce MEDICOMPILLS, a new architectural concept tool of information processing in Precise medicine that delivers diagnosis and therapy advice. This tool processes poly-field digital resources: global knowledge related to biomedicine in a direct or indirect manner but also technical databases, Natural Language Processing algorithms, and strong class optimization functions. As the name suggests, the heart of this tool is a compiler. The approach is completely new, tailored for omics and clinical data. Firstly, the intrinsic biological intuition is different from the well-known “a needle in a haystack” approach usually used when Machine Learning algorithms have to process differential genomic or molecular data to find biomarkers. Also, even if the input is seized from various types of data, the working engine inside the MEDICOMPILLS does not search for patterns as an integrative tool. This approach deciphers the biological meaning of input data up to the metabolic and physiologic mechanisms, based on a compiler with grammars issued from bio-algebra-inspired mathematics. It translates input data into bio-semantic units with the help of contextual information iteratively until Bio-Logical operations can be performed on the base of the “common denominator “rule. The rigorousness of MEDICOMPILLS comes from the structure of the contextual information on functions, built to be analogous to mathematical “proofs”. The major impact of this architecture is expressed by the high accuracy of the diagnosis. Detected as a multiple conditions diagnostic, constituted by some main diseases along with unhealthy biological states, this format is highly suitable for therapy proposal and disease prevention. The use of MEDICOMPILLS architecture is highly beneficial for the healthcare industry. The expectation is to generate a strategic trend in Precise medicine, making medicine more like an exact science and reducing the considerable risk of errors in diagnostics and therapies. The tool can be used by pharmaceutical laboratories for the discovery of new cures. It will also contribute to better design of clinical trials and speed them up.

Keywords: bio-semantic units, multiple conditions diagnosis, NLP, omics

Procedia PDF Downloads 70
1523 A Data Science Pipeline for Algorithmic Trading: A Comparative Study in Applications to Finance and Cryptoeconomics

Authors: Luyao Zhang, Tianyu Wu, Jiayi Li, Carlos-Gustavo Salas-Flores, Saad Lahrichi

Abstract:

Recent advances in AI have made algorithmic trading a central role in finance. However, current research and applications are disconnected information islands. We propose a generally applicable pipeline for designing, programming, and evaluating algorithmic trading of stock and crypto tokens. Moreover, we provide comparative case studies for four conventional algorithms, including moving average crossover, volume-weighted average price, sentiment analysis, and statistical arbitrage. Our study offers a systematic way to program and compare different trading strategies. Moreover, we implement our algorithms by object-oriented programming in Python3, which serves as open-source software for future academic research and applications.

Keywords: algorithmic trading, AI for finance, fintech, machine learning, moving average crossover, volume weighted average price, sentiment analysis, statistical arbitrage, pair trading, object-oriented programming, python3

Procedia PDF Downloads 147
1522 Deformation Analysis of Pneumatized Sphenoid Bone Caused Due to Elevated Intracranial Pressure Using Finite Element Analysis

Authors: Dilesh Mogre, Jitendra Toravi, Saurabh Joshi, Prutha Deshpande, Aishwarya Kura

Abstract:

In earlier days of technology, it was not possible to understand the nature of complex biomedical problems and were only left to clinical postulations. With advancement in science today, we have tools like Finite Element Modelling and simulation to solve complex biomedical problems. This paper presents how ANSYS WORKBENCH can be used to study deformation of pneumatized sphenoid bone caused by increased intracranial pressure. Intracranial pressure refers to the pressure inside the skull. The increase in the pressure above the normal range of 15mmhg can lead to serious conditions due to developed stresses and deformation. One of the areas where the deformation is suspected to occur is Sphenoid Bone. Moreover, the varying degree of pneumatization increases the complexity of the conditions. It is necessary to study deformation patterns on pneumatized sphenoid bone model at elevated intracranial pressure. Finite Element Analysis plays a major role in developing and analyzing model and give quantitative results.

Keywords: intracranial pressure, pneumatized sphenoid bone, deformation, finite element analysis

Procedia PDF Downloads 194
1521 The Quality of Management: A Leadership Maturity Model to Leverage Complexity

Authors: Marlene Kuhn, Franziska Schäfer, Heiner Otten

Abstract:

Today´s production processes experience a constant increase in complexity paving new ways for progressive forms of leadership. In the customized production, individual customer requirements drive companies to adapt their manufacturing processes constantly while the pressure for smaller lot sizes, lower costs and faster lead times grows simultaneously. When production processes are becoming more dynamic and complex, the conventional quality management approaches show certain limitations. This paper gives an introduction to complexity science from a quality management perspective. By analyzing and evaluating different characteristics of complexity, the critical complexity parameters are identified and assessed. We found that the quality of leadership plays a crucial role when dealing with increasing complexity. Therefore, we developed a concept for qualitative leadership customized for the management within complex processes based on a maturity model. The maturity model was then applied in the industry to assess the leadership quality of several shop floor managers with a positive evaluation feedback. In result, the maturity model proved to be a sustainable approach to leverage the rising complexity in production processes more effectively.

Keywords: maturity model, process complexity, quality of leadership, quality management

Procedia PDF Downloads 370
1520 Integrating Computational Thinking into Classroom Practice – A Case Study

Authors: Diane Vassallo., Leonard Busuttil

Abstract:

Recent educational developments have seen increasing attention attributed to Computational Thinking (CT) and its integration into primary and secondary school curricula. CT is more than simply being able to use technology but encompasses fundamental Computer Science concepts which are deemed to be very important in developing the correct mindset for our future digital citizens. The case study presented in this article explores the journey of a Maltese secondary school teacher in his efforts to plan, develop and integrate CT within the context of a local classroom. The teacher participant was recruited from the Malta EU Code week summer school, a pilot initiative that stemmed from the EU Code week Team’s Train the Trainer program. The qualitative methodology involved interviews with the participant teacher as well as an analysis of the artefacts created by the students during the lessons. The results shed light on the numerous challenges and obstacles that the teacher encountered in his integration of CT, as well as portray some brilliant examples of good practices which can substantially inform further research and practice around the integration of CT in classroom practice.

Keywords: computational thinking, digital citizens, digital literacy, technology integration

Procedia PDF Downloads 154
1519 Psychology of Terrorism: Psychology of War

Authors: Saeed Wahass

Abstract:

Terrorism is a universal phenomenon. It is an enemy to the world and humanity, representing the most essential challenges facing developing and developed societies of the world. Terrorism is traumatically a major cause for death and disability. Developing societies are catastrophically suffering more in comparing to developed ones. Importantly, the terrorism may have been emigrated from developing societies; therefore, it cannot be appropriately explained/understood elsewhere. Developing societies have attempts for solutions. These attempts may have contributed somehow to either overcoming temporally terrorism or at least waterless its fountains. It appears these attempts are fallen on personal experiences/local endeavours related to the nature of those societies and cultures. The missing issue is the involvement of the applications of psychological theories for understanding terrorism as a phenomenon. However, terrorism is behaviour, like other behaviours, it can be explained, analysed and predicted while psychology is involved as the science of behaviour and mental process. Later than, solutions whatever they are (intervention/prevention) have to be born from the womb of psychological theories explaining/understanding terrorism. This paper is an endeavour to shed light on psychological theories which may present an explanation for terrorism, as a behavioural phenomenon, looking for the effective evidence-based interventions/prevention. An emphasis will be on the experiences of developing countries which may have made/incubated terrorism.

Keywords: psychology, terrorism, humanity, developing societies

Procedia PDF Downloads 521
1518 Study of Human Position in Architecture with Contextual Approach

Authors: E. Zarei, M. Bazaei, A. seifi, A. Keshavarzi

Abstract:

Contextuallism has been always the main component of urban science. It not only has great direct and indirect impact on behaviors, events and interactions, but also is one of the basic factors of an urban values and identity. Nowadays there might be some deficiencies in the cities. In the theories of environment designing, humanistic orientations with the focus on culture and cultural variables would enable us to transfer information. To communicate with the context in which human lives, he needs some common memories, understandable symbols and daily activities in that context. The configuration of a place can impact on human’s behaviors. The goal of this research is to review 7 projects in different parts of the world with various usages and some factors such as ‘sense of place’, ‘sense of belonging’ and ‘social and cultural relations’ will be discussed in these projects. The method used for research in this project is descriptive- analytic. Library information and Internet are the main sources of gathering information and the method of reasoning used in this project is inductive. The consequence of this research will be some data in the form of tables that has been extracted from mentioned projects.

Keywords: contextuallism with humanistic approach, sense of place, sense of belonging, social and cultural relations

Procedia PDF Downloads 396
1517 Ripple Effect Analysis of Government Investment for Research and Development by the Artificial Neural Networks

Authors: Hwayeon Song

Abstract:

The long-term purpose of research and development (R&D) programs is to strengthen national competitiveness by developing new knowledge and technologies. Thus, it is important to determine a proper budget for government programs to maintain the vigor of R&D when the total funding is tight due to the national deficit. In this regard, a ripple effect analysis for the budgetary changes in R&D programs is necessary as well as an investigation of the current status. This study proposes a new approach using Artificial Neural Networks (ANN) for both tasks. It particularly focuses on R&D programs related to Construction and Transportation (C&T) technology in Korea. First, key factors in C&T technology are explored to draw impact indicators in three areas: economy, society, and science and technology (S&T). Simultaneously, ANN is employed to evaluate the relationship between data variables. From this process, four major components in R&D including research personnel, expenses, management, and equipment are assessed. Then the ripple effect analysis is performed to see the changes in the hypothetical future by modifying current data. Any research findings can offer an alternative strategy about R&D programs as well as a new analysis tool.

Keywords: Artificial Neural Networks, construction and transportation technology, Government Research and Development, Ripple Effect

Procedia PDF Downloads 247
1516 A Semi-supervised Classification Approach for Trend Following Investment Strategy

Authors: Rodrigo Arnaldo Scarpel

Abstract:

Trend following is a widely accepted investment strategy that adopts a rule-based trading mechanism that rather than striving to predict market direction or on information gathering to decide when to buy and when to sell a stock. Thus, in trend following one must respond to market’s movements that has recently happen and what is currently happening, rather than on what will happen. Optimally, in trend following strategy, is to catch a bull market at its early stage, ride the trend, and liquidate the position at the first evidence of the subsequent bear market. For applying the trend following strategy one needs to find the trend and identify trade signals. In order to avoid false signals, i.e., identify fluctuations of short, mid and long terms and to separate noise from real changes in the trend, most academic works rely on moving averages and other technical analysis indicators, such as the moving average convergence divergence (MACD) and the relative strength index (RSI) to uncover intelligible stock trading rules following trend following strategy philosophy. Recently, some works has applied machine learning techniques for trade rules discovery. In those works, the process of rule construction is based on evolutionary learning which aims to adapt the rules to the current environment and searches for the global optimum rules in the search space. In this work, instead of focusing on the usage of machine learning techniques for creating trading rules, a time series trend classification employing a semi-supervised approach was used to early identify both the beginning and the end of upward and downward trends. Such classification model can be employed to identify trade signals and the decision-making procedure is that if an up-trend (down-trend) is identified, a buy (sell) signal is generated. Semi-supervised learning is used for model training when only part of the data is labeled and Semi-supervised classification aims to train a classifier from both the labeled and unlabeled data, such that it is better than the supervised classifier trained only on the labeled data. For illustrating the proposed approach, it was employed daily trade information, including the open, high, low and closing values and volume from January 1, 2000 to December 31, 2022, of the São Paulo Exchange Composite index (IBOVESPA). Through this time period it was visually identified consistent changes in price, upwards or downwards, for assigning labels and leaving the rest of the days (when there is not a consistent change in price) unlabeled. For training the classification model, a pseudo-label semi-supervised learning strategy was used employing different technical analysis indicators. In this learning strategy, the core is to use unlabeled data to generate a pseudo-label for supervised training. For evaluating the achieved results, it was considered the annualized return and excess return, the Sortino and the Sharpe indicators. Through the evaluated time period, the obtained results were very consistent and can be considered promising for generating the intended trading signals.

Keywords: evolutionary learning, semi-supervised classification, time series data, trading signals generation

Procedia PDF Downloads 89
1515 Forensic Imaging as an Effective Learning Tool for Teaching Forensic Pathology to Undergraduate Medical Students

Authors: Vasudeva Murthy Challakere Ramaswamy

Abstract:

Background: Conventionally forensic pathology is learnt through autopsy demonstrations which carry various limitations such as unavailability of cases in the mortuary, medico-legal implication and infection. Over the years forensic pathology and science has undergone significant evolution in this digital world. Forensic imaging is a technology which can be effectively utilized for overcoming the current limitations in the undergraduate learning of forensic curriculum. Materials and methods: demonstration of forensic imaging was done using a novel technology of autopsy which has been recently introduced across the globe. Three sessions were conducted in international medical university for a total of 196 medical students. The innovative educational tool was evacuated by using quantitative questionnaire with the scoring scales between 1 to 10. Results: The mean score for acceptance of new tool was 82% and about 74% of the students recommended incorporation of the forensic imaging in the regular curriculum. 82% of students were keen on collaborative research and taking further training courses in forensic imaging. Conclusion: forensic imaging can be an effective tool and also a suitable alternative for teaching undergraduate students. This feedback also supports the fact that students favour the use of contemporary technologies in learning medicine.

Keywords: forensic imaging, forensic pathology, medical students, learning tool

Procedia PDF Downloads 480
1514 Conditions Required for New Sector Emergence: Results from a Systematic Literature Review

Authors: Laurie Prange-Martin, Romeo Turcan, Norman Fraser

Abstract:

The aim of this study is to identify the conditions required and describe the process of emergence for a new economic sector created from new or established businesses. A systematic literature review of English-language studies published from 1983 to 2016 was conducted using the following databases: ABI/INFORM Complete; Business Source Premiere; Google Scholar; Scopus; and Web of Science. The two main terms of business sector and emergence were used in the systematic literature search, along with another seventeen synonyms for each these main terms. From the search results, 65 publications met the requirements of an empirical study discussing and reporting the conditions of new sector emergence. A meta-analysis of the literature examined suggest that there are six favourable conditions and five key individuals or groups required for new sector emergence. In addition, the results from the meta-analysis showed that there are eighteen theories used in the literature to explain the phenomenon of new sector emergence, which can be grouped in three study disciplines. With such diversity in theoretical frameworks used in the 65 empirical studies, the authors of this paper propose the development of a new theory of sector emergence.

Keywords: economic geography, new sector emergence, economic diversification, regional economies

Procedia PDF Downloads 270
1513 Secure Text Steganography for Microsoft Word Document

Authors: Khan Farhan Rafat, M. Junaid Hussain

Abstract:

Seamless modification of an entity for the purpose of hiding a message of significance inside its substance in a manner that the embedding remains oblivious to an observer is known as steganography. Together with today's pervasive registering frameworks, steganography has developed into a science that offers an assortment of strategies for stealth correspondence over the globe that must, however, need a critical appraisal from security breach standpoint. Microsoft Word is amongst the preferably used word processing software, which comes as a part of the Microsoft Office suite. With a user-friendly graphical interface, the richness of text editing, and formatting topographies, the documents produced through this software are also most suitable for stealth communication. This research aimed not only to epitomize the fundamental concepts of steganography but also to expound on the utilization of Microsoft Word document as a carrier for furtive message exchange. The exertion is to examine contemporary message hiding schemes from security aspect so as to present the explorative discoveries and suggest enhancements which may serve a wellspring of information to encourage such futuristic research endeavors.

Keywords: hiding information in plain sight, stealth communication, oblivious information exchange, conceal, steganography

Procedia PDF Downloads 241
1512 Application of the Pattern Method to Form the Stable Neural Structures in the Learning Process as a Way of Solving Modern Problems in Education

Authors: Liudmyla Vesper

Abstract:

The problems of modern education are large-scale and diverse. The aspirations of parents, teachers, and experts converge - everyone interested in growing up a generation of whole, well-educated persons. Both the family and society are expected in the future generation to be self-sufficient, desirable in the labor market, and capable of lifelong learning. Today's children have a powerful potential that is difficult to realize in the conditions of traditional school approaches. Focusing on STEM education in practice often ends with the simple use of computers and gadgets during class. "Science", "technology", "engineering" and "mathematics" are difficult to combine within school and university curricula, which have not changed much during the last 10 years. Solving the problems of modern education largely depends on teachers - innovators, teachers - practitioners who develop and implement effective educational methods and programs. Teachers who propose innovative pedagogical practices that allow students to master large-scale knowledge and apply it to the practical plane. Effective education considers the creation of stable neural structures during the learning process, which allow to preserve and increase knowledge throughout life. The author proposed a method of integrated lessons – cases based on the maths patterns for forming a holistic perception of the world. This method and program are scientifically substantiated and have more than 15 years of practical application experience in school and student classrooms. The first results of the practical application of the author's methodology and curriculum were announced at the International Conference "Teaching and Learning Strategies to Promote Elementary School Success", 2006, April 22-23, Yerevan, Armenia, IREX-administered 2004-2006 Multiple Component Education Project. This program is based on the concept of interdisciplinary connections and its implementation in the process of continuous learning. This allows students to save and increase knowledge throughout life according to a single pattern. The pattern principle stores information on different subjects according to one scheme (pattern), using long-term memory. This is how neural structures are created. The author also admits that a similar method can be successfully applied to the training of artificial intelligence neural networks. However, this assumption requires further research and verification. The educational method and program proposed by the author meet the modern requirements for education, which involves mastering various areas of knowledge, starting from an early age. This approach makes it possible to involve the child's cognitive potential as much as possible and direct it to the preservation and development of individual talents. According to the methodology, at the early stages of learning students understand the connection between school subjects (so-called "sciences" and "humanities") and in real life, apply the knowledge gained in practice. This approach allows students to realize their natural creative abilities and talents, which makes it easier to navigate professional choices and find their place in life.

Keywords: science education, maths education, AI, neuroplasticity, innovative education problem, creativity development, modern education problem

Procedia PDF Downloads 62
1511 A Review on Cyberchondria Based on Bibliometric Analysis

Authors: Xiaoqing Peng, Aijing Luo, Yang Chen

Abstract:

Background: Cyberchondria, as an "emerging risk" accompanied by the information era, is a new abnormal pattern characterized by excessive or repeated online searches for health-related information and escalating health anxiety, which endangers people's physical and mental health and poses a huge threat to public health. Objective: To explore and discuss the research status, hotspots and trends of Cyberchondria. Methods: Based on a total of 77 articles regarding "Cyberchondria" extracted from Web of Science from the beginning till October 2019, the literature trends, countries, institutions, hotspots are analyzed by bibliometric analysis, the concept definition of Cyberchondria, instruments, relevant factors, treatment and intervention are discussed as well. Results: Since "Cyberchondria" was put forward for the first time in 2001, the last two decades witnessed a noticeable increase in the amount of literature, especially during 2014-2019, it quadrupled dramatically at 62 compared with that before 2014 only at 15, which shows that Cyberchondria has become a new theme and hot topic in recent years. The United States was the most active contributor with the largest publication (23), followed by England (11) and Australia (11), while the leading institutions were Baylor University(7) and University of Sydney(7), followed by Florida State University(4) and University of Manchester(4). The WoS categories "Psychiatry/Psychology " and "Computer/ Information Science "were the areas of greatest influence. The concept definition of Cyberchondria is not completely unified in the world, but it is generally considered as an abnormal behavioral pattern and emotional state and has been invoked to refer to the anxiety-amplifying effects of online health-related searches. The first and the most frequently cited scale for measuring the severity of Cyberchondria called “The Cyberchondria Severity Scale (CSS) ”was developed in 2014, which conceptualized Cyberchondria as a multidimensional construct consisting of compulsion, distress, excessiveness, reassurance, and mistrust of medical professionals which was proved to be not necessary for this construct later. Since then, the Brazilian, German, Turkish, Polish and Chinese versions were subsequently developed, improved and culturally adjusted, while CSS was optimized to a simplified version (CSS-12) in 2019, all of which should be worthy of further verification. The hotspots of Cyberchondria mainly focuses on relevant factors as follows: intolerance of uncertainty, anxiety sensitivity, obsessive-compulsive disorder, internet addition, abnormal illness behavior, Whiteley index, problematic internet use, trying to make clear the role played by “associated factors” and “anxiety-amplifying factors” in the development of Cyberchondria, to better understand the aetiological links and pathways in the relationships between hypochondriasis, health anxiety and online health-related searches. Although the treatment and intervention of Cyberchondria are still in the initial stage of exploration, there are kinds of meaningful attempts to seek effective strategies from different aspects such as online psychological treatment, network technology management, health information literacy improvement and public health service. Conclusion: Research on Cyberchondria is in its infancy but should be deserved more attention. A conceptual consensus on Cyberchondria, a refined assessment tool, prospective studies conducted in various populations, targeted treatments for it would be the main research direction in the near future.

Keywords: cyberchondria, hypochondriasis, health anxiety, online health-related searches

Procedia PDF Downloads 122
1510 MapReduce Logistic Regression Algorithms with RHadoop

Authors: Byung Ho Jung, Dong Hoon Lim

Abstract:

Logistic regression is a statistical method for analyzing a dataset in which there are one or more independent variables that determine an outcome. Logistic regression is used extensively in numerous disciplines, including the medical and social science fields. In this paper, we address the problem of estimating parameters in the logistic regression based on MapReduce framework with RHadoop that integrates R and Hadoop environment applicable to large scale data. There exist three learning algorithms for logistic regression, namely Gradient descent method, Cost minimization method and Newton-Rhapson's method. The Newton-Rhapson's method does not require a learning rate, while gradient descent and cost minimization methods need to manually pick a learning rate. The experimental results demonstrated that our learning algorithms using RHadoop can scale well and efficiently process large data sets on commodity hardware. We also compared the performance of our Newton-Rhapson's method with gradient descent and cost minimization methods. The results showed that our newton's method appeared to be the most robust to all data tested.

Keywords: big data, logistic regression, MapReduce, RHadoop

Procedia PDF Downloads 285
1509 Chinese Language Teaching as a Second Language: Immersion Teaching

Authors: Lee Bih Ni, Kiu Su Na

Abstract:

This paper discusses the Chinese Language Teaching as a Second Language by focusing on Immersion Teaching. Researchers used narrative literature review to describe the current states of both art and science in focused areas of inquiry. Immersion teaching comes with a standard that teachers must reliably meet. Chinese language-immersion instruction consists of language and content lessons, including functional usage of the language, academic language, authentic language, and correct Chinese sociocultural language. Researchers used narrative literature reviews to build a scientific knowledge base. Researchers collected all the important points of discussion, and put them here with reference to the specific field where this paper is originally based on. The findings show that Chinese Language in immersion teaching is not like standard foreign language classroom; immersion setting provides more opportunities to teach students colloquial language than academic. Immersion techniques also introduce a language’s cultural and social contexts in a meaningful and memorable way. It is particularly important that immersion teachers connect classwork with real-life experiences. Immersion also includes more elements of discovery and inquiry based learning than do other kinds of instructional practices. Students are always and consistently interpreted the conclusions and context clues.

Keywords: a second language, Chinese language teaching, immersion teaching, instructional strategies

Procedia PDF Downloads 452