Search results for: conventional turning
2294 Developing Computational Thinking in Early Childhood Education
Authors: Kalliopi Kanaki, Michael Kalogiannakis
Abstract:
Nowadays, in the digital era, the early acquisition of basic programming skills and knowledge is encouraged, as it facilitates students’ exposure to computational thinking and empowers their creativity, problem-solving skills, and cognitive development. More and more researchers and educators investigate the introduction of computational thinking in K-12 since it is expected to be a fundamental skill for everyone by the middle of the 21st century, just like reading, writing and arithmetic are at the moment. In this paper, a doctoral research in the process is presented, which investigates the infusion of computational thinking into science curriculum in early childhood education. The whole attempt aims to develop young children’s computational thinking by introducing them to the fundamental concepts of object-oriented programming in an enjoyable, yet educational framework. The backbone of the research is the digital environment PhysGramming (an abbreviation of Physical Science Programming), which provides children the opportunity to create their own digital games, turning them from passive consumers to active creators of technology. PhysGramming deploys an innovative hybrid schema of visual and text-based programming techniques, with emphasis on object-orientation. Through PhysGramming, young students are familiarized with basic object-oriented programming concepts, such as classes, objects, and attributes, while, at the same time, get a view of object-oriented programming syntax. Nevertheless, the most noteworthy feature of PhysGramming is that children create their own digital games within the context of physical science courses, in a way that provides familiarization with the basic principles of object-oriented programming and computational thinking, even though no specific reference is made to these principles. Attuned to the ethical guidelines of educational research, interventions were conducted in two classes of second grade. The interventions were designed with respect to the thematic units of the curriculum of physical science courses, as a part of the learning activities of the class. PhysGramming was integrated into the classroom, after short introductory sessions. During the interventions, 6-7 years old children worked in pairs on computers and created their own digital games (group games, matching games, and puzzles). The authors participated in these interventions as observers in order to achieve a realistic evaluation of the proposed educational framework concerning its applicability in the classroom and its educational and pedagogical perspectives. To better examine if the objectives of the research are met, the investigation was focused on six criteria; the educational value of PhysGramming, its engaging and enjoyable characteristics, its child-friendliness, its appropriateness for the purpose that is proposed, its ability to monitor the user’s progress and its individualizing features. In this paper, the functionality of PhysGramming and the philosophy of its integration in the classroom are both described in detail. Information about the implemented interventions and the results obtained is also provided. Finally, several limitations of the research conducted that deserve attention are denoted.Keywords: computational thinking, early childhood education, object-oriented programming, physical science courses
Procedia PDF Downloads 1202293 VTOL-Fw Mode-Transitioning UAV Design and Analysis
Authors: Feri̇t Çakici, M. Kemal Leblebi̇ci̇oğlu
Abstract:
In this study, an unmanned aerial vehicle (UAV) with level flight, vertical take-off and landing (VTOL) and mode-transitioning capability is designed and analyzed. The platform design combines both multirotor and fixed-wing (FW) conventional airplane structures and control surfaces; therefore named as VTOL-FW. The aircraft is modeled using aerodynamical principles and linear models are constructed utilizing small perturbation theory for trim conditions. The proposed method of control includes implementation of multirotor and airplane mode controllers and design of an algorithm to transition between modes in achieving smooth switching maneuvers between VTOL and FW flight. Thus, VTOL-FW UAV’s flight characteristics are expected to be improved by enlarging operational flight envelope through enabling mode-transitioning, agile maneuvers and increasing survivability. Experiments conducted in simulation and real world environments shows that VTOL-FW UAV has both multirotor and airplane characteristics with extra benefits in an enlarged flight envelope.Keywords: aircraft design, linear analysis, mode transitioning control, UAV
Procedia PDF Downloads 3952292 Multi-Plane Wrist Movement: Pathomechanics and Design of a 3D-Printed Splint
Authors: Sigal Portnoy, Yael Kaufman-Cohen, Yafa Levanon
Abstract:
Introduction: Rehabilitation following wrist fractures often includes exercising flexion-extension movements with a dynamic splint. However, during daily activities, we combine most of our wrist movements with radial and ulnar deviations. Also, the multi-plane wrist motion, named the ‘dart throw motion’ (DTM), was found to be a more stable motion in healthy individuals, in term of the motion of the proximal carpal bones, compared with sagittal wrist motion. The aim of this study was therefore to explore the pathomechanics of the wrist in a common multi-plane movement pattern (DTM) and design a novel splint for rehabilitation following distal radius fractures. Methods: First, a multi-axis electro-goniometer was used to quantify the plane angle of motion of the dominant and non-dominant wrists during various activities, e.g. drinking from a glass of water and answering a phone in 43 healthy individuals. The following protocols were then implemented with a population following distal radius fracture. Two dynamic scans were performed, one of the sagittal wrist motion and DTM, in a 3T magnetic resonance imaging (MRI) device, bilaterally. The scaphoid and lunate carpal bones, as well as the surface of the distal radius, were manually-segmented in SolidWorks and the angles of motion of the scaphoid and lunate bones were calculated. Subsequently, a patient-specific splint was designed using 3D scans of the hand. The brace design comprises of a proximal attachment to the arm and a distal envelope of the palm. An axle with two wheels is attached to the proximal part. Two wires attach the proximal part with the medial-palmar and lateral-ventral aspects of the distal part: when the wrist extends, the first wire is released and the second wire is strained towards the radius. The opposite occurs when the wrist flexes. The splint was attached to the wrist using Velcro and constrained the wrist movement to the desired calculated multi-plane of motion. Results: No significant differences were found between the multi-plane angles of the dominant and non-dominant wrists. The most common daily activities occurred at a plane angle of approximately 20° to 45° from the sagittal plane and the MRI studies show individual angles of the plane of motion. The printed splint fitted the wrist of the subjects and constricted movement to the desired multi-plane of motion. Hooks were inserted on each part to allow the addition of springs or rubber bands for resistance training towards muscle strengthening in the rehabilitation setting. Conclusions: It has been hypothesized that activation of the wrist in a multi-plane movement pattern following distal radius fractures will accelerate the recovery of the patient. Our results show that this motion can be determined from either the dominant or non-dominant wrists. The design of the patient-specific dynamic splint is the first step towards assessing whether splinting to induce combined movement is beneficial to the rehabilitation process, compared to conventional treatment. The evaluation of the clinical benefits of this method, compared to conventional rehabilitation methods following wrist fracture, are a part of a PhD work, currently conducted by an occupational therapist.Keywords: distal radius fracture, rehabilitation, dynamic magnetic resonance imaging, dart throw motion
Procedia PDF Downloads 2992291 Waste Heat Recovery Using Spiral Heat Exchanger
Authors: Parthiban S. R.
Abstract:
Spiral heat exchangers are known as excellent heat exchanger because of far compact and high heat transfer efficiency. An innovative spiral heat exchanger based on polymer materials is designed for waste heat recovery process. Such a design based on polymer film technology provides better corrosion and chemical resistance compared to conventional metal heat exchangers. Due to the smooth surface of polymer film fouling is reduced. A new arrangement for flow of hot flue gas and cold fluid is employed for design, flue gas flows in axial path while the cold fluid flows in a spiral path. Heat load recovery achieved with the presented heat exchanger is in the range of 1.5 kW thermic but potential heat recovery about 3.5 kW might be achievable. To measure the performance of the spiral tube heat exchanger, its model is suitably designed and fabricated so as to perform experimental tests. The paper gives analysis of spiral tube heat exchanger.Keywords: spiral heat exchanger, polymer based materials, fouling factor, heat load
Procedia PDF Downloads 3912290 The Effect of Floor Impact Sound Insulation Performance Using Scrambled Thermoplastic Poly Urethane and Ethylene Vinyl Acetate
Authors: Bonsoo Koo, Seong Shin Hong, Byung Kwon Lee
Abstract:
Most of apartments in Korea have wall type structure that present poor performance regarding floor impact sound insulation. In order to minimize the transmission of floor impact sound, flooring structures are used in which an insulating material, 30 mm thickness pad of EPS or EVA, is sandwiched between a concrete slab and the finished mortar. Generally, a single-material pad used for insulation has a heavyweight impact sound level of 44~47 dB with 210 mm thickness slab. This study provides an analysis of the floor impact sound insulation performance using thermoplastic poly urethane (TPU), ethylene vinyl acetate (EVA), and expanded polystyrene (EPS) materials with buffering performance. Following mock-up tests the effect of lightweight impact sound turned out to be similar but heavyweight impact sound was decreased by 3 dB compared to conventional single material insulation pad.Keywords: floor impact sound, thermoplastic poly urethane, ethylene vinyl acetate, heavyweight impact sound
Procedia PDF Downloads 4042289 Towards Establishing a Universal Theory of Project Management
Authors: Divine Kwaku Ahadzie
Abstract:
Project management (PM) as a concept has evolved from the early 20th Century into a recognized academic and professional discipline, and indications are that it has come to stay in the 21st Century as a world-wide paradigm shift for managing successful construction projects. However, notwithstanding the strong inroads that PM has made in legitimizing its academic and professional status in construction management practice, the underlining philosophies are still based on cases and conventional practices. An important theoretical issue yet to be addressed is the lack of a universal theory that offers philosophical legitimacy for the PM concept as a uniquely specialized management concept. Here, it is hypothesized that the law of entropy, the theory of uncertainties and the theory of risk management offer plausible explanations for addressing the lacuna of what constitute PM theory. The theoretical bases of these plausible underlying theories are argued and attempts made to establish the functional relationships that exist between these theories and the PM concept. The paper then draws on data related to the success and/or failure of a number of construction projects to validate the theory.Keywords: concepts, construction, project management, universal theory
Procedia PDF Downloads 3282288 DNA PLA: A Nano-Biotechnological Programmable Device
Authors: Hafiz Md. HasanBabu, Khandaker Mohammad Mohi Uddin, Md. IstiakJaman Ami, Rahat Hossain Faisal
Abstract:
Computing in biomolecular programming performs through the different types of reactions. Proteins and nucleic acids are used to store the information generated by biomolecular programming. DNA (Deoxyribose Nucleic Acid) can be used to build a molecular computing system and operating system for its predictable molecular behavior property. The DNA device has clear advantages over conventional devices when applied to problems that can be divided into separate, non-sequential tasks. The reason is that DNA strands can hold so much data in memory and conduct multiple operations at once, thus solving decomposable problems much faster. Programmable Logic Array, abbreviated as PLA is a programmable device having programmable AND operations and OR operations. In this paper, a DNA PLA is designed by different molecular operations using DNA molecules with the proposed algorithms. The molecular PLA could take advantage of DNA's physical properties to store information and perform calculations. These include extremely dense information storage, enormous parallelism, and extraordinary energy efficiency.Keywords: biological systems, DNA computing, parallel computing, programmable logic array, PLA, DNA
Procedia PDF Downloads 1292287 Low Profile Wide-Band Broad Side RMSA Suitable for On-Board Applications
Authors: Qaisar Fraz, H. M. Jafar, Mojeeb Bin Ihsan
Abstract:
This paper presents simulation and experimen-tal results for wide band U-shaped side slots loaded linearly polarized rectangular microstrip antenna with broad side radiation characteristics suitable for onboard applications. The structure has been evolved in rugged and compact form to make it suitable for on-board applications. In addition to U-shaped central slot, pair of parallel narrow slots has been embedded close to non-radiating edges. The size and shape of these side slots have been optimized to improve the matching at upper frequency of the band. The impedance bandwidth of 34.8% as compared to 2-5% bandwidth of conventional microstrip antenna has been achieved. The frequency ratio of the two well-matched operating sections is found to be f2 / f1=1.33. The experimental results are in good agreement with the numerical results.Keywords: low profile antennas, u-slot antennas, broad band antennas, broad-side radiation pattern, high gain antennas
Procedia PDF Downloads 3702286 Directional Dependence of the Stress-Strain Behavior of Reinforced Sand
Authors: Alaa H. J. Al-Rkaby, A. Chegenizadeh, H. R. Nikraz
Abstract:
The technique of reinforcing soil is an efficient, reliable and cost-effective alternative way for improving the performance of soil in civil engineering applications. Despite the anisotropic states of stresses induced within soil elements by many geotechnical structures such as footings, highways and offshore, most of the previous studies have been carried out under isotropic conditions. The anisotropic stress state in term of the inclined principal stress and the inequality of the intermediate and minor principal stresses cannot be investigated using conventional devices. Therefore, the advanced hollow cylinder apparatus, used in this work, provides a great opportunity to simulate such anisotropic stress states. To date, very little consideration has been given to how the direction of principal stress α and intermediate principal stress ratio b can affect the performance of the reinforced sand. This study presented that the anisotropic conditions of α and b resulted in significant variations in the deviator stress and volumetric strain of sand reinforced with geosynthetics. Anisotropic effect has been decreased by adding clay content.Keywords: anisotropy, reinforced sand, direction of principal stress, intermediate principal stress ratio
Procedia PDF Downloads 1992285 Japanese and Europe Legal Frameworks on Data Protection and Cybersecurity: Asymmetries from a Comparative Perspective
Authors: S. Fantin
Abstract:
This study is the result of the legal research on cybersecurity and data protection within the EUNITY (Cybersecurity and Privacy Dialogue between Europe and Japan) project, aimed at fostering the dialogue between the European Union and Japan. Based on the research undertaken therein, the author offers an outline of the main asymmetries in the laws governing such fields in the two regions. The research is a comparative analysis of the two legal frameworks, taking into account specific provisions, ratio legis and policy initiatives. Recent doctrine was taken into account, too, as well as empirical interviews with EU and Japanese stakeholders and project partners. With respect to the protection of personal data, the European Union has recently reformed its legal framework with a package which includes a regulation (General Data Protection Regulation), and a directive (Directive 680 on personal data processing in the law enforcement domain). In turn, the Japanese law under scrutiny for this study has been the Act on Protection of Personal Information. Based on a comparative analysis, some asymmetries arise. The main ones refer to the definition of personal information and the scope of the two frameworks. Furthermore, the rights of the data subjects are differently articulated in the two regions, while the nature of sanctions take two opposite approaches. Regarding the cybersecurity framework, the situation looks similarly misaligned. Japan’s main text of reference is the Basic Cybersecurity Act, while the European Union has a more fragmented legal structure (to name a few, Network and Information Security Directive, Critical Infrastructure Directive and Directive on the Attacks at Information Systems). On an relevant note, unlike a more industry-oriented European approach, the concept of cyber hygiene seems to be neatly embedded in the Japanese legal framework, with a number of provisions that alleviate operators’ liability by turning such a burden into a set of recommendations to be primarily observed by citizens. With respect to the reasons to fill such normative gaps, these are mostly grounded on three basis. Firstly, the cross-border nature of cybercrime brings to consider both magnitude of the issue and its regulatory stance globally. Secondly, empirical findings from the EUNITY project showed how recent data breaches and cyber-attacks had shared implications between Europe and Japan. Thirdly, the geopolitical context is currently going through the direction of bringing the two regions to significant agreements from a trade standpoint, but also from a data protection perspective (with an imminent signature by both parts of a so-called ‘Adequacy Decision’). The research conducted in this study reveals two asymmetric legal frameworks on cyber security and data protection. With a view to the future challenges presented by the strengthening of the collaboration between the two regions and the trans-national fashion of cybercrime, it is urged that solutions are found to fill in such gaps, in order to allow European Union and Japan to wisely increment their partnership.Keywords: cybersecurity, data protection, European Union, Japan
Procedia PDF Downloads 1232284 Mobile Microscope for the Detection of Pathogenic Cells Using Image Processing
Authors: P. S. Surya Meghana, K. Lingeshwaran, C. Kannan, V. Raghavendran, C. Priya
Abstract:
One of the most basic and powerful tools in all of science and medicine is the light microscope, the fundamental device for laboratory as well as research purposes. With the improving technology, the need for portable, economic and user-friendly instruments is in high demand. The conventional microscope fails to live up to the emerging trend. Also, adequate access to healthcare is not widely available, especially in developing countries. The most basic step towards the curing of a malady is the diagnosis of the disease itself. The main aim of this paper is to diagnose Malaria with the most common device, cell phones, which prove to be the immediate solution for most of the modern day needs with the development of wireless infrastructure allowing to compute and communicate on the move. This opened up the opportunity to develop novel imaging, sensing, and diagnostics platforms using mobile phones as an underlying platform to address the global demand for accurate, sensitive, cost-effective, and field-portable measurement devices for use in remote and resource-limited settings around the world.Keywords: cellular, hand-held, health care, image processing, malarial parasites, microscope
Procedia PDF Downloads 2672283 Power Management Strategy for Solar-Wind-Diesel Stand-Alone Hybrid Energy System
Authors: Md. Aminul Islam, Adel Merabet, Rachid Beguenane, Hussein Ibrahim
Abstract:
This paper presents a simulation and mathematical model of stand-alone solar-wind-diesel based hybrid energy system (HES). A power management system is designed for multiple energy resources in a stand-alone hybrid energy system. Both Solar photovoltaic and wind energy conversion system consists of maximum power point tracking (MPPT), voltage regulation, and basic power electronic interfaces. An additional diesel generator is included to support and improve the reliability of stand-alone system when renewable energy sources are not available. A power management strategy is introduced to distribute the generated power among resistive load banks. The frequency regulation is developed with conventional phase locked loop (PLL) system. The power management algorithm was applied in Matlab®/Simulink® to simulate the results.Keywords: solar photovoltaic, wind energy, diesel engine, hybrid energy system, power management, frequency and voltage regulation
Procedia PDF Downloads 4542282 Cryogenic Machining of Sawdust Incorporated Polypropylene Composites
Authors: K. N. Umesh
Abstract:
Wood Polymer Composites (WPC) were synthesized artificially by combining polypropylene, wood and resin. It is difficult to obtain a good surface finish by conventional machining on WPC because of material degradation due to excessive heat generated during the process. In order to preserve the material property and deliver a better surface finish and accuracy, a proper solution is devised for the machining of wood composites at low temperature. This research focuses on studying the effects of parameters of cryogenic machining on sawdust incorporated polypropylene composite material, in view of evolving the most suitable composition and an appropriate combination of process parameters. The machining characteristics of the six different compositions of WPC were evaluated by analyzing the trend. An attempt is made to determine proper combinations material composition and process control parameters, through process capability studies. A WPC of 80%-wood (saw dust particles), 20%-polypropylene and 0%-resin was found to be the best alternative for obtaining the best surface finish under cryogenic machining conditions.Keywords: Cryogenic Machining, Process Capability, Surface Finish, Wood Polymer Composites
Procedia PDF Downloads 2492281 Simulation and Experimental Study on Tensile Force Measurement of PS Tendons Using an Embedded EM Sensor
Authors: ByoungJoon Yu, Junkyeong Kim, Seunghee Park
Abstract:
The tensile force estimation PS tendons is in great demand on monitoring the structural health condition of PSC girder bridges. Measuring the tensile force of the PS tendons inside the PSC girder using conventional methods is hard due to its location. In this paper, an embedded EM sensor based tensile force estimation of PS tendon was carried out by measuring the permeability of the PS tendons in PSC girder. The permeability is changed due to the induced tensile force by the magneto-elastic effect and the effect then lead to the gradient change of the B-H curve. An experiment was performed to obtain the signals from the EM sensor using three down-scaled PSC girder models. The permeability of PS tendons was proportionally decreased according to the increase of the tensile forces. To verify the experiment results, a simulation of tensile force estimation will be conducted in further study. Consequently, it is expected that both the experiment results and the simulation results increase the accuracy of the tensile force estimation, and then it could be one of the solutions for evaluating the performance of PSC girder.Keywords: tensile force estimation, embedded EM sensor, PSC girder, EM sensor simulation, cross section loss
Procedia PDF Downloads 4792280 An Evaluation of the Auxiliary Instructional App Amid Learning Chinese Characters for Children with Specific Learning Disorders
Authors: Chieh-Ning Lan, Tzu-Shin Lin, Kun-Hao Lin
Abstract:
Chinese handwriting skill is one of the basic skills of school-age children in Taiwan, which helps them to learn most academic subjects. Differ from the alphabetic language system, Chinese written language is a logographic script with a complicated 2-dimensional character structure as a morpheme. Visuospatial ability places a great role in Chinese handwriting to maintain good proportion and alignment of these interwoven strokes. In Taiwan, school-age students faced the challenge to recognize and write down Chinese characters, especially in children with written expression difficulties (CWWDs). In this study, we developed an instructional app to help CWWDs practice Chinese handwriting skills, and we aimed to apply the mobile assisted language learning (MALL) system in clinical writing strategies. To understand the feasibility and satisfaction of this auxiliary instructional writing app, we investigated the perceive and value both from school-age students and the clinic therapists, who were the target users and the experts. A group of 8 elementary school children, as well as 8 clinic therapists, were recruited. The school-age students were asked to go through a paper-based instruction and were asked to score the visual expression based on their graphic preference; the clinic therapists were asked to watch an introductive video of this instructional app and complete the online formative questionnaire. In the results of our study, from the perspective of user interface design, school-age students were more attracted to cartoon-liked pictures rather than line drawings or vivid photos. Moreover, compared to text, pictures which have higher semantic transparency were more commonly chosen by children. In terms of the quantitative survey from clinic therapists, they were highly satisfied with this auxiliary instructional writing app, including the concepts such as visual design, teaching contents, and positive reinforcement system. Furthermore, the qualitative results also suggested comprehensive positive feedbacks on the teaching contents and the feasibility of integrating the app into clinical treatments. Interestingly, we found that clinic therapists showed high agreement in approving CWWDs’ writing ability with using orthographic knowledge; however, in the qualitative section, clinic therapists pointed out that CWWDs usually have relative insufficient background knowledge in Chinese character orthographic rules, which because it is not a key-point in conventional handwriting instruction. Also, previous studies indicated that conventional Chinese reading and writing instructions were lacked of utilizing visual-spatial arrangement strategies. Based on the sharing experiences from all participants, we concluded several interesting topics that are worth to dedicate to in the future. In this undergoing app system, improvement and revision will be applied into the system design, and will establish a better and more useful instructional system for CWWDs within their treatments; enlightened by the opinions related to learning content, the importance of orthographic knowledge in Chinese character recognition should be well discussed and involved in CWWDs’ intervention in the future.Keywords: auxiliary instructional app, children with writing difficulties, Chinese handwriting, orthographic knowledge
Procedia PDF Downloads 1732279 Laser Beam Micro-Drilling Effect on Ti-6Al-4V Titanium Alloy Sheet Properties
Authors: Petr Homola, Roman Růžek
Abstract:
Laser beam micro-drilling (LBMD) is one of the most important non-contact machining processes of materials that are difficult to machine by means oeqf conventional machining methods used in various industries. The paper is focused on LBMD knock-down effect on Ti-6Al-4V (Grade 5) titanium alloy sheets properties. Two various process configurations were verified with a focus on laser damages in back-structure parts affected by the process. The effects of the LBMD on the material properties were assessed by means of tensile and fatigue tests and fracture surface analyses. Fatigue limit of LBMD configurations reached a significantly lower value between 15% and 30% of the static strength as compared to the reference raw material with 58% value. The farther back-structure configuration gives a two-fold fatigue life as compared to the closer LBMD configuration at a given stress applied.Keywords: fatigue, fracture surface, laser beam micro-drilling, titanium alloy
Procedia PDF Downloads 1552278 Optimization of Multi-Zone Unconventional (Shale) Gas Reservoir Using Hydraulic Fracturing Technique
Authors: F. C. Amadi, G. C. Enyi, G. G. Nasr
Abstract:
Hydraulic fracturing is one of the most important stimulation techniques available to the petroleum engineer to extract hydrocarbons in tight gas sandstones. It allows more oil and gas production in tight reservoirs as compared to conventional means. The main aim of the study is to optimize the hydraulic fracturing as technique and for this purpose three multi-zones layer formation is considered and fractured contemporaneously. The three zones are named as Zone1 (upper zone), Zone2 (middle zone) and Zone3 (lower zone) respectively and they all occur in shale rock. Simulation was performed with Mfrac integrated software which gives a variety of 3D fracture options. This simulation process yielded an average fracture efficiency of 93.8%for the three respective zones and an increase of the average permeability of the rock system. An average fracture length of 909 ft with net height (propped height) of 210 ft (average) was achieved. Optimum fracturing results was also achieved with maximum fracture width of 0.379 inches at an injection rate of 13.01 bpm with 17995 Mscf of gas production.Keywords: hydraulic fracturing, optimisation, shale, tight reservoir
Procedia PDF Downloads 4282277 Evaluations of 3D Concrete Printing Produced in the Environment of United Arab Emirates
Authors: Adil K. Tamimi, Tarig Ali, Rawan Anoohi, Ahmed Rajput, Kaltham Alkamali
Abstract:
3D concrete printing is one of the most innovative and modern techniques in the field of construction that achieved several milestones in that field for the following advantages: saving project’s time, ability to execute complicated shapes, reduce waste and low cost. However, the concept of 3D printing in UAE is relatively new where construction teams, including clients, consultants, and contractors, do not have the required knowledge and experience in the field. This is the most significant obstacle for the construction parties, which make them refrained from using 3D concrete printing compared to conventional concreting methods. This study shows the historical development of the 3D concrete printing, its advantages, and the challenges facing this innovation. Concrete mixes and materials have been proposed and evaluated to select the best combination for successful 3D concrete printing. The main characteristics of the 3D concrete printing in the fresh and hardened states are considered, such as slump test, flow table, compressive strength, tensile, and flexural strengths. There is need to assess the structural stability of the 3D concrete by testing the bond between interlayers of the concrete.Keywords: 3D printing, workability, compressive strength, robots, dimensions
Procedia PDF Downloads 1462276 Formulation Development and Evaluation of Floating Tablets of Venlafaxine Hydrochloride
Authors: Gajera Lalit, Shah Pranav, Shah Shailesh
Abstract:
Venlafaxine hydrochloride has a short elimination half-life of 5 ± 2 hr, and absorption window in the upper part of gastrointestinal tract. The conventional tablets need to be administered two to three times a day and possess an oral bioavailability of 45%. The purpose of this study was to formulate gastroretentive effervescent floating tablets of Venlafaxine HCl. Different grades of HPMC namely K15M, K4M, K100M and E15LV were employed as swelling polymers whereas sodium bicarbonate was employed as gas generating agent. The direct compression method was employed for the formulation of tablets. The tablets were evaluated in terms of hardness, friability, weight variation, drug content, water uptake, in-vitro floating behavior and in-vitro drug release study. All the formulations exhibited very short floating lag time of < 1 min and total floating time of 12 hr. Formulation L3 containing 25 mg and 75 mg of HPMC E15 LV and HPMC K15M respectively exhibited complete drug release within 12 hrs.Keywords: venlafaxine HCl, hydroxyl propyl methylcellulose, floating gastro retentive tablets, in-vitro drug release, non-fickian diffusion
Procedia PDF Downloads 5432275 Adoption of Big Data by Global Chemical Industries
Authors: Ashiff Khan, A. Seetharaman, Abhijit Dasgupta
Abstract:
The new era of big data (BD) is influencing chemical industries tremendously, providing several opportunities to reshape the way they operate and help them shift towards intelligent manufacturing. Given the availability of free software and the large amount of real-time data generated and stored in process plants, chemical industries are still in the early stages of big data adoption. The industry is just starting to realize the importance of the large amount of data it owns to make the right decisions and support its strategies. This article explores the importance of professional competencies and data science that influence BD in chemical industries to help it move towards intelligent manufacturing fast and reliable. This article utilizes a literature review and identifies potential applications in the chemical industry to move from conventional methods to a data-driven approach. The scope of this document is limited to the adoption of BD in chemical industries and the variables identified in this article. To achieve this objective, government, academia, and industry must work together to overcome all present and future challenges.Keywords: chemical engineering, big data analytics, industrial revolution, professional competence, data science
Procedia PDF Downloads 852274 Implementation of International Standards in the Field of Higher Secondary Education in Kerala
Authors: Bernard Morais Joosa
Abstract:
Kerala, the southern state of India, is known for its accomplishments in universal education and enrollments. Through this mission, the Government proposes comprehensive educational reforms including 1000 Government schools into international standards during the first phase. The idea is not only to improve the infrastructural facilities but also to reform the teaching and learning process to the present day needs by introducing ICT enabled learning and providing smart classrooms. There will be focus on creating educational programmes which are useful for differently abled students. It is also meant to reinforce the teaching–learning process by providing ample opportunities to each student to construct their own knowledge using modern technology tools. The mission will redefine the existing classroom learning process, coordinate resource mobilization efforts and develop ‘Janakeeya Vidyabhyasa Mathruka.' Special packages to support schools which are in existence for over 100 years will also be attempted. The implementation will enlist full involvement and partnership of the Parent Teacher Association. Kerala was the first state in the country to attain 100 percent literacy more than two and a half decades ago. Since then the State has not rested on its laurels. It has moved forward in leaps and bounds conquering targets that no other State could achieve. Now the government of Kerala is taking off towards new goal of comprehensive educational reforms. And it focuses on Betterment of educational surroundings, use of technology in education, renewal of learning method and 1000 schools will be uplifted as Smart Schools. Need to upgrade 1000 schools into international standards and turning classrooms from standard 9 to 12 in high schools and higher secondary into high-tech classrooms and a special unique package for the renovation of schools, which have completed 50 and 100 years. The government intends to focus on developing standards first to eighth standards in tune with the times by engaging the teachers, parents, and alumni to recapture the relevance of public schools. English learning will be encouraged in schools. The idea is not only to improve the infrastructure facilities but also reform the curriculum to the present day needs. Keeping in view the differently-abled friendly approach of the government, there will be focus on creating educational program which is useful for differently abled students. The idea is to address the infrastructural deficiencies being faced by such schools. There will be special emphasis on ensuring internet connectivity to promote IT-friendly existence. A task-force and a full-time chief executive will be in charge of managing the day to day affairs of the mission. Secretary of the Public Education Department will serve as the Mission Secretary and the Chairperson of Task Force. As the Task Force will stress on teacher training and the use of information technology, experts in the field, as well as Directors of SCERT, IT School, SSA, and RMSA, will also be a part of it.Keywords: educational standards, methodology, pedagogy, technology
Procedia PDF Downloads 1332273 Mechanical Properties of D2 Tool Steel Cryogenically Treated Using Controllable Cooling
Authors: A. Rabin, G. Mazor, I. Ladizhenski, R. Shneck, Z.
Abstract:
The hardness and hardenability of AISI D2 cold work tool steel with conventional quenching (CQ), deep cryogenic quenching (DCQ) and rapid deep cryogenic quenching heat treatments caused by temporary porous coating based on magnesium sulfate was investigated. Each of the cooling processes was examined from the perspective of the full process efficiency, heat flux in the austenite-martensite transformation range followed by characterization of the temporary porous layer made of magnesium sulfate using confocal laser scanning microscopy (CLSM), surface and core hardness and hardenability using Vickr’s hardness technique. The results show that the cooling rate (CR) at the austenite-martensite transformation range have a high influence on the hardness of the studied steel.Keywords: AISI D2, controllable cooling, magnesium sulfate coating, rapid cryogenic heat treatment, temporary porous layer
Procedia PDF Downloads 1372272 Enhancement of Solar Energy Storage by Nanofluid-Glass Impurities Mixture
Authors: Farhan Lafta Rashid, Khudhair Abass Dawood, Ahmed Hashim
Abstract:
Recent advancements in nanotechnology have originated the new emerging heat transfer fluids called nanofluids. Nanofluids are prepared by dispersing and stably suspending nanometer sized solid particles in conventional heat transfer fluids. Past researches have shown that a very small amount of suspending nano-particles have the potential to enhance the thermo physical, transport, and radiative properties of the base fluid. At this research adding very small quantities of nano particle (TiO2) to pure water with different weights percent ranged 0.1, 0.2, 0.3, and 0.4 wt.%, we found that the best weight percent is 0.2 that gave more heat absorbed. Then adding glass impurities ranged 10, 20, and 30 wt. Percentage to the nano-fluid in order to enhance the absorbed heat so energy storage. The best glass weights percent is 0.3.Keywords: energy storage, enhancement absorbed heat, glass impurities, solar energy
Procedia PDF Downloads 4342271 Synthesis and Characterization of Akermanite Nanoparticles (AMN) as a Bio-Ceramic Nano Powder by Sol-Gel Method for Use in Biomedical
Authors: Seyedmahdi Mousavihashemi
Abstract:
Natural Akermanite (NAM) has been successfully prepared by a modified sol-gel method. Optimization in calcination temperature and mechanical ball milling resulted in a pure and nano-sized powder which characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier transform infrared Spectroscopy (FT–IR). We hypothesized that nano-sized Akermanite (AM) would mimic more efficiently the nanocrystal structure and function of natural bone apatite, owing to the higher surface area, compare to conventional micron-size Akermanite (AM). Accordingly, we used the unique advantage of nanotechnology to improve novel nano akermanite particles as a potential candidate for bone tissue regeneration whether as a per implant filling powder or in combination with other biomaterials as a composite scaffold. Pure Akermanite (PAM) powders were successfully obtained via a simple sol-gel method followed by calcination at 1250 °C. Mechanical grinding in a ceramic ball mill for 7 hours resulted in akermanite (AM) nanoparticles in the range of about 30- 45 nm.Keywords: biomedical engineering, nano composite, SEM, TEM
Procedia PDF Downloads 2382270 Sonic Therapeutic Intervention for Preventing Financial Fraud: A Phenomenological Study
Authors: Vasudev Das
Abstract:
In a global survey of more than 5,000 participants in 99 territories, PwC found a loss of $42 billion through fraud in the last 24 months. The specific problem is that private and public organizational leaders often do not understand the importance of sonic therapeutic intervention in preventing financial fraud. The study aimed to explore sonic therapeutic intervention practitioners' lived experiences regarding the value of sonic therapeutic intervention in preventing financial fraud. The data collection methods were semi-structured interviews of purposeful samples and documentary reviews, which were analyzed thematically. Four themes emerged from the analysis of interview transcription data: Sonic therapeutic intervention enabled self-control, pro-spiritual values, consequentiality mindset, and post-conventional consciousness. The itemized four themes helped non-engagement in financial fraud. Implications for positive social change include enhanced financial fraud management, more significant financial leadership, and result-oriented decision-taking in the financial market. Also, the study results can improve the increased de-escalation of anxiety/stress associated with defrauding.Keywords: consciousness, consequentiality, rehabilitation, reintegration
Procedia PDF Downloads 1592269 Prediction of Permeability of Frozen Unsaturated Soil Using Van Genuchten Model and Fredlund-Xing Model in Soil Vision
Authors: Bhavita S. Dave, Jaimin Vaidya, Chandresh H. Solanki, Atul K.
Abstract:
To measure the permeability of a soil specimen, one of the basic assumptions of Darcy's law is that the soil sample should be saturated. Unlike saturated soils, the permeability of unsaturated soils cannot be found using conventional methods as it does not follow Darcy's law. Many empirical models, such as the Van Genuchten Model and Fredlund-Xing Model were suggested to predict permeability value for unsaturated soil. Such models use data from the soil-freezing characteristic curve to find fitting parameters for frozen unsaturated soils. In this study, soil specimens were subjected to 0, 1, 3, and 5 freezing-thawing (F-T) cycles for different degrees of saturation to have a wide range of suction, and its soil freezing characteristic curves were formulated for all F-T cycles. Changes in fitting parameters and relative permeability with subsequent F-T cycles are presented in this paper for both models.Keywords: frozen unsaturated soil, Fredlund Xing model, soil-freezing characteristic curve, Van Genuchten model
Procedia PDF Downloads 1892268 Lifting Body Concepts for Unmanned Fixed-Wing Transport Aircrafts
Authors: Anand R. Nair, Markus Trenker
Abstract:
Lifting body concepts were conceived as early as 1917 and patented by Roy Scroggs. It was an idea of using the fuselage as a lift producing body with no or small wings. Many of these designs were developed and even flight tested between 1920’s to 1970’s, but it was not pursued further for commercial flight as at lower airspeeds, such a configuration was incapable to produce sufficient lift for the entire aircraft. The concept presented in this contribution is combining the lifting body design along with a fixed wing to maximise the lift produced by the aircraft. Conventional aircraft fuselages are designed to be aerodynamically efficient, which is to minimise the drag; however, these fuselages produce very minimal or negligible lift. For the design of an unmanned fixed wing transport aircraft, many of the restrictions which are present for commercial aircraft in terms of fuselage design can be excluded, such as windows for the passengers/pilots, cabin-environment systems, emergency exits, and pressurization systems. This gives new flexibility to design fuselages which are unconventionally shaped to contribute to the lift of the aircraft. The two lifting body concepts presented in this contribution are targeting different applications: For a fast cargo delivery drone, the fuselage is based on a scaled airfoil shape with a cargo capacity of 500 kg for euro pallets. The aircraft has a span of 14 m and reaches 1500 km at a cruising speed of 90 m/s. The aircraft could also easily be adapted to accommodate pilot and passengers with modifications to the internal structures, but pressurization is not included as the service ceiling envisioned for this type of aircraft is limited to 10,000 ft. The next concept to be investigated is called a multi-purpose drone, which incorporates a different type of lifting body and is a much more versatile aircraft as it will have a VTOL capability. The aircraft will have a wingspan of approximately 6 m and flight speeds of 60 m/s within the same service ceiling as the fast cargo delivery drone. The multi-purpose drone can be easily adapted for various applications such as firefighting, agricultural purposes, surveillance, and even passenger transport. Lifting body designs are not a new concept, but their effectiveness in terms of cargo transportation has not been widely investigated. Due to their enhanced lift producing capability, lifting body designs enable the reduction of the wing area and the overall weight of the aircraft. This will, in turn, reduce the thrust requirement and ultimately the fuel consumption. The various designs proposed in this contribution will be based on the general aviation category of aircrafts and will be focussed on unmanned methods of operation. These unmanned fixed-wing transport drones will feature appropriate cargo loading/unloading concepts which can accommodate large size cargo for efficient time management and ease of operation. The various designs will be compared in performance to their conventional counterpart to understand their benefits/shortcomings in terms of design, performance, complexity, and ease of operation. The majority of the performance analysis will be carried out using industry relevant standards in computational fluid dynamics software packages.Keywords: lifting body concept, computational fluid dynamics, unmanned fixed-wing aircraft, cargo drone
Procedia PDF Downloads 2462267 The Solvent Extraction of Uranium, Plutonium and Thorium from Aqueous Solution by 1-Hydroxyhexadecylidene-1,1-Diphosphonic Acid
Authors: M. Bouhoun Ali, A. Y. Badjah Hadj Ahmed, M. Attou, A. Elias, M. A. Didi
Abstract:
In this paper, the solvent extraction of uranium(VI), plutonium(IV) and thorium(IV) from aqueous solutions using 1-hydroxyhexadecylidene-1,1-diphosphonic acid (HHDPA) in treated kerosene has been investigated. The HHDPA was previously synthesized and characterized by FT-IR, 1H NMR, 31P NMR spectroscopy and elemental analysis. The effects contact time, initial pH, initial metal concentration, aqueous/organic phase ratio, extractant concentration and temperature on the extraction process have been studied. An empirical modelling was performed by using a 25 full factorial design, and regression equation for extraction metals was determined from the data. The conventional log-log analysis of the extraction data reveals that ratios of extractant to extracted U(VI), Pu(IV) and Th(IV) are 1:1, 1:2 and 1:2, respectively. Thermodynamic parameters showed that the extraction process was exothermic heat and spontaneous. The obtained optimal parameters were applied to real effluents containing uranium(VI), plutonium(IV) and thorium(IV) ions.Keywords: solvent extraction, uranium, plutonium, thorium, 1-hydroxyhexadecylidene-1-1-diphosphonic acid, aqueous solution
Procedia PDF Downloads 2882266 An Evaluation Model for Enhancing Flexibility in Production Systems through Additive Manufacturing
Authors: Angela Luft, Sebastian Bremen, Nicolae Balc
Abstract:
Additive manufacturing processes have entered large parts of the industry and their range of application have progressed and grown significantly in the course of time. A major advantage of additive manufacturing is the innate flexibility of the machines. This corelates with the ongoing demand of creating highly flexible production environments. However, the potential of additive manufacturing technologies to enhance the flexibility of production systems has not yet been truly considered and quantified in a systematic way. In order to determine the potential of additive manufacturing technologies with regards to the strategic flexibility design in production systems, an integrated evaluation model has been developed, that allows for the simultaneous consideration of both conventional as well as additive production resources. With the described model, an operational scope of action can be identified and quantified in terms of mix and volume flexibility, process complexity, and machine capacity that goes beyond the current cost-oriented approaches and offers a much broader and more holistic view on the potential of additive manufacturing. A respective evaluation model is presented this paper.Keywords: additive manufacturing, capacity planning, production systems, strategic production planning, flexibility enhancement
Procedia PDF Downloads 1572265 Phytoremediation of Chromium Using Vigna mungo, Vigna radiata and Cicer arietinum
Authors: Swarna Shikha, Pammi Gauba
Abstract:
Heavy metal pollution in water bodies and soil is a major and ever increasing environmental issue nowadays, and most conventional remediation approaches do not provide appropriate solutions. By using specially selected and engineered metal-accumulating plants for environmental clean-up is an emerging technology called as phytoremediation. The aim of this study was to find the effect of phytoextraction of Chromium in hydroponics culture by using Vigna mungo, Vigna radiata and Cicer arietinum. The plants were allowed to grow in static hydroponic culture at 0, 50, 250, 500 and 750 ppm concentrations of Chromium dichromate. The germination percentage was determined. It was found that the germination percentage of the seeds decreased with an increase in the concentration of the heavy metals. The maximum permissible limit of Cr for Vigna radiate and Cicer arietinum was 500 ppm and toxicity was observed whereas at even at 750 ppm no toxicity was observed in Vigna mungo. The main aim of our experiment was to study the impact of Chromium on all the three selected plants.Keywords: phytoremediation, phytoextraction metal-accumulation, heavy metals, pollutants
Procedia PDF Downloads 354