Search results for: circuit training
3060 Therapeutic Effect of 12 Weeks of Sensorimotor Exercise on Pain, Functionality and Quality of Life in Non-athlete Women With Patellofemoral Pain Syndrome
Authors: Kasbparast Mehdi, Hassani Zainab
Abstract:
Aim: The purpose of this research was to investigate the effectiveness of therapeutical sensorimotor exercise. The statistical population of women who were diagnosed with patellofemoral pain syndrome by a doctor and were between the ages of 35 and 45 and registered for the first time in a sports club in the 4th district of Tehran, 30 people by random sampling and according to The include and exclude criteria were selected and divided into 2 equal control and experimental and homogeneous groups (in terms of height, weight and BMI).In both control and experimental groups, the pain was measured using a Visual Analog Scale(VAS) functionality was measured using the step-down test and quality of life was measured using a World Health Organization Quality of Life Scale (WHOQOL-BREF) (pre-test). Then, only the experimental group performed sensorimotor exercises for 12 weeks and 3 sessions each week, a total of 24 sessions and each session for 1 hour, and during this period, the control group only continued their daily activities. After the end of the training period, the desired factors were evaluated again (post-test) in the same way as the pre-test was done for them (experimental group and control group), with the same quality. Findings: The statistical results showed that in the experimental group, the amount of pain, function and quality of life had a statistical improvement (P≤0.05). Conclusion: In general conclusion, it can be stated that using sensorimotor exercises not only improved functionality and quality of life but also reduced the amount of pain in people with patellofemoral pain syndrome.Keywords: pain, PFPS, sensori motor training, functionality
Procedia PDF Downloads 753059 A Qualitative Study of a Workplace International Employee Health Program
Authors: Jennifer Bradley
Abstract:
With opportunities to live and work abroad on the rise, effective preparation and support for international employees needs to be addressed within the work-site. International employees must build new habits, routines and social networks in an unfamiliar culture. Culture shock typically occurs within the first year and can affect both physical and psychological health. Employers have the opportunity to support staff through the adaptation process and foster healthy habits and routines. Cross-cultural training that includes a combination of instructional teaching, cultural experiences, and practice, is shown to increase the international employee adaptation process. However, little evidence demonstrates that organizations provide all of these aspects for international employees. The occupational therapy practitioner (OTP) offers a unique perspective focusing on the employee transactional relationship and engagement of meaningful occupations to enhance and enable participation in roles, habits and routines within new cultural contexts. This paper examines one such program developed and implemented by an OTP at the New England Center for Children, in Abu Dhabi, United Arab Emirates. The effectiveness of the program was assessed via participant feedback and concluded that an international employee support program that focuses on a variety of meaningful experiences and knowledge can empower employees to navigate healthy practices, develop habits and routines, and foster positive inter-cultural relationships in the organization and community.Keywords: occupational therapy practitioner, cross cultural training, international employee health, international employee support
Procedia PDF Downloads 1593058 Treatment Outcome of Cutaneous Leishmaniasis and Its Associated Factors among Admitted Patients in All Africa Leprosy Rehabilitation and Training Center Hospital, Ethiopia
Authors: Kebede Mairie, Getahun Belete, Mitike Abeba
Abstract:
Background: Leishmania aethiopica is a peculiar parasite causing cutaneous leishmaniasis in Ethiopia and its mainstay treatment is Sodium Stibogluconate. However, its treatment outcome in Ethiopia is not well documented. Objectives: To determine the treatment outcome of admitted cutaneous leishmaniasis patients and its associated factors in Addis Ababa, Ethiopia. Methods: A retrospective study was conducted from 1st November 2021 to 30th March 2022. Medical records of all cutaneous leishmaniasis-diagnosed and admitted patients who received parenteral sodium stibogluconate at All Africa Leprosy Rehabilitation and Training Center (ALERT) hospital, the main Leishmania treatment center in Ethiopia from July 2011 to September 2021 were reviewed. Results: A total of 827 charts of admitted cases from July 2011 to September 2021 were retrieved, but 667 (80.65%) were reviewed. Improvement in the treatment outcome was recorded in 93.36 % in the first course of SSG treatment and 96.23%, 94.62%, and 96.97% subsequently in the second, third and fourth treatment courses, respectively. Female gender and diffuse cutaneous leishmaniasis were the two predictive determinants in the treatment of cutaneous leishmaniasis. Conclusion: The study shows that parenteral sodium stibogluconate therapy treats hospitalized cutaneous leishmaniasis patients well, with female gender and diffuse cutaneous leishmaniasis having poor outcomes suggesting the need for a different approach for diffuse cutaneous leishmaniasis patients.Keywords: cutaneous leishmaniasis, leishmania aethiopica, sodium stibogluconate, diffuse cutaneous leishmaniasis, pentostam
Procedia PDF Downloads 773057 Algorithmic Obligations: Proactive Liability for AI-Generated Content and Copyright Compliance
Authors: Aleksandra Czubek
Abstract:
As AI systems increasingly shape content creation, existing copyright frameworks face significant challenges in determining liability for AI-generated outputs. Current legal discussions largely focus on who bears responsibility for infringing works, be it developers, users, or entities benefiting from AI outputs. This paper introduces a novel concept of algorithmic obligations, proposing that AI developers be subject to proactive duties that ensure their models prevent copyright infringement before it occurs. Building on principles of obligations law traditionally applied to human actors, the paper suggests a shift from reactive enforcement to proactive legal requirements. AI developers would be legally mandated to incorporate copyright-aware mechanisms within their systems, turning optional safeguards into enforceable standards. These obligations could vary in implementation across international, EU, UK, and U.S. legal frameworks, creating a multi-jurisdictional approach to copyright compliance. This paper explores how the EU’s existing copyright framework, exemplified by the Copyright Directive (2019/790), could evolve to impose a duty of foresight on AI developers, compelling them to embed mechanisms that prevent infringing outputs. By drawing parallels to GDPR’s “data protection by design,” a similar principle could be applied to copyright law, where AI models are designed to minimize copyright risks. In the UK, post-Brexit text and data mining exemptions are seen as pro-innovation but pose risks to copyright protections. This paper proposes a balanced approach, introducing algorithmic obligations to complement these exemptions. AI systems benefiting from text and data mining provisions should integrate safeguards that flag potential copyright violations in real time, ensuring both innovation and protection. In the U.S., where copyright law focuses on human-centric works, this paper suggests an evolution toward algorithmic due diligence. AI developers would have a duty similar to product liability, ensuring that their systems do not produce infringing outputs, even if the outputs themselves cannot be copyrighted. This framework introduces a shift from post-infringement remedies to preventive legal structures, where developers actively mitigate risks. The paper also breaks new ground by addressing obligations surrounding the training data of large language models (LLMs). Currently, training data is often treated under exceptions such as the EU’s text and data mining provisions or U.S. fair use. However, this paper proposes a proactive framework where developers are obligated to verify and document the legal status of their training data, ensuring it is licensed or otherwise cleared for use. In conclusion, this paper advocates for an obligations-centered model that shifts AI-related copyright law from reactive litigation to proactive design. By holding AI developers to a heightened standard of care, this approach aims to prevent infringement at its source, addressing both the outputs of AI systems and the training processes that underlie them.Keywords: ip, technology, copyright, data, infringement, comparative analysis
Procedia PDF Downloads 183056 Simulation of Glass Breakage Using Voronoi Random Field Tessellations
Authors: Michael A. Kraus, Navid Pourmoghaddam, Martin Botz, Jens Schneider, Geralt Siebert
Abstract:
Fragmentation analysis of tempered glass gives insight into the quality of the tempering process and defines a certain degree of safety as well. Different standard such as the European EN 12150-1 or the American ASTM C 1048/CPSC 16 CFR 1201 define a minimum number of fragments required for soda-lime safety glass on the basis of fragmentation test results for classification. This work presents an approach for the glass breakage pattern prediction using a Voronoi Tesselation over Random Fields. The random Voronoi tessellation is trained with and validated against data from several breakage patterns. The fragments in observation areas of 50 mm x 50 mm were used for training and validation. All glass specimen used in this study were commercially available soda-lime glasses at three different thicknesses levels of 4 mm, 8 mm and 12 mm. The results of this work form a Bayesian framework for the training and prediction of breakage patterns of tempered soda-lime glass using a Voronoi Random Field Tesselation. Uncertainties occurring in this process can be well quantified, and several statistical measures of the pattern can be preservation with this method. Within this work it was found, that different Random Fields as basis for the Voronoi Tesselation lead to differently well fitted statistical properties of the glass breakage patterns. As the methodology is derived and kept general, the framework could be also applied to other random tesselations and crack pattern modelling purposes.Keywords: glass breakage predicition, Voronoi Random Field Tessellation, fragmentation analysis, Bayesian parameter identification
Procedia PDF Downloads 1603055 A Proper Design of Wind Turbine Grounding Systems under Lightning
Authors: M. A. Abd-Allah, Mahmoud N. Ali, A. Said
Abstract:
Lightning Protection Systems (LPS) for wind power generation is becoming an important public issue. A serious damage of blades, accidents where low-voltage and control circuit breakdowns frequently occur in many wind farms. A grounding system is one of the most important components required for appropriate LPSs in wind turbines WTs. Proper design of a wind turbine grounding system is demanding and several factors for the proper and effective implementation must be taken into account. This paper proposed procedure of proper design of grounding systems for a wind turbine was introduced. This procedure depends on measuring of ground current of simulated wind farm under lightning taking into consideration the soil ionization. The procedure also includes the Ground Potential Rise (GPR) and the voltage distributions at ground surface level and Touch potential. In particular, the contribution of mitigating techniques, such as rings, rods and the proposed design were investigated.Keywords: WTs, Lightning Protection Systems (LPS), GPR, grounding system, mitigating techniques
Procedia PDF Downloads 3773054 Image Processing of Scanning Electron Microscope Micrograph of Ferrite and Pearlite Steel for Recognition of Micro-Constituents
Authors: Subir Gupta, Subhas Ganguly
Abstract:
In this paper, we demonstrate the new area of application of image processing in metallurgical images to develop the more opportunity for structure-property correlation based approaches of alloy design. The present exercise focuses on the development of image processing tools suitable for phrase segmentation, grain boundary detection and recognition of micro-constituents in SEM micrographs of ferrite and pearlite steels. A comprehensive data of micrographs have been experimentally developed encompassing the variation of ferrite and pearlite volume fractions and taking images at different magnification (500X, 1000X, 15000X, 2000X, 3000X and 5000X) under scanning electron microscope. The variation in the volume fraction has been achieved using four different plain carbon steel containing 0.1, 0.22, 0.35 and 0.48 wt% C heat treated under annealing and normalizing treatments. The obtained data pool of micrographs arbitrarily divided into two parts to developing training and testing sets of micrographs. The statistical recognition features for ferrite and pearlite constituents have been developed by learning from training set of micrographs. The obtained features for microstructure pattern recognition are applied to test set of micrographs. The analysis of the result shows that the developed strategy can successfully detect the micro constitutes across the wide range of magnification and variation of volume fractions of the constituents in the structure with an accuracy of about +/- 5%.Keywords: SEM micrograph, metallurgical image processing, ferrite pearlite steel, microstructure
Procedia PDF Downloads 1993053 Teachers' Experience for Improving Fine Motor Skills of Children with Down Syndrome in the Context of Special Education in Southern Province of Sri Lanka
Authors: Sajee A. Gamage, Champa J. Wijesinghe, Patricia Burtner, Ananda R. Wickremasinghe
Abstract:
Background: Teachers working in the context of special education have an enormous responsibility of enhancing performance skills of children in their classroom settings. Fine Motor Skills (FMS) are essential functional skills for children to gain independence in Activities of Daily Living. Children with Down Syndrome (DS) are predisposed to specific challenges due to deficits in FMS. This study is aimed to determine the teachers’ experience on improving FMS of children with DS in the context of special education of Southern Province, Sri Lanka. Methodology: A cross-sectional study was conducted among all consenting eligible teachers (n=147) working in the context of special education in government schools of Southern Province of Sri Lanka. A self-administered questionnaire was developed based on literature and expert opinion to assess teachers’ experience regarding deficits of FMS, limitations of classroom activity performance and barriers to improve FMS of children with DS. Results: Approximately 93% of the teachers were females with a mean age ( ± SD) of 43.1 ( ± 10.1) years. Thirty percent of the teachers had training in special educationand 83% had children with DS in their classrooms. Major deficits of FMS reported were deficits in grasping (n=116; 79%), in-hand manipulation (n=103; 70%) and bilateral hand use (n=99; 67.3%). Paperwork (n=70; 47.6%), painting (n=58; 39.5%), scissor work (n=50; 34.0%), pencil use for writing (n=45; 30.6%) and use of tools in the classroom (n=41; 27.9%) were identified as major classroom performance limitations of children with DS. Parental factors (n=67; 45.6%), disease specific characteristics (n=58; 39.5%) and classroom factors (n=36; 24.5%), were identified as major barriers to improve FMS in the classroom setting. Lack of resources and standard tools, social stigma and late school admission were also identified as barriers to FMS training. Eighty nine percent of the teachers informed that training fine motor activities in a special education classroom was more successful than work with normal classroom setting. Conclusion: Major areas of FMS deficits were grasping, in-hand manipulation and bilateral hand use; classroom performance limitations included paperwork, painting and scissor work of children with DS. Teachers recommended regular practice of fine motor activities according to individual need. Further research is required to design a culturally specific FMS assessment tool and intervention methods to improve FMS of children with DS in Sri Lanka.Keywords: classroom activities, Down syndrome, experience, fine motor skills, special education, teachers
Procedia PDF Downloads 1533052 Attitude and Practice of Family Physicians in Giving Smoking Cessation Advice at King Abdul-Aziz Medical City for National Guard, Riyadh
Authors: Mohammed Alateeq, Abdulaziz Alrshoud
Abstract:
Objectives: To examine the attitude and practice of family physicians in giving smoking cessation advice at King Abdul-Aziz Medical City for National Guard, Riyadh. Methods: Cross sectional study using validated self-reported questionnaire that distributed to all family physicians and primary health care doctors at the four main family medicine and primary health care centers, KAMC, Riyadh. Results: 73 physicians are contributed in this study. 28 (38.4%) physicians were from (KASHM ALAN) clinic, 26 (35.6%) physicians were from (UM ALHAMAM) Clinic. 13 (17.8%) physicians were from (ISKAN) clinic. 6 (8.2%) physicians were from the Employee Health Clinic. 73 (100%) of the target population agreed that giving brief smoking cessation advice is part of their duties. 67 (91.7%) agreed that Presence of hospital guidelines and special clinics for smoking cessation will encourage them to provide advice. Only 5 (6.84%) received training courses (1-4 weeks) in smoking cessation interventions. Conclusion: Most of the target population agreed that brief smoking cessation advice is part of their duties. Also, they agreed that Presence of hospital guidelines and special clinics for smoking cessation will encourage them to provide advice although most of them did not received a formal training in smoking cessation advice.Keywords: advice, attitude, cessation, family physicians, smoking
Procedia PDF Downloads 2913051 Community Based Landslide Investigation and Treatment in the Earthquake Affected Areas, Nepal
Authors: Basanta Raj Adhikari
Abstract:
Large and small scale earthquakes are frequent in the Nepal, Himalaya, and many co-seismic landslides are resulted out of it. Recently, Gorkha earthquake-2015 has triggered many co-seismic landslides destroying many lives and properties. People have displaced their original places due to having many cracks and unstable ground. Therefore, Nepal has been adopting a pronged development strategy to address the earthquake issues through reconstruction and rehabilitation policy, plans and budgets. Landslides are major threat for the mountain livelihood, and it is very important to investigate and mitigate to improve human wellbeing factoring in considerations of economic growth, environmental safety, and sustainable development. Community based landslide investigation was carried with the involvement of the local community in the Sindhupalchowk District of Central Nepal. Landslide training and field orientation were the major methodological approach of this study. Combination of indigenous and modern scientific knowledge has created unique working environment which enhanced the local capacity and trained people for replication. Local topography of the landslide was created with the help of Total Station and bill of quantity was derived based on it. River training works, plantation of trees and grasses, support structures, surface and sub-surface drainage management are the recommended mitigative measures. This is a very unique example of how academia and local community can work together for sustainable development by reducing disaster risk at the local level with very low-cost technology.Keywords: community, earthquake, landslides, Nepal
Procedia PDF Downloads 1563050 A Flexible High Energy Density Zn-Air Battery by Screen Printing Technique
Authors: Sira Suren, Soorathep Kheawhom
Abstract:
This work investigates the development of a high energy density zinc-air battery. Printed and flexible thin film zinc-air battery with an overall thickness of about 350 μm was fabricated by an inexpensive screen-printing technique. Commercial nano-silver ink was used as both current collectors and catalyst layer. Carbon black ink was used to fabricate cathode electrode. Polypropylene membrane was used as the cathode substrate and separator. 9 M KOH was used as the electrolyte. A mixture of Zn powder, ZnO, and Bi2O3 was used to prepare the anode electrode. The suitable concentration of Bi2O3 and types of binders (styrene-butadiene and sodium silicate) were investigated. Results showed that battery using 20% Bi2O3 and sodium silicate binder provided the best performance. The open-circuit voltage and energy density observed were 1.59 V and 690 Wh/kg, respectively. When the battery was discharged at 20 mA/cm2, the potential voltage observed was 1.3 V. Furthermore, the battery was tested for its flexibility. Upon bending, no significant loss in performance was observed.Keywords: flexible, printed battery, screen printing, Zn-air
Procedia PDF Downloads 2783049 GA3C for Anomalous Radiation Source Detection
Authors: Chia-Yi Liu, Bo-Bin Xiao, Wen-Bin Lin, Hsiang-Ning Wu, Liang-Hsun Huang
Abstract:
In order to reduce the risk of radiation damage that personnel may suffer during operations in the radiation environment, the use of automated guided vehicles to assist or replace on-site personnel in the radiation environment has become a key technology and has become an important trend. In this paper, we demonstrate our proof of concept for autonomous self-learning radiation source searcher in an unknown environment without a map. The research uses GPU version of Asynchronous Advantage Actor-Critic network (GA3C) of deep reinforcement learning to search for radiation sources. The searcher network, based on GA3C architecture, has self-directed learned and improved how search the anomalous radiation source by training 1 million episodes under three simulation environments. In each episode of training, the radiation source position, the radiation source intensity, starting position, are all set randomly in one simulation environment. The input for searcher network is the fused data from a 2D laser scanner and a RGB-D camera as well as the value of the radiation detector. The output actions are the linear and angular velocities. The searcher network is trained in a simulation environment to accelerate the learning process. The well-performance searcher network is deployed to the real unmanned vehicle, Dashgo E2, which mounts LIDAR of YDLIDAR G4, RGB-D camera of Intel D455, and radiation detector made by Institute of Nuclear Energy Research. In the field experiment, the unmanned vehicle is enable to search out the radiation source of the 18.5MBq Na-22 by itself and avoid obstacles simultaneously without human interference.Keywords: deep reinforcement learning, GA3C, source searching, source detection
Procedia PDF Downloads 1143048 Construction Unit Rate Factor Modelling Using Neural Networks
Authors: Balimu Mwiya, Mundia Muya, Chabota Kaliba, Peter Mukalula
Abstract:
Factors affecting construction unit cost vary depending on a country’s political, economic, social and technological inclinations. Factors affecting construction costs have been studied from various perspectives. Analysis of cost factors requires an appreciation of a country’s practices. Identified cost factors provide an indication of a country’s construction economic strata. The purpose of this paper is to identify the essential factors that affect unit cost estimation and their breakdown using artificial neural networks. Twenty-five (25) identified cost factors in road construction were subjected to a questionnaire survey and employing SPSS factor analysis the factors were reduced to eight. The 8 factors were analysed using the neural network (NN) to determine the proportionate breakdown of the cost factors in a given construction unit rate. NN predicted that political environment accounted 44% of the unit rate followed by contractor capacity at 22% and financial delays, project feasibility, overhead and profit each at 11%. Project location, material availability and corruption perception index had minimal impact on the unit cost from the training data provided. Quantified cost factors can be incorporated in unit cost estimation models (UCEM) to produce more accurate estimates. This can create improvements in the cost estimation of infrastructure projects and establish a benchmark standard to assist the process of alignment of work practises and training of new staff, permitting the on-going development of best practises in cost estimation to become more effective.Keywords: construction cost factors, neural networks, roadworks, Zambian construction industry
Procedia PDF Downloads 3643047 Ferroelectricity in Nano-Composite Films of Sodium Nitrite: Starch Prepared by Drop Cast Technique
Authors: Navneet Dabra, Baljinder Kaur, Lakhbir Singh, V. Annapu Reddy, R. Nath, Dae-Yong Jeong, Jasbir S. Hundal
Abstract:
Nano-composite films of sodium nitrite (NaNO2): Starch with different proportions of NaNO2 and Starch have been prepared by drop cast technique. The ferroelectric hysteresis loops (P-V) have been traced using modified Sawyar-Tower circuit. The films containing equal proportions of NaNO2 and Starch exhibit optimized ferroelectric properties. The stability of the remanent polarization, Pr in the optimized nano-composite films exhibit improved stability over the pure NaNO2 films. The Atomic Force Microscopy (AFM) has been employed to investigate the surface morphology. AFM images clearly reveal the nano sized particles of NaNO2 dispersed in starch with small value of surface roughness.Keywords: ferroelectricity, nano-composite films, Atomic Force Microscopy (AFM), nano composite film
Procedia PDF Downloads 5103046 The Effectiveness of Using Functional Rehabilitation with Children of Cerebral Palsy
Authors: Bara Yousef
Abstract:
The development of independency and functional participation is an important therapeutic goal for many children with cerebral palsy,They was many therapeutic approach have been used for treatment those children like neurodevelopment treatment, balance training strengthening and stretching exercise. More recently, therapy for children with cerebral palsy has focused on achieving functional goals using task-oriented interventions and summer camping model, which focus on activities that relevant and meaningful to the child, to learn more efficient and effective motor skills. We explore the effectiveness of using functional rehabilitation comparing with regular rehabilitation among 40 Saudi children with cerebral palsy in pediatric unit at Sultan Bin Abdul Aziz Humanitarian City-Ksa ,where 20 children randomly assign in control group who received rehabilitation based on regular therapy approach and other 20 children assign on experiment group who received rehabilitation based on functional therapy approach with an average of 45min OT treatment and 45 min PT treatment- daily within a period of 6 week. Our finding reported that children in experiment group has improved in gross motor function with an average from 49.4 to 57.6 based on GMFM 66 as primary outcome measure and improved in WeeFIM with an average from 52 to 62 while children in control group has improved with an average from 48.4 to 53.7 in GMFM and from 53 to and 58 in WeeFIM. Consequently, there has been growing interest in determining the effects of functional training programs as promising approach for these children.Keywords: Cerebral Palsy (CP), gross motor function measure (GMFM66), pediatric Functional Independent Measure (WeeFIM), rehabilitation, disability
Procedia PDF Downloads 3813045 CyberSteer: Cyber-Human Approach for Safely Shaping Autonomous Robotic Behavior to Comply with Human Intention
Authors: Vinicius G. Goecks, Gregory M. Gremillion, William D. Nothwang
Abstract:
Modern approaches to train intelligent agents rely on prolonged training sessions, high amounts of input data, and multiple interactions with the environment. This restricts the application of these learning algorithms in robotics and real-world applications, in which there is low tolerance to inadequate actions, interactions are expensive, and real-time processing and action are required. This paper addresses this issue introducing CyberSteer, a novel approach to efficiently design intrinsic reward functions based on human intention to guide deep reinforcement learning agents with no environment-dependent rewards. CyberSteer uses non-expert human operators for initial demonstration of a given task or desired behavior. The trajectories collected are used to train a behavior cloning deep neural network that asynchronously runs in the background and suggests actions to the deep reinforcement learning module. An intrinsic reward is computed based on the similarity between actions suggested and taken by the deep reinforcement learning algorithm commanding the agent. This intrinsic reward can also be reshaped through additional human demonstration or critique. This approach removes the need for environment-dependent or hand-engineered rewards while still being able to safely shape the behavior of autonomous robotic agents, in this case, based on human intention. CyberSteer is tested in a high-fidelity unmanned aerial vehicle simulation environment, the Microsoft AirSim. The simulated aerial robot performs collision avoidance through a clustered forest environment using forward-looking depth sensing and roll, pitch, and yaw references angle commands to the flight controller. This approach shows that the behavior of robotic systems can be shaped in a reduced amount of time when guided by a non-expert human, who is only aware of the high-level goals of the task. Decreasing the amount of training time required and increasing safety during training maneuvers will allow for faster deployment of intelligent robotic agents in dynamic real-world applications.Keywords: human-robot interaction, intelligent robots, robot learning, semisupervised learning, unmanned aerial vehicles
Procedia PDF Downloads 2593044 Improving Similarity Search Using Clustered Data
Authors: Deokho Kim, Wonwoo Lee, Jaewoong Lee, Teresa Ng, Gun-Ill Lee, Jiwon Jeong
Abstract:
This paper presents a method for improving object search accuracy using a deep learning model. A major limitation to provide accurate similarity with deep learning is the requirement of huge amount of data for training pairwise similarity scores (metrics), which is impractical to collect. Thus, similarity scores are usually trained with a relatively small dataset, which comes from a different domain, causing limited accuracy on measuring similarity. For this reason, this paper proposes a deep learning model that can be trained with a significantly small amount of data, a clustered data which of each cluster contains a set of visually similar images. In order to measure similarity distance with the proposed method, visual features of two images are extracted from intermediate layers of a convolutional neural network with various pooling methods, and the network is trained with pairwise similarity scores which is defined zero for images in identical cluster. The proposed method outperforms the state-of-the-art object similarity scoring techniques on evaluation for finding exact items. The proposed method achieves 86.5% of accuracy compared to the accuracy of the state-of-the-art technique, which is 59.9%. That is, an exact item can be found among four retrieved images with an accuracy of 86.5%, and the rest can possibly be similar products more than the accuracy. Therefore, the proposed method can greatly reduce the amount of training data with an order of magnitude as well as providing a reliable similarity metric.Keywords: visual search, deep learning, convolutional neural network, machine learning
Procedia PDF Downloads 2153043 Lego Mindstorms as a Simulation of Robotic Systems
Authors: Miroslav Popelka, Jakub Nožička
Abstract:
In this paper we deal with using Lego Mindstorms in simulation of robotic systems with respect to cost reduction. Lego Mindstorms kit contains broad variety of hardware components which are required to simulate, program and test the robotics systems in practice. Algorithm programming went in development environment supplied together with Lego kit as in programming language C# as well. Algorithm following the line, which we dealt with in this paper, uses theoretical findings from area of controlling circuits. PID controller has been chosen as controlling circuit whose individual components were experimentally adjusted for optimal motion of robot tracking the line. Data which are determined to process by algorithm are collected by sensors which scan the interface between black and white surfaces followed by robot. Based on discovered facts Lego Mindstorms can be considered for low-cost and capable kit to simulate real robotics systems.Keywords: LEGO Mindstorms, PID controller, low-cost robotics systems, line follower, sensors, programming language C#, EV3 Home Edition Software
Procedia PDF Downloads 3753042 Corrosion Behavior of Austempered Ductile Iron Microalloyed with Boron in Rainwater
Authors: S. Gvazava, N. Khidasheli, V. Tediashvili, M. Donadze
Abstract:
The work presented in this paper studied the of austempered ductile iron (ADI) with different combinations of structural composition (upper bainite, lower bainite, retained austenite) in rainwater. A range of structural states of the metal matrix was obtained by changing the regimes of thermal treantments of a high-strength cast iron. The specimens were austenised at 900 0C for 30, 60, 90, 120 minutes. Afterwards, isothermal quenching was performed at 280 and 400 0C for40 seconds. The study was carried out using weight-change (WC), cyclic potentiodynamic polarization (CPP), open-circuit potential (OCP), and electrochemical impedance spectroscopy (EIS) measurements and complemented by scanning electron microscopy (SEM-EDS). According to the results, corrosion resistance of the boron microallyedbainitic ADI greatly depends on the type of the bainitic matrix and the amount of the retained austenite, which is driven by diffusion permeability of interphase and intergrain boundaries.Keywords: austempered ductile iron, corrosion behaviour, retained austenite, corrosion rate, interphase boundary, upper bainite, lower bainite
Procedia PDF Downloads 1213041 Can the Intervention of SCAMPER Bring about Changes of Neural Activation While Taking Creativity Tasks?
Authors: Yu-Chu Yeh, WeiChin Hsu, Chih-Yen Chang
Abstract:
Substitution, combination, modification, putting to other uses, elimination, and rearrangement (SCAMPER) has been regarded as an effective technique that provides a structured way to help people to produce creative ideas and solutions. Although some neuroscience studies regarding creativity training have been conducted, no study has focused on SCAMPER. This study therefore aimed at examining whether the learning of SCAMPER through video tutorials would result in alternations of neural activation. Thirty college students were randomly assigned to the experimental group or the control group. The experimental group was requested to watch SCAMPER videos, whereas the control group was asked to watch natural-scene videos which were regarded as neutral stimulating materials. Each participant was brain scanned in a Functional magnetic resonance imaging (fMRI) machine while undertaking a creativity test before and after watching the videos. Furthermore, a two-way ANOVA was used to analyze the interaction between groups (the experimental group; the control group) and tasks (C task; M task; X task). The results revealed that the left precuneus significantly activated in the interaction of groups and tasks, as well as in the main effect of group. Furthermore, compared with the control group, the experimental group had greater activation in the default mode network (left precuneus and left inferior parietal cortex) and the motor network (left postcentral gyrus and left supplementary area). The findings suggest that the SCAMPER training may facilitate creativity through the stimulation of the default mode network and the motor network.Keywords: creativity, default mode network, neural activation, SCAMPER
Procedia PDF Downloads 1003040 Adopting the Community Health Workers Master List Registry for Community Health Workforce in Kenya
Authors: Gikunda Aloise, Mjema Saida, Barasa Herbert, Wanyungu John, Kimani Maureen
Abstract:
Background: Community Health Workforce (CHW) is health care providers at the community level (Level 1) and serves as a bridge between the community and the formal healthcare system. This human resource has enormous potential to extend healthcare services and ensures that the vulnerable, marginalized, and hard-to-reach populations have access to quality healthcare services at the community and primary health facility levels. However, these cadres are neither recognized, remunerated, nor in most instances, registered in a master list. Management and supervision of CHWs is not easy if their individual demographics, training capacity and incentives is not well documented through a centralized registry. Description: In February 2022, Amref supported the Kenya Ministry of Health in developing a community health workforce database called Community Health Workers Master List Registry (CHWML), which is hosted in Kenya Health Information System (KHIS) tracker. CHW registration exercise was through a sensitization meeting conducted by the County Community Health Focal Person for the Sub-County Community Health Focal Person and Community Health Assistants who uploaded information on individual demographics, training undertaken and incentives received by CHVs. Care was taken to ensure compliance with Kenyan laws on the availability and use of personal data as prescribed by the Data Protection Act, 2019 (DPA). Results and lessons learnt: By June 2022, 80,825 CHWs had been registered in the system; 78,174 (96%) CHVs and 2,636 (4%) CHAs. 25,235 (31%) are male, 55,505 (68%) are female & 85 (1%) are transgender. 39,979. (49%) had secondary education and 2500 (3%) had no formal education. Only 27 641 (34%) received a monthly stipend. 68,436 CHVs (85%) had undergone basic training. However, there is a need to validate the data to align with the current situation in the counties. Conclusions/Next steps: The use of CHWML will unlock opportunities for building more resilient and sustainable health systems and inform financial planning, resource allocation, capacity development, and quality service delivery. The MOH will update the CHWML guidelines in adherence to the data protection act which will inform standard procedures for maintaining, updating the registry and integrate Community Health Workforce registry with the HRH system.Keywords: community health registry, community health volunteers (CHVs), community health workers masters list (CHWML), data protection act
Procedia PDF Downloads 1403039 Resiliency in Fostering: A Qualitative Study of Highly Experienced Foster Parents
Authors: Ande Nesmith
Abstract:
There is an ongoing shortage of foster parents worldwide to take on a growing population of children in need of out-of-home care. Currently, resources are primarily aimed at recruitment rather than retention. Retention rates are extraordinarily low, especially in the first two years of fostering. Qualitative interviews with 19 foster parents averaging 20 years of service provided insight into the challenges they faced and how they overcame them. Thematic analysis of interview transcripts identified sources of stress and resiliency. Key stressors included lack of support and responsiveness from the children’s social workers, false maltreatment allegations, and secondary trauma from children’s destructive behaviors and emotional dysregulation. Resilient parents connected with other foster parents for support, engaged in creative problem-solving, recognized that positive feedback from children usually arrives years later, and through training, understood the neurobiological impact of trauma on child behavior. Recommendations include coordinating communication between the foster parent licensing agency social workers and the children’s social workers, creating foster parent support networks and mentoring, and continuous training on trauma including effective parenting strategies. Research is needed to determine whether these resilience indicators in fact lead to long-term retention. Policies should include a mechanism to develop a cohesive line of communication and connection between foster parents and the children’s social workers as well as their respective agencies.Keywords: foster care stability, foster parent burnout, foster parent resiliency, foster parent retention, trauma-informed fostering
Procedia PDF Downloads 3503038 ‘Internationalize Yourself’: Mobility in Academia as a Form of Continuing Professional Training
Authors: Sonja Goegele, Petra Kletzenbauer
Abstract:
The FH JOANNEUM- a university of applied sciences based in Austria - cooperates in teaching and research with well-known international universities and thus aims to foster so-called strategic partnerships. The exchange of university lecturers and other faculty members is a way to achieve and secure strategic company goals, in which excellent research and teaching play a central role in order to improve both the development of academics and administration. Thanks to mobility not only the university but also the involved people truly benefit in their professional development which can be seen on several levels: increased foreign language proficiency, excellent networking possibilities within the scientific community as well as reinforced didactic competencies in the form of different teaching and learning methodologies. The paper discusses mobility in the light of the university’s strategic paper entitled ‘Hands on 2022’ by presenting results from an empirical research study among faculty members who participate in exchange programmes on a regular basis. In the form of an online questionnaire, mobility was discussed from different angles such as networking, collaborative research, professional training for academics and the overall impact of the exchange within and outside the organization. From the findings, it can be concluded that mobility is an asset for any university. However, keeping in constant dialogue with partner universities requires more than the purpose of the exchange itself. Building rapport and keeping a relationship of trust are challenges that need to be addressed more closely in order to run successful mobility programmes. Best Practice examples should highlight the importance of mobility as a vital initiative to transfer disciplines.Keywords: higher education, internationalization, mobility, strategic partnerships
Procedia PDF Downloads 1393037 Teaching Translation during Covid-19 Outbreak: Challenges and Discoveries
Authors: Rafat Alwazna
Abstract:
Translation teaching is a particular activity that includes translators and interpreters training either inside or outside institutionalised settings, such as universities. It can also serve as a means of teaching other fields, such as foreign languages. Translation teaching began in the twentieth century. Teachers of translation hold the responsibilities of educating students, developing their translation competence and training them to be professional translators. The activity of translation teaching involves various tasks, including curriculum design, course delivery, material writing as well as application and implementation. The present paper addresses translation teaching during COVID-19 outbreak, seeking to find out the challenges encountered by translation teachers in online translation teaching and the discoveries/solutions arrived at to resolve them. The paper makes use of a comprehensive questionnaire, containing closed-ended and open-ended questions to elicit both quantitative as well as qualitative data from about sixty translation teachers who have been teaching translation at BA and MA levels during COVID-19 outbreak. The data shows that about 40% of the participants evaluate their online translation teaching experience during COVID-19 outbreak as enjoyable and exhilarating. On the contrary, no participant has evaluated his/her online translation teaching experience as being not good, nor has any participant evaluated his/her online translation teaching experience as being terrible. The data also presents that about 23.33% of the participants evaluate their online translation teaching experience as very good, and the same percentage applies to those who evaluate their online translation teaching experience as good to some extent. Moreover, the data indicates that around 13.33% of the participants evaluate their online translation teaching experience as good. The data also demonstrates that the majority of the participants have encountered obstacles in online translation teaching and have concurrently proposed solutions to resolve them.Keywords: online translation teaching, electronic learning platform, COVID-19 outbreak, challenges, solutions
Procedia PDF Downloads 2233036 Using Wearable Device with Neuron Network to Classify Severity of Sleep Disorder
Authors: Ru-Yin Yang, Chi Wu, Cheng-Yu Tsai, Yin-Tzu Lin, Wen-Te Liu
Abstract:
Background: Sleep breathing disorder (SDB) is a condition demonstrated by recurrent episodes of the airway obstruction leading to intermittent hypoxia and quality fragmentation during sleep time. However, the procedures for SDB severity examination remain complicated and costly. Objective: The objective of this study is to establish a simplified examination method for SDB by the respiratory impendence pattern sensor combining the signal processing and machine learning model. Methodologies: We records heart rate variability by the electrocardiogram and respiratory pattern by impendence. After the polysomnography (PSG) been done with the diagnosis of SDB by the apnea and hypopnea index (AHI), we calculate the episodes with the absence of flow and arousal index (AI) from device record. Subjects were divided into training and testing groups. Neuron network was used to establish a prediction model to classify the severity of the SDB by the AI, episodes, and body profiles. The performance was evaluated by classification in the testing group compared with PSG. Results: In this study, we enrolled 66 subjects (Male/Female: 37/29; Age:49.9±13.2) with the diagnosis of SDB in a sleep center in Taipei city, Taiwan, from 2015 to 2016. The accuracy from the confusion matrix on the test group by NN is 71.94 %. Conclusion: Based on the models, we established a prediction model for SDB by means of the wearable sensor. With more cases incoming and training, this system may be used to rapidly and automatically screen the risk of SDB in the future.Keywords: sleep breathing disorder, apnea and hypopnea index, body parameters, neuron network
Procedia PDF Downloads 1503035 A Review of HVDC Modular Multilevel Converters Subjected to DC and AC Faults
Authors: Jude Inwumoh, Adam P. R. Taylor, Kosala Gunawardane
Abstract:
Modular multilevel converters (MMC) exhibit a highly scalable and modular characteristic with good voltage/power expansion, fault tolerance capability, low output harmonic content, good redundancy, and a flexible front-end configuration. Fault detection, location, and isolation, as well as maintaining fault ride-through (FRT), are major challenges to MMC reliability and power supply sustainability. Different papers have been reviewed to seek the best MMC configuration with fault capability. DC faults are the most common fault, while the probability that AC fault occurs in a modular multilevel converter (MCC) is low; though, AC faults consequence are severe. This paper reviews several MMC topologies and modulation techniques in tackling faults. These fault control strategies are compared based on cost, complexity, controllability, and power loss. A meshed network of half-bridge (HB) MMC topology was optimal in rendering fault ride through than any other MMC topologies but only when combined with DC circuit breakers (CBS), AC CBS, and fault current limiters (FCL).Keywords: MMC-HVDC, DC faults, fault current limiters, control scheme
Procedia PDF Downloads 1393034 Generative Adversarial Network Based Fingerprint Anti-Spoofing Limitations
Authors: Yehjune Heo
Abstract:
Fingerprint Anti-Spoofing approaches have been actively developed and applied in real-world applications. One of the main problems for Fingerprint Anti-Spoofing is not robust to unseen samples, especially in real-world scenarios. A possible solution will be to generate artificial, but realistic fingerprint samples and use them for training in order to achieve good generalization. This paper contains experimental and comparative results with currently popular GAN based methods and uses realistic synthesis of fingerprints in training in order to increase the performance. Among various GAN models, the most popular StyleGAN is used for the experiments. The CNN models were first trained with the dataset that did not contain generated fake images and the accuracy along with the mean average error rate were recorded. Then, the fake generated images (fake images of live fingerprints and fake images of spoof fingerprints) were each combined with the original images (real images of live fingerprints and real images of spoof fingerprints), and various CNN models were trained. The best performances for each CNN model, trained with the dataset of generated fake images and each time the accuracy and the mean average error rate, were recorded. We observe that current GAN based approaches need significant improvements for the Anti-Spoofing performance, although the overall quality of the synthesized fingerprints seems to be reasonable. We include the analysis of this performance degradation, especially with a small number of samples. In addition, we suggest several approaches towards improved generalization with a small number of samples, by focusing on what GAN based approaches should learn and should not learn.Keywords: anti-spoofing, CNN, fingerprint recognition, GAN
Procedia PDF Downloads 1843033 Deaf Inmates in Canadian Prisons: Addressing Discrimination through Staff Training Videos with Deaf Actors
Authors: Tracey Bone
Abstract:
Deaf inmates, whose first or preferred language is a Signed Language, experience barriers to accessing the necessary two-way communication with correctional staff, and the educational and social programs that will enhance their eligibility for conditional release from the federal prison system in Canada. The development of visual content to enhance the knowledge and skill development of correctional staff is a contemporary strategy intended to significantly improve the correctional experience for deaf inmates. This presentation reports on the development of two distinct training videos created to enhance staff’s understanding of the needs of deaf inmates; one a two-part simulation of an interaction with a deaf inmate, the second an interview with a deaf academic. Part one of video one demonstrates the challenges and misunderstandings inherent in communicating across languages without a qualified sign language interpreter; the second part demonstrates the ease of communication when communication needs are met. Video two incorporates the experiences of a deaf academic to provide the cultural grounding necessary to educate staff in the unique experiences associated with being a visual language user. Lack of staff understanding or awareness of deaf culture and language must not be acceptable reasons for the inadequate treatment of deaf visual language users in federal prisons. This paper demonstrates a contemporary approach to meeting the human rights and needs of this unique and often ignored inmate subpopulation. The deaf community supports this visual approach to enhancing staff understanding of the unique needs of this population. A study of its effectiveness is currently underway.Keywords: accommodations, American Sign Language (ASL), deaf inmates, sensory deprivation
Procedia PDF Downloads 1493032 Copyright Clearance for Artificial Intelligence Training Data: Challenges and Solutions
Authors: Erva Akin
Abstract:
– The use of copyrighted material for machine learning purposes is a challenging issue in the field of artificial intelligence (AI). While machine learning algorithms require large amounts of data to train and improve their accuracy and creativity, the use of copyrighted material without permission from the authors may infringe on their intellectual property rights. In order to overcome copyright legal hurdle against the data sharing, access and re-use of data, the use of copyrighted material for machine learning purposes may be considered permissible under certain circumstances. For example, if the copyright holder has given permission to use the data through a licensing agreement, then the use for machine learning purposes may be lawful. It is also argued that copying for non-expressive purposes that do not involve conveying expressive elements to the public, such as automated data extraction, should not be seen as infringing. The focus of such ‘copy-reliant technologies’ is on understanding language rules, styles, and syntax and no creative ideas are being used. However, the non-expressive use defense is within the framework of the fair use doctrine, which allows the use of copyrighted material for research or educational purposes. The questions arise because the fair use doctrine is not available in EU law, instead, the InfoSoc Directive provides for a rigid system of exclusive rights with a list of exceptions and limitations. One could only argue that non-expressive uses of copyrighted material for machine learning purposes do not constitute a ‘reproduction’ in the first place. Nevertheless, the use of machine learning with copyrighted material is difficult because EU copyright law applies to the mere use of the works. Two solutions can be proposed to address the problem of copyright clearance for AI training data. The first is to introduce a broad exception for text and data mining, either mandatorily or for commercial and scientific purposes, or to permit the reproduction of works for non-expressive purposes. The second is that copyright laws should permit the reproduction of works for non-expressive purposes, which opens the door to discussions regarding the transposition of the fair use principle from the US into EU law. Both solutions aim to provide more space for AI developers to operate and encourage greater freedom, which could lead to more rapid innovation in the field. The Data Governance Act presents a significant opportunity to advance these debates. Finally, issues concerning the balance of general public interests and legitimate private interests in machine learning training data must be addressed. In my opinion, it is crucial that robot-creation output should fall into the public domain. Machines depend on human creativity, innovation, and expression. To encourage technological advancement and innovation, freedom of expression and business operation must be prioritised.Keywords: artificial intelligence, copyright, data governance, machine learning
Procedia PDF Downloads 833031 A Prediction Model for Dynamic Responses of Building from Earthquake Based on Evolutionary Learning
Authors: Kyu Jin Kim, Byung Kwan Oh, Hyo Seon Park
Abstract:
The seismic responses-based structural health monitoring system has been performed to prevent seismic damage. Structural seismic damage of building is caused by the instantaneous stress concentration which is related with dynamic characteristic of earthquake. Meanwhile, seismic response analysis to estimate the dynamic responses of building demands significantly high computational cost. To prevent the failure of structural members from the characteristic of the earthquake and the significantly high computational cost for seismic response analysis, this paper presents an artificial neural network (ANN) based prediction model for dynamic responses of building considering specific time length. Through the measured dynamic responses, input and output node of the ANN are formed by the length of specific time, and adopted for the training. In the model, evolutionary radial basis function neural network (ERBFNN), that radial basis function network (RBFN) is integrated with evolutionary optimization algorithm to find variables in RBF, is implemented. The effectiveness of the proposed model is verified through an analytical study applying responses from dynamic analysis for multi-degree of freedom system to training data in ERBFNN.Keywords: structural health monitoring, dynamic response, artificial neural network, radial basis function network, genetic algorithm
Procedia PDF Downloads 304