Search results for: pollution by mining wastes
1788 Analysis of Scholarly Communication Patterns in Korean Studies
Authors: Erin Hea-Jin Kim
Abstract:
This study aims to investigate scholarly communication patterns in Korean studies, which focuses on all aspects of Korea, including history, culture, literature, politics, society, economics, religion, and so on. It is called ‘national study or home study’ as the subject of the study is itself, whereas it is called ‘area study’ as the subject of the study is others, i.e., outside of Korea. Understanding of the structure of scholarly communication in Korean studies is important since the motivations, procedures, results, or outcomes of individual studies may be affected by the cooperative relationships that appear in the communication structure. To this end, we collected 1,798 articles with the (author or index) keyword ‘Korean’ published in 2018 from the Scopus database and extracted the institution and country of the authors using a text mining technique. A total of 96 countries, including South Korea, was identified. Then we constructed a co-authorship network based on the countries identified. The indicators of social network analysis (SNA), co-occurrences, and cluster analysis were used to measure the activity and connectivity of participation in collaboration in Korean studies. As a result, the highest frequency of collaboration appears in the following order: S. Korea with the United States (603), S. Korea with Japan (146), S. Korea with China (131), S. Korea with the United Kingdom (83), and China with the United States (65). This means that the most active participants are S. Korea as well as the USA. The highest rank in the role of mediator measured by betweenness centrality appears in the following order: United States (0.165), United Kingdom (0.045), China (0.043), Japan (0.037), Australia (0.026), and South Africa (0.023). These results show that these countries contribute to connecting in Korean studies. We found two major communities among the co-authorship network. Asian countries and America belong to the same community, and the United Kingdom and European countries belong to the other community. Korean studies have a long history, and the study has emerged since Japanese colonization. However, Korean studies have never been investigated by digital content analysis. The contributions of this study are an analysis of co-authorship in Korean studies with a global perspective based on digital content, which has not attempted so far to our knowledge, and to suggest ideas on how to analyze the humanities disciplines such as history, literature, or Korean studies by text mining. The limitation of this study is that the scholarly data we collected did not cover all domestic journals because we only gathered scholarly data from Scopus. There are thousands of domestic journals not indexed in Scopus that we can consider in terms of national studies, but are not possible to collect.Keywords: co-authorship network, Korean studies, Koreanology, scholarly communication
Procedia PDF Downloads 1581787 Opening of North Sea Route and Geopolitics in Arctic: Impact and Possibilities of Route
Authors: Nikkey Keshri
Abstract:
Arctic is a polar region located at the north of the earth. This consists of the Arctic Ocean and other parts of Canada, Russia, the United States, Denmark, Norway, Sweden, Finland, and Iceland. Arctic has vast natural resources which are exploited with modern technology, and the economic opening up of Russia has given new opportunities. All these states have connected with the Arctic region for economic activities and this effect the region ecology. The pollution problem is a serious threat to the people health living around pollution sources. Due to the prevailing worldwide sea and air currents, the Arctic area is the fallout region for long-range transport pollutants, and in some places the concentrations exceed the levels of densely populated urban areas. The Arctic is especially vulnerable to the effects of global warming, as has become apparent in the melting sea ice in recent years. Climate models predict much greater warming in the Arctic than the global average, resulting in significant international attention to the region. The global warming has an adverse impact on the climate, indigenous people, wildlife, and infrastructure. However, there are several opportunities that have emerged in the form of shipping routes, resources, and new territories. The shipping route through the Arctic is a reality and is currently navigable for a few weeks during summers. There are large deposits of oil and gas, minerals and fish and the surrounding countries with Arctic coastlines are becoming quite assertive about exercising their sovereignty over the newfound wealth. The main part of the research is that how the opening of Northern Sea Route is providing opportunities or problem in the Arctic and it is becoming geopolitically important. It focuses on the interest Arctic and non Arctic states, their present and anticipated global geopolitical aims. The Northern Sea Route might open up due to climate changes and that Iceland might benefit or has an impact from the situation. Efforts will be made to answer the research question: ‘Whether Opening of North Sea Route is providing opportunities or becoming a risk for Arctic region?’ Every research has a structure which usually called design. In this research, both Qualitative and Quantitative method is used in terms of various literature, maps, pie- charts, etc to find out the answer for the research question. The aim of this research is to find out the impact of Opening of North Sea Route over Arctic region and how this make arctic geopolitically important. The aim behind this research is to find out the impact of climate change and how the particular geographical area is being affected.Keywords: climate change, geopolitics, international relation, Northern Sea Route
Procedia PDF Downloads 2581786 Heavy Metal Concentration in Orchard Area, Amphawa District, Samut Songkram Province, Thailand
Authors: Sisuwan Kaseamsawat, Sivapan Choo-In
Abstract:
A study was conducted in May to July 2013 with the aim of determination of heavy metal concentration in orchard area. 60 samples were collected and analyzed for Cadmium (Cd), Copper (Cu), Lead (Pb), and Zinc (Zn) by Atomic Absorption Spectrophotometer (AAS). The heavy metal concentrations in sediment of orchards, that use chemical for Cd (1.13 ± 0.26 mg/l), Cu (8.00 ± 1.05 mg/l), Pb (13.16 ± 2.01) and Zn (37.41 ± 3.20 mg/l). The heavy metal concentrations in sediment of the orchards, that do not use chemical for Cd (1.28 ± 0.50 mg/l), Cu (7.60 ± 1.20 mg/l), Pb (29.87 ± 4.88) and Zn (21.79 ± 2.98 mg/l). Statistical analysis between heavy metal in sediment from the orchard, that use chemical and the orchard, that not use chemical were difference statistic significant of 0.5 level of significant for Cd and Pb while no statistically difference for Cu and Zn.Keywords: heavy metal, orchard, pollution and monitoring, sediment
Procedia PDF Downloads 3851785 EDM for Prediction of Academic Trends and Patterns
Authors: Trupti Diwan
Abstract:
Predicting student failure at school has changed into a difficult challenge due to both the large number of factors that can affect the reduced performance of students and the imbalanced nature of these kinds of data sets. This paper surveys the two elements needed to make prediction on Students’ Academic Performances which are parameters and methods. This paper also proposes a framework for predicting the performance of engineering students. Genetic programming can be used to predict student failure/success. Ranking algorithm is used to rank students according to their credit points. The framework can be used as a basis for the system implementation & prediction of students’ Academic Performance in Higher Learning Institute.Keywords: classification, educational data mining, student failure, grammar-based genetic programming
Procedia PDF Downloads 4221784 The Removal of Common Used Pesticides from Wastewater Using Golden Activated Charcoal
Authors: Saad Mohamed Elsaid Onaizah
Abstract:
One of the reasons for the intensive use of pesticides is to protect agricultural crops and orchards from pests or agricultural worms. The period of time that pesticides stay inside the soil is estimated at about (2) to (12) weeks. Perhaps the most important reason that led to groundwater pollution is the easy leakage of these harmful pesticides from the soil into the aquifers. This research aims to find the best ways to use trated activated charcoal with gold nitrate solution; For the purpose of removing the deadly pesticides from the aqueous solution by adsorption phenomenon. The most used pesticides in Egypt were selected, such as Malathion, Methomyl Abamectin and, Thiamethoxam. Activated charcoal doped with gold ions was prepared by applying chemical and thermal treatments to activated charcoal using gold nitrate solution. Adsorption of studied pesticide onto activated carbon /Au was mainly by chemical adsorption forming complex with the gold metal immobilised on activated carbon surfaces. Also, gold atom was considered as a catalyst to cracking the pesticide molecule. Gold activated charcoal is a low cost material due to the use of very low concentrations of gold nitrate solution. its notice the great ability of activated charcoal in removing selected pesticides due to the presence of the positive charge of the gold ion, in addition to other active groups such as functional oxygen and lignin cellulose. The presence of pores of different sizes on the surface of activated charcoal is the driving force for the good adsorption efficiency for the removal of the pesticides under study The surface area of the prepared char as well as the active groups were determined using infrared spectroscopy and scanning electron microscopy. Some factors affecting the ability of activated charcoal were applied in order to reach the highest adsorption capacity of activated charcoal, such as the weight of the charcoal, the concentration of the pesticide solution, the time of the experiment, and the pH. Experiments showed that the maximum limit revealed by the batch adsorption study for the adsorption of selected insecticides was in contact time (80) minutes at pH (7.70). These promising results were confirmed, and by establishing the practical application of the developed system, the effect of various operating factors with equilibrium, kinetic and thermodynamic studies is evident, using the Langmuir application on the effectiveness of the absorbent material with absorption capacities higher than most other adsorbents.Keywords: waste water, pesticides pollution, adsorption, activated carbon
Procedia PDF Downloads 791783 An Interactive User-Oriented Approach to Optimizing Public Space Lighting
Authors: Tamar Trop, Boris Portnov
Abstract:
Public Space Lighting (PSL) of outdoor urban areas promotes comfort, defines spaces and neighborhood identities, enhances perceived safety and security, and contributes to residential satisfaction and wellbeing. However, if excessive or misdirected, PSL leads to unnecessary energy waste and increased greenhouse gas emissions, poses a non-negligible threat to the nocturnal environment, and may become a potential health hazard. At present, PSL is designed according to international, regional, and national standards, which consolidate best practice. Yet, knowledge regarding the optimal light characteristics needed for creating a perception of personal comfort and safety in densely populated residential areas, and the factors associated with this perception, is still scarce. The presented study suggests a paradigm shift in designing PSL towards a user-centered approach, which incorporates pedestrians' perspectives into the process. The study is an ongoing joint research project between China and Israel Ministries of Science and Technology. Its main objectives are to reveal inhabitants' perceptions of and preferences for PSL in different densely populated neighborhoods in China and Israel, and to develop a model that links instrumentally measured parameters of PSL (e.g., intensity, spectra and glare) with its perceived comfort and quality, while controlling for three groups of attributes: locational, temporal, and individual. To investigate measured and perceived PSL, the study employed various research methods and data collection tools, developed a location-based mobile application, and used multiple data sources, such as satellite multi-spectral night-time light imagery, census statistics, and detailed planning schemes. One of the study’s preliminary findings is that higher sense of safety in the investigated neighborhoods is not associated with higher levels of light intensity. This implies potential for energy saving in brightly illuminated residential areas. Study findings might contribute to the design of a smart and adaptive PSL strategy that enhances pedestrians’ perceived safety and comfort while reducing light pollution and energy consumption.Keywords: energy efficiency, light pollution, public space lighting, PSL, safety perceptions
Procedia PDF Downloads 1331782 Preserving Wetlands: Legal and Ecological Challenges in the Face of Degradation: The Case Study of Miankaleh, Iran
Authors: Setareh Orak
Abstract:
Wetlands are essential guardians of global ecosystems, yet they remain vulnerable to increasing human interference and environmental stress. The Miankaleh wetland in northern Iran, designated as a Ramsar Convention site, represents a critical habitat known for its rich biodiversity and essential ecological functions. Despite the existence of national and international environmental laws aimed at preserving such critical ecosystems, the regulatory frameworks in place often fall short in terms of enforcement, monitoring, and overall effectiveness. Unfortunately, this wetland is undergoing severe degradation due to overexploitation, industrial contamination, unsustainable tourism, and land-use alterations. This study aims to assess the strengths and limitations of these regulations and examine their practical impacts on Miankaleh’s ecological health. Adopting a multi-method research approach, this study relies on a combination of case study analysis, legal and literature reviews, environmental data examination, stakeholder interviews, and comparative assessments. Through these methodologies, we scrutinize current national policies, international conventions, and their enforcement mechanisms, revealing the primary areas where they fail to protect Miankaleh effectively. The analysis is supported by two satellite maps linked to our tables, offering detailed visual representations of changes in land use, vegetation, and pollution sources over recent years. By connecting these visual data with quantitative measures, the study provides a comprehensive perspective on how human activities and regulatory shortcomings are contributing to environmental degradation. In conclusion, this study’s insights into the limitations of current environmental legislation and its recommendations for enhancing both policy and public engagement underscore the urgent need for integrated, multi-level efforts in conserving the Miankaleh wetland. Through strengthened legal frameworks, better enforcement, increased public awareness, and international cooperation, the hope is to establish a model of conservation that not only preserves Miankaleh but also serves as a template for protecting similar ecologically sensitive areas worldwide.Keywords: wetlands, tourism, industrial pollution, land use changes, Ramsar convention
Procedia PDF Downloads 121781 Re-Defining Food Waste and Food Waste Management in the Food Service Sector: A Case Study in a University Food Service Unit
Authors: Boineelo P. Lefadola, Annemarie T. Viljoen, Gerrie E. Du Rand
Abstract:
The food service sector wastes staggering quantities of food. More than one-third of food produced today gets wasted. This is both perplexing and daunting given that not all that is wasted is accounted for when measuring food waste. It is recognised that the present food waste definitions are ambiguous and do not really take into account all food waste generated. The contention is that food waste in the food service sector can be prevented or reduced if we have an explicit food waste definition in the context of food service. This study, therefore, explores the definition of the concept of food waste in the food service sector and its implications on sustainable food waste management strategies. An ethnographic research approach was adopted. A university food service unit was selected as a research site. Data collection techniques employed included document analyses, participant observations, focus group discussions with front-of-house and back-of-house staff, and one-on-one interviews with staff on managerial positions. A grounded theory approach was applied to analyse data. The concept of food waste was constructed differently by different levels of staff. Whereas managers raised discussion from a financial perspective, BOH and FOH staff drew upon socio-cultural implications. This study lays the foundation for a harmonised definition of the concept of food waste in food service.Keywords: food service, food waste, food waste management, sustainability
Procedia PDF Downloads 2741780 Radio-Guided Surgery with β− Radiation: Test on Ex-Vivo Specimens
Authors: E. Solfaroli Camillocci, C. Mancini-Terracciano, V. Bocci, A. Carollo, M. Colandrea, F. Collamati, M. Cremonesi, M. E. Ferrari, P. Ferroli, F. Ghielmetti, C. M. Grana, M. Marafini, S. Morganti, M. Patane, G. Pedroli, B. Pollo, L. Recchia, A. Russomando, M. Schiariti, M. Toppi, G. Traini, R. Faccini
Abstract:
A Radio-Guided Surgery technique exploiting β− emitting radio-tracers has been suggested to overcome the impact of the large penetration of γ radiation. The detection of electrons in low radiation background provides a clearer delineation of the margins of lesioned tissues. As a start, the clinical cases were selected between the tumors known to express receptors to a β− emitting radio-tracer: 90Y-labelled DOTATOC. The results of tests on ex-vivo specimens of meningioma brain tumor and abdominal neuroendocrine tumors are presented. Voluntary patients were enrolled according to the standard uptake value (SUV > 2 g/ml) and the expected tumor-to-non-tumor ratios (TNR∼10) estimated from PET images after administration of 68Ga-DOTATOC. All these tests validated this technique yielding a significant signal on the bulk tumor and a negligible background from the nearby healthy tissue. Even injecting as low as 1.4 MBq/kg of radiotracer, tumor remnants of 0.1 ml would be detectable. The negligible medical staff exposure was confirmed and among the biological wastes only urine had a significant activity.Keywords: ex-vivo test, meningioma, neuroendocrine tumor, radio-guided surgery
Procedia PDF Downloads 2941779 Biofilm Text Classifiers Developed Using Natural Language Processing and Unsupervised Learning Approach
Authors: Kanika Gupta, Ashok Kumar
Abstract:
Biofilms are dense, highly hydrated cell clusters that are irreversibly attached to a substratum, to an interface or to each other, and are embedded in a self-produced gelatinous matrix composed of extracellular polymeric substances. Research in biofilm field has become very significant, as biofilm has shown high mechanical resilience and resistance to antibiotic treatment and constituted as a significant problem in both healthcare and other industry related to microorganisms. The massive information both stated and hidden in the biofilm literature are growing exponentially therefore it is not possible for researchers and practitioners to automatically extract and relate information from different written resources. So, the current work proposes and discusses the use of text mining techniques for the extraction of information from biofilm literature corpora containing 34306 documents. It is very difficult and expensive to obtain annotated material for biomedical literature as the literature is unstructured i.e. free-text. Therefore, we considered unsupervised approach, where no annotated training is necessary and using this approach we developed a system that will classify the text on the basis of growth and development, drug effects, radiation effects, classification and physiology of biofilms. For this, a two-step structure was used where the first step is to extract keywords from the biofilm literature using a metathesaurus and standard natural language processing tools like Rapid Miner_v5.3 and the second step is to discover relations between the genes extracted from the whole set of biofilm literature using pubmed.mineR_v1.0.11. We used unsupervised approach, which is the machine learning task of inferring a function to describe hidden structure from 'unlabeled' data, in the above-extracted datasets to develop classifiers using WinPython-64 bit_v3.5.4.0Qt5 and R studio_v0.99.467 packages which will automatically classify the text by using the mentioned sets. The developed classifiers were tested on a large data set of biofilm literature which showed that the unsupervised approach proposed is promising as well as suited for a semi-automatic labeling of the extracted relations. The entire information was stored in the relational database which was hosted locally on the server. The generated biofilm vocabulary and genes relations will be significant for researchers dealing with biofilm research, making their search easy and efficient as the keywords and genes could be directly mapped with the documents used for database development.Keywords: biofilms literature, classifiers development, text mining, unsupervised learning approach, unstructured data, relational database
Procedia PDF Downloads 1701778 Development of Biodegradable Plastic as Mango Fruit Bag
Authors: Andres M. Tuates Jr., Ofero A. Caparino
Abstract:
Plastics have achieved a dominant position in agriculture because of their transparency, lightness in weight, impermeability to water and their resistance to microbial attack. However, this generates a higher quantity of wastes that are difficult to dispose of by farmers. To address these problems, the project aim to develop and evaluate the biodegradable film for mango fruit bag during development. The PBS and starch were melt-blended in a twin-screw extruder and then blown into film extrusion machine. The physic-chemical-mechanical properties of biodegradable fruit bag were done following standard methods of test. Field testing of fruit bag was also conducted to evaluate its durability and efficiency field condition. The PHilMech-FiC fruit bag is made of biodegradable material measuring 6 x 8 inches with a thickness of 150 microns. The tensile strength is within the range of LDPE while the elongation is within the range of HDPE. It is projected that after thirty-six (36) weeks, the film will be totally degraded. Results of field testing show that the quality of harvested fruits using PHilMech-FiC biodegradable fruit bag in terms of percent marketable, non-marketable and export, peel color at the ripe stage, flesh color, TSS, oBrix, percent edible portion is comparable with the existing bagging materials such as Chinese brown paper bag and old newspaper.Keywords: cassava starch, PBS, biodegradable, chemical, mechanical properties
Procedia PDF Downloads 2781777 Analysis on Thermococcus achaeans with Frequent Pattern Mining
Authors: Jeongyeob Hong, Myeonghoon Park, Taeson Yoon
Abstract:
After the advent of Achaeans which utilize different metabolism pathway and contain conspicuously different cellular structure, they have been recognized as possible materials for developing quality of human beings. Among diverse Achaeans, in this paper, we compared 16s RNA Sequences of four different species of Thermococcus: Achaeans genus specialized in sulfur-dealing metabolism. Four Species, Barophilus, Kodakarensis, Hydrothermalis, and Onnurineus, live near the hydrothermal vent that emits extreme amount of sulfur and heat. By comparing ribosomal sequences of aforementioned four species, we found similarities in their sequences and expressed protein, enabling us to expect that certain ribosomal sequence or proteins are vital for their survival. Apriori algorithms and Decision Tree were used. for comparison.Keywords: Achaeans, Thermococcus, apriori algorithm, decision tree
Procedia PDF Downloads 2901776 Affects Associations Analysis in Emergency Situations
Authors: Joanna Grzybowska, Magdalena Igras, Mariusz Ziółko
Abstract:
Association rule learning is an approach for discovering interesting relationships in large databases. The analysis of relations, invisible at first glance, is a source of new knowledge which can be subsequently used for prediction. We used this data mining technique (which is an automatic and objective method) to learn about interesting affects associations in a corpus of emergency phone calls. We also made an attempt to match revealed rules with their possible situational context. The corpus was collected and subjectively annotated by two researchers. Each of 3306 recordings contains information on emotion: (1) type (sadness, weariness, anxiety, surprise, stress, anger, frustration, calm, relief, compassion, contentment, amusement, joy) (2) valence (negative, neutral, or positive) (3) intensity (low, typical, alternating, high). Also, additional information, that is a clue to speaker’s emotional state, was annotated: speech rate (slow, normal, fast), characteristic vocabulary (filled pauses, repeated words) and conversation style (normal, chaotic). Exponentially many rules can be extracted from a set of items (an item is a previously annotated single information). To generate the rules in the form of an implication X → Y (where X and Y are frequent k-itemsets) the Apriori algorithm was used - it avoids performing needless computations. Then, two basic measures (Support and Confidence) and several additional symmetric and asymmetric objective measures (e.g. Laplace, Conviction, Interest Factor, Cosine, correlation coefficient) were calculated for each rule. Each applied interestingness measure revealed different rules - we selected some top rules for each measure. Owing to the specificity of the corpus (emergency situations), most of the strong rules contain only negative emotions. There are though strong rules including neutral or even positive emotions. Three examples of the strongest rules are: {sadness} → {anxiety}; {sadness, weariness, stress, frustration} → {anger}; {compassion} → {sadness}. Association rule learning revealed the strongest configurations of affects (as well as configurations of affects with affect-related information) in our emergency phone calls corpus. The acquired knowledge can be used for prediction to fulfill the emotional profile of a new caller. Furthermore, a rule-related possible context analysis may be a clue to the situation a caller is in.Keywords: data mining, emergency phone calls, emotional profiles, rules
Procedia PDF Downloads 4081775 Deteriorating Ambient Air Quality Resulted from Invasion of Foreign Air Pollutants
Authors: Kuo-C. Lo, Chung-H. Hung
Abstract:
Invasion of foreign air pollutants to deteriorate local air quality has become an emerging international issue of concern. This study aimed to apply meteorological and air quality model, WRF-Chem (V3.1), for simulating and analyzing the phenomenon of forming of high-concentrated particulate matters, PM10 and PM2.5, in ambient air of Taiwan during January 17th to 19th, 2014. The foreign air pollutants were mainly from long-distance transport of air pollutants of China being transported with a strong continental cold high. It was observed that PM10 and PM2.5 peaked as high as 182~588 μg/m3 and 95~165 μg/m3, respectively, in the ambient air of west side of Taiwan. They were about 2~3 folds higher than the usual concentrations of particulate matters in these seasons.Keywords: WRF-Chem, air pollution, PM2.5, ambient air quality
Procedia PDF Downloads 4591774 Delimitation of the Perimeters of PR Otection of the Wellfield in the City of Adrar, Sahara of Algeria through the Used Wyssling’s Method
Authors: Ferhati Ahmed, Fillali Ahmed, Oulhadj Younsi
Abstract:
delimitation of the perimeters of protection in the catchment area of the city of Adrar, which are established around the sites for the collection of water intended for human consumption of drinking water, with the objective of ensuring the preservation and reducing the risks of point and accidental pollution of the resource (Continental Intercalar groundwater of the Northern Sahara of Algeria). This wellfield is located in the northeast of the city of Adrar, it covers an area of 132.56 km2 with 21 Drinking Water Supply wells (DWS), pumping a total flow of approximately 13 Hm3/year. The choice of this wellfield is based on the favorable hydrodynamic characteristics and their location in relation to the agglomeration. The vulnerability to pollution of this slick is very high because the slick is free and suffers from the absence of a protective layer. In recent years, several factors have been introduced around the field that can affect the quality of this precious resource, including the presence of a strong centre for domestic waste and agricultural and industrial activities. Thus, its sustainability requires the implementation of protection perimeters. The objective of this study is to set up three protection perimeters: immediate, close and remote. The application of the Wyssling method makes it possible to calculate the transfer time (t) of a drop of groundwater located at any point in the aquifer up to the abstraction and thus to define isochrones which in turn delimit each type of perimeter, 40 days for the nearer and 100 days for the farther away. Special restrictions are imposed for all activities depending on the distance of the catchment. The application of this method to the Adrar city catchment field showed that the close and remote protection perimeters successively occupy areas of 51.14 km2 and 92.9 km2. Perimeters are delimited by geolocated markers, 40 and 46 markers successively. These results show that the areas defined as "near protection perimeter" are free from activities likely to present a risk to the quality of the water used. On the other hand, on the areas defined as "remote protection perimeter," there is some agricultural and industrial activities that may present an imminent risk. A rigorous control of these activities and the restriction of the type of products applied in industrial and agricultural is imperative.Keywords: continental intercalaire, drinking water supply, groundwater, perimeter of protection, wyssling method
Procedia PDF Downloads 961773 Economic Characteristics of Bitcoin: "An Analytical Study"
Authors: Abdelhalem Shahen
Abstract:
The world is now experiencing a digital revolution and greatly accelerated technological developments, in addition to the transition from the economy in its traditional form to the digital economy, which has resulted in the emergence of new tools that are appropriate to those developments, and from this, this paper attempts to explore the economic characteristics of the bitcoin currency that circulated recently. Due to the many advantages that distinguish it from money in its traditional forms, which have a range of economic effects. The study found that Bitcoin is among the technological innovations, which contain a set of characteristics that are worth studying, those that make it the focus of attention, such as the digital currency, the peer-to-peer property, Lower and Faster Transaction Costs, transparency, decentralized control, privacy, and Double-Spending, as well as security and Cryptographic, and finally mining.Keywords: Digital Economics, Digital Currencies, Bitcoin, Features of Bitcoin
Procedia PDF Downloads 1381772 Comparative Analysis of Pit Composting and Vermicomposting in a Tropical Environment
Authors: E. Ewemoje Oluseyi, T. A. Ewemoje, A. A. Adedeji
Abstract:
Biodegradable solid waste disposal and management has been a major problem in Nigeria and indiscriminate dumping of this waste either into watercourses or drains has led to environmental hazards affecting public health. The study investigated the nutrients level of pit composting and vermicomposting. Wooden bins 60 cm × 30 cm × 30 cm3 in size were constructed and bedding materials (sawdust, egg shell, paper and grasses) and red worms (Eisenia fetida) introduced to facilitate the free movement and protection of the worms against harsh weather. A pit of 100 cm × 100 cm × 100 cm3 was dug and worms were introduced into the pit, which was turned every two weeks. Food waste was fed to the red worms in the bin and pit, respectively. The composts were harvested after 100 days and analysed. The analyses gave: nitrogen has average value 0.87 % and 1.29 %; phosphorus 0.66 % and 1.78 %; potassium 4.35 % and 6.27 % for the pit and vermicomposting, respectively. Higher nutrient status of vermicomposting over pit composting may be attributed to the secretions in the intestinal tracts of worms which are more readily available for plant growth. However, iron and aluminium were more in the pit compost than the vermin compost and this may be attributed to the iron and aluminium already present in the soil before the composting took place. Other nutrients in ppm concentrations were aluminium 4,999.50 and 3,989.33; iron 2,131.83 and 633.40 for the pit and vermicomposting, respectively. These nutrients are only needed by plants in small quantities. Hence, vermicomposting has the higher concentration of essential nutrients necessary for healthy plant growth.Keywords: food wastes, pit composting, plant nutrient status, tropical environment, vermicomposting
Procedia PDF Downloads 3401771 Marine Litter Dispersion in the Southern Shores of the Caspian Sea (Case Study: Mazandaran Province)
Authors: Siamak Jamshidi
Abstract:
One of the major environmental problems in the southern coasts of the Caspian Sea is that the marine and coastal debris is being deposited and accumulated due to industrial, urban and tourism activities. Study, sampling and analysis on the type, size, amount and origin of human-made (anthropogenic) waste in the coastal areas of this sea can be very effective in implementing management, cultural and informative programs to reduce marine environmental pollutants. Investigation on marine litter distribution under impact of seawater dynamics was performed for the first time in this research. The rate of entry and distribution of marine and coastal pollutants and wastes, which are mainly of urban, tourist and hospital origin, has multiplied on the southern shore of the Caspian Sea in the last decade. According to the results, the two most important sources of hospital waste in the coastal areas are Tonekabon and Mahmoudabad. In this case, the effect of dynamic parameters of seawater such as flow (with speeds of up to about 1 m/s) and waves, as well as the flow of rivers leading to the shoreline are also influential factors in the distribution of marine litter in the region. Marine litters in the southern coastal region were transported from west to east by the shallow waters of the southern Caspian Sea. In other words, the marine debris density has been observed more in the eastern part.Keywords: southern shelf, coastal oceanography, seawater flow, vertical structure, marine environment
Procedia PDF Downloads 711770 Defining a Framework for Holistic Life Cycle Assessment of Building Components by Considering Parameters Such as Circularity, Material Health, Biodiversity, Pollution Control, Cost, Social Impacts, and Uncertainty
Authors: Naomi Grigoryan, Alexandros Loutsioli Daskalakis, Anna Elisse Uy, Yihe Huang, Aude Laurent (Webanck)
Abstract:
In response to the building and construction sectors accounting for a third of all energy demand and emissions, the European Union has placed new laws and regulations in the construction sector that emphasize material circularity, energy efficiency, biodiversity, and social impact. Existing design tools assess sustainability in early-stage design for products or buildings; however, there is no standardized methodology for measuring the circularity performance of building components. Existing assessment methods for building components focus primarily on carbon footprint but lack the comprehensive analysis required to design for circularity. The research conducted in this paper covers the parameters needed to assess sustainability in the design process of architectural products such as doors, windows, and facades. It maps a framework for a tool that assists designers with real-time sustainability metrics. Considering the life cycle of building components such as façades, windows, and doors involves the life cycle stages applied to product design and many of the methods used in the life cycle analysis of buildings. The current industry standards of sustainability assessment for metal building components follow cradle-to-grave life cycle assessment (LCA), track Global Warming Potential (GWP), and document the parameters used for an Environmental Product Declaration (EPD). Developed by the Ellen Macarthur Foundation, the Material Circularity Indicator (MCI) is a methodology utilizing the data from LCA and EPDs to rate circularity, with a "value between 0 and 1 where higher values indicate a higher circularity+". Expanding on the MCI with additional indicators such as the Water Circularity Index (WCI), the Energy Circularity Index (ECI), the Social Circularity Index (SCI), Life Cycle Economic Value (EV), and calculating biodiversity risk and uncertainty, the assessment methodology of an architectural product's impact can be targeted more specifically based on product requirements, performance, and lifespan. Broadening the scope of LCA calculation for products to incorporate aspects of building design allows product designers to account for the disassembly of architectural components. For example, the Material Circularity Indicator for architectural products such as windows and facades is typically low due to the impact of glass, as 70% of glass ends up in landfills due to damage in the disassembly process. The low MCI can be combatted by expanding beyond cradle-to-grave assessment and focusing the design process on disassembly, recycling, and repurposing with the help of real-time assessment tools. Design for Disassembly and Urban Mining has been integrated within the construction field on small scales as project-based exercises, not addressing the entire supply chain of architectural products. By adopting more comprehensive sustainability metrics and incorporating uncertainty calculations, the sustainability assessment of building components can be more accurately assessed with decarbonization and disassembly in mind, addressing the large-scale commercial markets within construction, some of the most significant contributors to climate change.Keywords: architectural products, early-stage design, life cycle assessment, material circularity indicator
Procedia PDF Downloads 881769 Counter-Current Extraction of Fish Oil and Toxic Elements from Fish Waste Using Supercritical Carbon Dioxide
Authors: Parvaneh Hajeb, Shahram Shakibazadeh, Md. Zaidul Islam Sarker
Abstract:
High-quality fish oil for human consumption requires low levels of toxic elements. The aim of this study was to develop a method to extract oil from fish wastes with the least toxic elements contamination. Supercritical fluid extraction (SFE) was applied to detoxify fish oils from toxic elements. The SFE unit used consisted of an intelligent HPLC pump equipped with a cooling jacket to deliver CO2. The freeze-dried fish waste sample was extracted by heating in a column oven. Under supercritical conditions, the oil dissolved in CO2 was separated from the supercritical phase using pressure reduction. The SFE parameters (pressure, temperature, CO2 flow rate, and extraction time) were optimized using response surface methodology (RSM) to extract the highest levels of toxic elements. The results showed that toxic elements in fish oil can be reduced using supercritical CO2 at optimum pressure 40 MPa, temperature 61 ºC, CO2 flow rate 3.8 MPa, and extraction time 4.25 hr. There were significant reductions in the mercury (98.2%), cadmium (98.9%), arsenic (96%), and lead contents (99.2%) of the fish oil. The fish oil extracted using this method contained elements at levels that were much lower than the accepted limits of 0.1 μg/g. The reduction of toxic elements using the SFE method was more efficient than that of the conventional methods due to the high selectivity of supercritical CO2 for non-polar compounds.Keywords: food safety, toxic elements, fish oil, supercritical carbon dioxide
Procedia PDF Downloads 4231768 Biotransformation of Glycerine Pitch as Renewable Carbon Resource into P(3HB-co-4HB) Biopolymer
Authors: Amirul Al-Ashraf Abdullah, Hema Ramachandran, Iszatty Ismail
Abstract:
Oleochemical industry in Malaysia has been diversifying significantly due to the abundant supply of both palm and kernel oils as raw materials as well as the high demand for downstream products such as fatty acids, fatty alcohols and glycerine. However, environmental awareness is growing rapidly in Malaysia because oleochemical industry is one of the palm-oil based industries that possess risk to the environment. Glycerine pitch is one of the scheduled wastes generated from the fatty acid plants in Malaysia and its discharge may cause a serious environmental problem. Therefore, it is imperative to find alternative applications for this waste glycerine. Consequently, the aim of this research is to explore the application of glycerine pitch as direct fermentation substrate in the biosynthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] copolymer, aiming to contribute toward the sustainable production of biopolymer in the world. Utilization of glycerine pitch (10 g/l) together with 1,4-butanediol (5 g/l) had resulted in the achievement of 40 mol% 4HB monomer with the highest PHA concentration of 2.91 g/l. Synthesis of yellow pigment which exhibited antimicrobial properties occurred simultaneously with the production of P(3HB-co-4HB) through the use of glycerine pitch as renewable carbon resource. Utilization of glycerine pitch in the biosynthesis of P(3HB-co-4HB) will not only contribute to reducing society’s dependence on non-renewable resources but also will promote the development of cost efficiency microbial fermentation towards biosustainability and green technology.Keywords: biopolymer, glycerine pitch, natural pigment, P(3HB-co-4HB)
Procedia PDF Downloads 4691767 Physical Properties Characterization of Shallow Aquifer and Groundwater Quality Using Geophysical Method Based on Electrical Resistivity Tomography in Arid Region, Northeastern Area of Tunisia: A Study Case of Smar Aquifer
Authors: Nesrine Frifita
Abstract:
In recent years, serious interest in underground sources has led to more intensive studies of depth, thickness, geometry and properties of aquifers. Geophysical method is the common technique used in discovering the subsurface. However, determining the exact location of groundwater in subsurface layers is one of problems that needs to be resolved. While the biggest problem is the quality of the groundwater which suffers from pollution risk especially with water shortage in arid regions under a remarkable climate change. The present study was conducted using electrical resistivity tomography at Jeffara coastal area in Southeast Tunisia to image the potential shallow aquifer and studying their physical properties. The purpose of this study is to understand the characteristics and depth of the Smar aquifer. Therefore, it can be used as a reference in groundwater drilling in order to guide the farmers and to improve the living of the inhabitants of nearby cities. The use of the Winner-Schlumberger array for data acquisition is suitable to obtain a deeper profile in areas with homogeneous layers. For that, six electrical resistivity profiles were carried out in Smar watershed using 72 electrodes with 4 and 5 m spacing. The resistivity measurements were carefully interpreted by a least-square inversion technique using the RES2DINV program. Findings show that the Smar aquifer has about 31 m thickness and it extends to 36.5 m depth in the downstream area of Oued Smar. The defined depth and geometry of Smar aquifer indicate that the sedimentary cover thins toward the coast, and the Smar shallow aquifer becomes deeper toward the West. While the resistivity values show a significant contrast even reaching < 1 Ωm in ERT1, this resistivity value can be related to the saline water that foretells a risk of pollution and bad groundwater quality. The ERT1 geoelectrical model defines an unsaturated zone, while under ERT3 site, the geoelectrical model presents a saturated zone, which reflect a low resistivity values indicate the locally surface water coming from the nearby Office of the National Sanitation Utility (ONAS) that can be a source of recharge of the studied shallow aquifer and more deteriorate the groundwater quality in this region.Keywords: electrical resistivity tomography, groundwater, recharge, smar aquifer, southeastern tunisia
Procedia PDF Downloads 741766 Heat Transfer Enhancement via Using Al2O3/Water Nanofluid in Car Radiator
Authors: S. Movafagh, Y. Bakhshan
Abstract:
In this study, effect of adding Al2O3 nanoparticle to base fluid (water) in car radiator is investigated numerically. Radiators are compact heat exchangers optimized and evaluated by considering different working conditions. The cooling system of a car plays an important role in vehicle's performance, consists of two main parts, known as radiator and fan. Improving thermal efficiency of engine leads to increase the engine's performance, decline the fuel consumption and decrease the pollution emissions. In this study, the effects of fluid inlet flow rate and nanoparticle volume fraction on heat transfer and pressure drop of acar radiator are studied.Keywords: forced convection, nanofluid, radiator, CFD simulation
Procedia PDF Downloads 3441765 Bioremediation as a Treatment of Aromatic Hydrocarbons in Wastewater
Authors: Hen Friman, Alex Schechter, Yeshayahu Nitzan, Rivka Cahan
Abstract:
The treatment of aromatic hydrocarbons in wastewater resulting from oil spills and chemical manufactories is becoming a key concern in many modern countries. Benzene, ethylbenzene, toluene and xylene (BETX) contaminate groundwater as well as soil. These compounds have an acute effect on human health and are known to be carcinogenic. Conventional removal of these toxic materials involves separation and burning of the wastes, however, the cost of chemical treatment is very high and energy consuming. Bioremediation methods for removal of toxic organic compounds constitute an attractive alternative to the conventional chemical or physical techniques. Bioremediation methods use microorganisms to reduce the concentration and toxicity of various chemical pollutants Toluene is biodegradable both aerobically and anaerobically, it can be growth inhibitory to microorganisms at elevated concentrations, even to those species that can use it as a substrate. In this research culture of Pseudomonas putida was grown in bath bio-reactor (BBR) with toluene 100 mg/l as a single carbon source under constant voltage of 125 mV, 250 mV and 500 mV. The culture grown in BBR reached to 0.8 OD660nm while the control culture that grown without external voltage reached only to 0.6 OD660nm. The residual toluene concentration after 147 h, in the BBR operated under external voltage (125 mV) was 22 % on average, while in the control BBR it was 81 % on average.Keywords: bioremediation, aromatic hydrocarbons, BETX, toluene, pseudomonas putida
Procedia PDF Downloads 3161764 Frequent Pattern Mining for Digenic Human Traits
Authors: Atsuko Okazaki, Jurg Ott
Abstract:
Some genetic diseases (‘digenic traits’) are due to the interaction between two DNA variants. For example, certain forms of Retinitis Pigmentosa (a genetic form of blindness) occur in the presence of two mutant variants, one in the ROM1 gene and one in the RDS gene, while the occurrence of only one of these mutant variants leads to a completely normal phenotype. Detecting such digenic traits by genetic methods is difficult. A common approach to finding disease-causing variants is to compare 100,000s of variants between individuals with a trait (cases) and those without the trait (controls). Such genome-wide association studies (GWASs) have been very successful but hinge on genetic effects of single variants, that is, there should be a difference in allele or genotype frequencies between cases and controls at a disease-causing variant. Frequent pattern mining (FPM) methods offer an avenue at detecting digenic traits even in the absence of single-variant effects. The idea is to enumerate pairs of genotypes (genotype patterns) with each of the two genotypes originating from different variants that may be located at very different genomic positions. What is needed is for genotype patterns to be significantly more common in cases than in controls. Let Y = 2 refer to cases and Y = 1 to controls, with X denoting a specific genotype pattern. We are seeking association rules, ‘X → Y’, with high confidence, P(Y = 2|X), significantly higher than the proportion of cases, P(Y = 2) in the study. Clearly, generally available FPM methods are very suitable for detecting disease-associated genotype patterns. We use fpgrowth as the basic FPM algorithm and built a framework around it to enumerate high-frequency digenic genotype patterns and to evaluate their statistical significance by permutation analysis. Application to a published dataset on opioid dependence furnished results that could not be found with classical GWAS methodology. There were 143 cases and 153 healthy controls, each genotyped for 82 variants in eight genes of the opioid system. The aim was to find out whether any of these variants were disease-associated. The single-variant analysis did not lead to significant results. Application of our FPM implementation resulted in one significant (p < 0.01) genotype pattern with both genotypes in the pattern being heterozygous and originating from two variants on different chromosomes. This pattern occurred in 14 cases and none of the controls. Thus, the pattern seems quite specific to this form of substance abuse and is also rather predictive of disease. An algorithm called Multifactor Dimension Reduction (MDR) was developed some 20 years ago and has been in use in human genetics ever since. This and our algorithms share some similar properties, but they are also very different in other respects. The main difference seems to be that our algorithm focuses on patterns of genotypes while the main object of inference in MDR is the 3 × 3 table of genotypes at two variants.Keywords: digenic traits, DNA variants, epistasis, statistical genetics
Procedia PDF Downloads 1221763 Effect of Thermal Pretreatment on Functional Properties of Chicken Protein Hydrolysate
Authors: Nutnicha Wongpadungkiat, Suwit Siriwatanayotin, Aluck Thipayarat, Punchira Vongsawasdi, Chotika Viriyarattanasak
Abstract:
Chicken products are major export product of Thailand. With a dramatically increasing consumption of chicken product in the world, there are abundant wastes from chicken meat processing industry. Recently, much research in the development of value-added products from chicken meat industry has focused on the production of protein hydrolysate, utilized as food ingredients for human diet and animal feed. The present study aimed to determine the effect of thermal pre-treatment on functional properties of chicken protein hydrolysate. Chicken breasts were heated at 40, 60, 80 and 100ºC prior to hydrolysis by Alcalase at 60ºC, pH 8 for 4 hr. The hydrolysate was freeze-dried, and subsequently used for assessment of its functional properties molecular weight by gel electrophoresis (SDS-PAGE). The obtained results show that increasing the pre-treatment temperature increased oil holding capacity and emulsion stability while decreasing antioxidant activity and water holding capacity. The SDS-PAGE analysis showed the evidence of protein aggregation in the hydrolysate treated at the higher pre-treatment temperature. These results suggest the connection between molecular weight of the hydrolysate and its functional properties.Keywords: chicken protein hydrolysate, enzymatic hydrolysis, thermal pretreatment, functional properties
Procedia PDF Downloads 2701762 Environmental Accounting: A Conceptual Study of Indian Context
Authors: Pradip Kumar Das
Abstract:
As the entire world continues its rapid move towards industrialization, it has seriously threatened mankind’s ability to maintain an ecological balance. Geographical and natural forces have a significant influence on the location of industries. Industrialization is the foundation stone of the development of any country, while the unplanned industrialization and discharge of waste by industries is the cause of environmental pollution. There is growing degree of awareness and concern globally among nations about environmental degradation or pollution. Environmental resources endowed by the gift of nature and not manmade are invaluable natural resources of a country like India. Any developmental activity is directly related to natural and environmental resources. Economic development without environmental considerations brings about environmental crises and damages the quality of life of present, as well as future generation. As corporate sectors in the global market, especially in India, are becoming anxious about environmental degradation, naturally more and more emphasis will be ascribed to how environment-friendly the outcomes are. Maintaining accounts of such environmental and natural resources in the country has become more urgent. Moreover, international awareness and acceptance of the importance of environmental issues has motivated the development of a branch of accounting called “Environmental Accounting”. Environmental accounting attempts to detect and focus the resources consumed and the costs rendered by an industrial unit to the environment. For the sustainable development of mankind, a healthy environment is indispensable. Gradually, therefore, in many countries including India, environment matters are being given top most priority. Accounting and disclosure of environmental matters have been increasingly manifesting as an important dimension of corporate accounting and reporting practices. But, as conventional accounting deals with mainly non-living things, the formulation of valuation, and measurement and accounting techniques for incorporating environment-related matters in the corporate financial statement sometimes creates problems for the accountant. In the light of this situation, the conceptual analysis of the study is concerned with the rationale of environmental accounting on the economy and society as a whole, and focuses the failures of the traditional accounting system. A modest attempt has been made to throw light on the environmental awareness in developing nations like India and discuss the problems associated with the implementation of environmental accounting. The conceptual study also reflects that despite different anomalies, environmental accounting is becoming an increasing important aspect of the accounting agenda within the corporate sector in India. Lastly, a conclusion, along with recommendations, has been given to overcome the situation.Keywords: environmental accounting, environmental degradation, environmental management, environmental resources
Procedia PDF Downloads 3431761 Integrated Human Resources and Work Environment Management System
Authors: Loreta Kaklauskiene, Arturas Kaklauskas
Abstract:
The Integrated Human Resources and Work Environment Management (HOWE) System optimises employee productivity, improves the work environment, and, at the same time, meets the employer’s strategic goals. The HOWE system has been designed to ensure an organisation can successfully compete in the global market, thanks to the high performance of its employees. The HOWE system focuses on raising workforce productivity and improving work conditions to boost employee performance and motivation. The methods used in our research are linear correlation, INVAR multiple criteria analysis, digital twin, and affective computing. The HOWE system is based on two patents issued in Lithuania (LT 6866, LT 6841) and one European Patent application (No: EP 4 020 134 A1). Our research analyses ways to make human resource management more efficient and boost labour productivity by improving and adapting a personalised work environment. The efficiency of human capital and labour productivity can be increased by applying personalised workplace improvement systems that can optimise lighting colours and intensity, scents, data, information, knowledge, activities, media, games, videos, music, air pollution, humidity, temperature, vibrations, and other workplace aspects. HOWE generates and maintains a personalised workspace for an employee, taking into account the person’s affective, physiological and emotional (APSE) states. The purpose of this project was to create a HOWE for the customisation of quality control in smart workspaces taking into account the user’s APSE states in an integrated manner as a single unit. This customised management of quality control covers the levels of lighting and colour intensities, scents, media, information, activities, learning materials, games, music, videos, temperature, energy efficiency, the carbon footprint of a workspace, humidity, air pollution, vibrations and other aspects of smart spaces. The system is based on Digital Twins technology, seen as a logical extension of BIM.Keywords: human resource management, health economics, work environment, organizational behaviour and employee productivity, prosperity in work, smart system
Procedia PDF Downloads 751760 The Determination of Co, Cd and Pb in Seafoods of Thewet Market, Bangkok to Develop Quality of Life of Consumer
Authors: Chinnawat Satsananan
Abstract:
The amount of heavy metals in our environment has been of great concern because of their toxicity when their concentration is more than the permissible level. These metals enter the environment by different ways such as industrial activities, soil pollution. We have used flame atomic absorption spectrometry technique for determination of the concentration of Co, Cd and Pb in different tissues of five samples of seafoods (mackerel, squid, mussels, scallops and shrimp). The concentrations of Co, Cd and Pb in all examined seafoods were less than the reported literature values (WHO). The results mentioned that the seafoods obtained from Thewet Market were safety to consumption and make the quality of life of people in the community look better.Keywords: heavy metals, seafood, atomic absorption spectrometry, Bangkok
Procedia PDF Downloads 3341759 An Artificial Intelligence Framework to Forecast Air Quality
Authors: Richard Ren
Abstract:
Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms
Procedia PDF Downloads 127