Search results for: maturity classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2476

Search results for: maturity classification

916 Historical Studies on Gilt Decorations on Glazed Surfaces

Authors: Sabra Saeidi

Abstract:

This research focuses on the historical techniques associated with the lajevardina and Haft-Rangi production methods in creating tiles, with emphasis on the identification of the techniques of inserting gold sheets on the surface of such historical glazed tiles. In this regard, firstly, the history of the production of enamel, gold plated, and Lajevardina glazed pottery work made during the Khwarizmanshahid and Mongol era (eleventh to the thirteenth century) have been assessed to reach a better understanding of the background and the history associated with historical glazing methods. After the historical overview of the production technique of glazed pottery work and introductions of the civilizations using those techniques, we focused on the niches production methods of enamel and Lajevardina glazing, which are two categories of decorations usually found in tiles. Next, a general classification method for various types of gilt tiles has been introduced, which is applicable to the tile works up to Safavid period (Sixteenth to the seventeenth century). Gilded lajevardina glazed tiles, gilt Haft-Rangi tiles, monolithic glazed gilt tiles, and gilt mosaic tiles are included in the categories.

Keywords: gilt tiles, Islamic art, Iranian art, historical studies, gilding

Procedia PDF Downloads 123
915 Sentinel-2 Based Burn Area Severity Assessment Tool in Google Earth Engine

Authors: D. Madhushanka, Y. Liu, H. C. Fernando

Abstract:

Fires are one of the foremost factors of land surface disturbance in diverse ecosystems, causing soil erosion and land-cover changes and atmospheric effects affecting people's lives and properties. Generally, the severity of the fire is calculated as the Normalized Burn Ratio (NBR) index. This is performed manually by comparing two images obtained afterward. Then by using the bitemporal difference of the preprocessed satellite images, the dNBR is calculated. The burnt area is then classified as either unburnt (dNBR<0.1) or burnt (dNBR>= 0.1). Furthermore, Wildfire Severity Assessment (WSA) classifies burnt areas and unburnt areas using classification levels proposed by USGS and comprises seven classes. This procedure generates a burn severity report for the area chosen by the user manually. This study is carried out with the objective of producing an automated tool for the above-mentioned process, namely the World Wildfire Severity Assessment Tool (WWSAT). It is implemented in Google Earth Engine (GEE), which is a free cloud-computing platform for satellite data processing, with several data catalogs at different resolutions (notably Landsat, Sentinel-2, and MODIS) and planetary-scale analysis capabilities. Sentinel-2 MSI is chosen to obtain regular processes related to burnt area severity mapping using a medium spatial resolution sensor (15m). This tool uses machine learning classification techniques to identify burnt areas using NBR and to classify their severity over the user-selected extent and period automatically. Cloud coverage is one of the biggest concerns when fire severity mapping is performed. In WWSAT based on GEE, we present a fully automatic workflow to aggregate cloud-free Sentinel-2 images for both pre-fire and post-fire image compositing. The parallel processing capabilities and preloaded geospatial datasets of GEE facilitated the production of this tool. This tool consists of a Graphical User Interface (GUI) to make it user-friendly. The advantage of this tool is the ability to obtain burn area severity over a large extent and more extended temporal periods. Two case studies were carried out to demonstrate the performance of this tool. The Blue Mountain national park forest affected by the Australian fire season between 2019 and 2020 is used to describe the workflow of the WWSAT. This site detected more than 7809 km2, using Sentinel-2 data, giving an error below 6.5% when compared with the area detected on the field. Furthermore, 86.77% of the detected area was recognized as fully burnt out, of which high severity (17.29%), moderate-high severity (19.63%), moderate-low severity (22.35%), and low severity (27.51%). The Arapaho and Roosevelt National Forest Park, California, the USA, which is affected by the Cameron peak fire in 2020, is chosen for the second case study. It was found that around 983 km2 had burned out, of which high severity (2.73%), moderate-high severity (1.57%), moderate-low severity (1.18%), and low severity (5.45%). These spots also can be detected through the visual inspection made possible by cloud-free images generated by WWSAT. This tool is cost-effective in calculating the burnt area since satellite images are free and the cost of field surveys is avoided.

Keywords: burnt area, burnt severity, fires, google earth engine (GEE), sentinel-2

Procedia PDF Downloads 234
914 Automated Tracking and Statistics of Vehicles at the Signalized Intersection

Authors: Qiang Zhang, Xiaojian Hu1

Abstract:

Intersection is the place where vehicles and pedestrians must pass through, turn and evacuate. Obtaining the motion data of vehicles near the intersection is of great significance for transportation research. Since there are usually many targets and there are more conflicts between targets, this makes it difficult to obtain vehicle motion parameters in traffic videos of intersections. According to the characteristics of traffic videos, this paper applies video technology to realize the automated track, count and trajectory extraction of vehicles to collect traffic data by roadside surveillance cameras installed near the intersections. Based on the video recognition method, the vehicles in each lane near the intersection are tracked with extracting trajectory and counted respectively in various degrees of occlusion and visibility. The performances are compared with current recognized CPU-based algorithms of real-time tracking-by-detection. The speed of the presented system is higher than the others and the system has a better real-time performance. The accuracy of direction has reached about 94.99% on average, and the accuracy of classification and statistics has reached about 75.12% on average.

Keywords: tracking and statistics, vehicle, signalized intersection, motion parameter, trajectory

Procedia PDF Downloads 221
913 Application of Lean Manufacturing Tools in Hot Asphalt Production

Authors: S. Bayona, J. Nunez, D. Paez, C. Diaz

Abstract:

The application of Lean manufacturing tools continues to be an effective solution for increasing productivity, reducing costs and eliminating waste in the manufacture of goods and services. This article analyzes the production process of a hot asphalt manufacturing company from an administrative and technical perspective. Three main phases were analyzed, the first phase was related to the determination of the risk priority number of the main operations in asphalt mix production process by an FMEA (Failure Mode Effects Analysis), in the second phase the Value Stream Mapping (VSM) of the production line was performed and in the third phase a SWOT (Strengths, Weaknesses Opportunities, Threats) matrix was constructed. Among the most valued failure modes were the lack training of workers in occupational safety and health issues, the lack of signaling and classification of granulated material, and the overweight of vehicles loaded. The analysis of the results in the three phases agree on the importance of training operational workers, improve communication with external actors in order to minimize delays in material orders and strengthen control suppliers.

Keywords: asphalt, lean manufacturing, productivity, process

Procedia PDF Downloads 116
912 Data Security: An Enhancement of E-mail Security Algorithm to Secure Data Across State Owned Agencies

Authors: Lindelwa Mngomezulu, Tonderai Muchenje

Abstract:

Over the decades, E-mails provide easy, fast and timely communication enabling businesses and state owned agencies to communicate with their stakeholders and with their own employees in real-time. Moreover, since the launch of Microsoft office 365 and many other clouds based E-mail services, many businesses have been migrating from the on premises E-mail services to the cloud and more precisely since the beginning of the Covid-19 pandemic, there has been a significant increase of E-mails utilization, which then leads to the increase of cyber-attacks. In that regard, E-mail security has become very important in the E-mail transportation to ensure that the E-mail gets to the recipient without the data integrity being compromised. The classification of the features to enhance E-mail security for further from the enhanced cyber-attacks as we are aware that since the technology is advancing so at the cyber-attacks. Therefore, in order to maximize the data integrity we need to also maximize security of the E-mails such as enhanced E-mail authentication. The successful enhancement of E-mail security in the future may lessen the frequency of information thefts via E-mails, resulting in the data of South African State-owned agencies not being compromised.

Keywords: e-mail security, cyber-attacks, data integrity, authentication

Procedia PDF Downloads 136
911 Numerical Regularization of Ill-Posed Problems via Hybrid Feedback Controls

Authors: Eugene Stepanov, Arkadi Ponossov

Abstract:

Many mathematical models used in biological and other applications are ill-posed. The reason for that is the nature of differential equations, where the nonlinearities are assumed to be step functions, which is done to simplify the analysis. Prominent examples are switched systems arising from gene regulatory networks and neural field equations. This simplification leads, however, to theoretical and numerical complications. In the presentation, it is proposed to apply the theory of hybrid feedback controls to regularize the problem. Roughly speaking, one attaches a finite state control (‘automaton’), which follows the trajectories of the original system and governs its dynamics at the points of ill-posedness. The construction of the automaton is based on the classification of the attractors of the specially designed adjoint dynamical system. This ‘hybridization’ is shown to regularize the original switched system and gives rise to efficient hybrid numerical schemes. Several examples are provided in the presentation, which supports the suggested analysis. The method can be of interest in other applied fields, where differential equations contain step-like nonlinearities.

Keywords: hybrid feedback control, ill-posed problems, singular perturbation analysis, step-like nonlinearities

Procedia PDF Downloads 245
910 Analyzing Strategic Alliances of Museums: The Case of Girona (Spain)

Authors: Raquel Camprubí

Abstract:

Cultural tourism has been postulated as relevant motivation for tourist over the world during the last decades. In this context, museums are the main attraction for cultural tourists who are seeking to connect with the history and culture of the visited place. From the point of view of an urban destination, museums and other cultural resources are essential to have a strong tourist supply at the destination, in order to be capable of catching attention and interest of cultural tourists. In particular, museums’ challenge is to be prepared to offer the best experience to their visitors without to forget their mission-based mainly on protection of its collection and other social goals. Thus, museums individually want to be competitive and have good positioning to achieve their strategic goals. The life cycle of the destination and the level of maturity of its tourism product influence the need of tourism agents to cooperate and collaborate among them, in order to rejuvenate their product and become more competitive as a destination. Additionally, prior studies have considered an approach of different models of a public and private partnership, and collaborative and cooperative relations developed among the agents of a tourism destination. However, there are no studies that pay special attention to museums and the strategic alliances developed to obtain mutual benefits. Considering this background, the purpose of this study is to analyze in what extent museums of a given urban destination have established strategic links and relations among them, in order to improve their competitive position at both individual and destination level. In order to achieve the aim of this study, the city of Girona (Spain) and the museums located in this city are taken as a case study. Data collection was conducted using in-depth interviews, in order to collect all the qualitative data related to nature, strengthen and purpose of the relational ties established among the museums of the city or other relevant tourism agents of the city. To conduct data analysis, a Social Network Analysis (SNA) approach was taken using UCINET software. Position of the agents in the network and structure of the network was analyzed, and qualitative data from interviews were used to interpret SNA results. Finding reveals the existence of strong ties among some of the museums of the city, particularly to create and promote joint products. Nevertheless, there were detected outsiders who have an individual strategy, without collaboration and cooperation with other museums or agents of the city. Results also show that some relational ties have an institutional origin, while others are the result of a long process of cooperation with common projects. Conclusions put in evidence that collaboration and cooperation of museums had been positive to increase the attractiveness of the museum and the city as a cultural destination. Future research and managerial implications are also mentioned.

Keywords: cultural tourism, competitiveness, museums, Social Network analysis

Procedia PDF Downloads 117
909 Redesigning Clinical and Nursing Informatics Capstones

Authors: Sue S. Feldman

Abstract:

As clinical and nursing informatics mature, an area that has gotten a lot of attention is the value capstone projects. Capstones are meant to address authentic and complex domain-specific problems. While capstone projects have not always been essential in graduate clinical and nursing informatics education, employers are wanting to see evidence of the prospective employee's knowledge and skills as an indication of employability. Capstones can be organized in many ways: a single course over a single semester, multiple courses over multiple semesters, as a targeted demonstration of skills, as a synthesis of prior knowledge and skills, mentored by one single person or mentored by various people, submitted as an assignment or presented in front of a panel. Because of the potential for capstones to enhance the educational experience, and as a mechanism for application of knowledge and demonstration of skills, a rigorous capstone can accelerate a graduate's potential in the workforce. In 2016, the capstone at the University of Alabama at Birmingham (UAB) could feel the external forces of a maturing Clinical and Nursing Informatics discipline. While the program had a capstone course for many years, it was lacking the depth of knowledge and demonstration of skills being asked for by those hiring in a maturing Informatics field. Since the program is online, all capstones were always in the online environment. While this modality did not change, other contributors to instruction modality changed. Pre-2016, the instruction modality was self-guided. Students checked in with a single instructor, and that instructor monitored progress across all capstones toward a PowerPoint and written paper deliverable. At the time, the enrollment was few, and the maturity had not yet pushed hard enough. By 2017, doubling enrollment and the increased demand of a more rigorously trained workforce led to restructuring the capstone so that graduates would have and retain the skills learned in the capstone process. There were three major changes: the capstone was broken up into a 3-course sequence (meaning it lasted about 10 months instead of 14 weeks), there were many chunks of deliverables, and each faculty had a cadre of about 5 students to advise through the capstone process. Literature suggests that the chunking, breaking up complex projects (i.e., the capstone in one summer) into smaller, more manageable chunks (i.e., chunks of the capstone across 3 semesters), can increase and sustain learning while allowing for increased rigor. By doing this, the teaching responsibility was shared across faculty with each semester course being taught by a different faculty member. This change facilitated delving much deeper in instruction and produced a significantly more rigorous final deliverable. Having students advised across the faculty seemed like the right thing to do. It not only shared the load, but also shared the success of students. Furthermore, it meant that students could be placed with an academic advisor who had expertise in their capstone area, further increasing the rigor of the entire capstone process and project and increasing student knowledge and skills.

Keywords: capstones, clinical informatics, health informatics, informatics

Procedia PDF Downloads 133
908 Expansive-Restrictive Style: Conceptualizing Knowledge Workers

Authors: Ram Manohar Singh, Meenakshi Gupta

Abstract:

Various terms such as ‘learning style’, ‘cognitive style’, ‘conceptual style’, ‘thinking style’, ‘intellectual style’ are used in literature to refer to an individual’s characteristic and consistent approach to organizing and processing information. However, style concepts are criticized for mutually overlapping definitions and confusing classification. This confusion should be addressed at the conceptual as well as empirical level. This paper is an attempt to bridge this gap in literature by proposing a new concept: expansive-restrictive intellectual style based on phenomenological analysis of an auto-ethnography and interview of 26 information technology (IT) professionals working in knowledge intensive organizations (KIOs) in India. Expansive style is an individual’s preference to expand his/her horizon of knowledge and understanding by gaining real meaning and structure of his/her work. On the contrary restrictive style is characterized by an individual’s preference to take minimalist approach at work reflected in executing a job efficiently without an attempt to understand the real meaning and structure of the work. The analysis suggests that expansive-restrictive style has three dimensions: (1) field dependence-independence (2) cognitive involvement and (3) epistemological beliefs.

Keywords: expansive, knowledge workers, restrictive, style

Procedia PDF Downloads 424
907 Challenges in Experimental Testing of a Stiff, Overconsolidated Clay

Authors: Maria Konstadinou, Etienne Alderlieste, Anderson Peccin da Silva, Ben Arntz, Leonard van der Bijl, Wouter Verschueren

Abstract:

The shear strength and compression properties of stiff Boom clay from Belgium at the depth of about 30 m has been investigated by means of cone penetration and laboratory testing. The latter consisted of index classification, constant rate of strain, direct, simple shear, and unconfined compression tests. The Boom clay samples exhibited strong swelling tendencies. The suction pressure was measured via different procedures and has been compared to the expected in-situ stress. The undrained shear strength and OCR profile determined from CPTs is not compatible with the experimental measurements, which gave significantly lower values. The observed response can be attributed to the presence of pre-existing discontinuities, as shown in microscale CT scans of the samples. The results of this study demonstrate that the microstructure of the clay prior to testing has an impact on the mechanical behaviour and can cause inconsistencies in the comparison of the laboratory test results with in-situ data.

Keywords: boom clay, laboratory testing, overconsolidation ratio, stress-strain response, swelling, undrained shear strength

Procedia PDF Downloads 146
906 Artificial Reproduction System and Imbalanced Dataset: A Mendelian Classification

Authors: Anita Kushwaha

Abstract:

We propose a new evolutionary computational model called Artificial Reproduction System which is based on the complex process of meiotic reproduction occurring between male and female cells of the living organisms. Artificial Reproduction System is an attempt towards a new computational intelligence approach inspired by the theoretical reproduction mechanism, observed reproduction functions, principles and mechanisms. A reproductive organism is programmed by genes and can be viewed as an automaton, mapping and reducing so as to create copies of those genes in its off springs. In Artificial Reproduction System, the binding mechanism between male and female cells is studied, parameters are chosen and a network is constructed also a feedback system for self regularization is established. The model then applies Mendel’s law of inheritance, allele-allele associations and can be used to perform data analysis of imbalanced data, multivariate, multiclass and big data. In the experimental study Artificial Reproduction System is compared with other state of the art classifiers like SVM, Radial Basis Function, neural networks, K-Nearest Neighbor for some benchmark datasets and comparison results indicates a good performance.

Keywords: bio-inspired computation, nature- inspired computation, natural computing, data mining

Procedia PDF Downloads 272
905 Electromyography Pattern Classification with Laplacian Eigenmaps in Human Running

Authors: Elnaz Lashgari, Emel Demircan

Abstract:

Electromyography (EMG) is one of the most important interfaces between humans and robots for rehabilitation. Decoding this signal helps to recognize muscle activation and converts it into smooth motion for the robots. Detecting each muscle’s pattern during walking and running is vital for improving the quality of a patient’s life. In this study, EMG data from 10 muscles in 10 subjects at 4 different speeds were analyzed. EMG signals are nonlinear with high dimensionality. To deal with this challenge, we extracted some features in time-frequency domain and used manifold learning and Laplacian Eigenmaps algorithm to find the intrinsic features that represent data in low-dimensional space. We then used the Bayesian classifier to identify various patterns of EMG signals for different muscles across a range of running speeds. The best result for vastus medialis muscle corresponds to 97.87±0.69 for sensitivity and 88.37±0.79 for specificity with 97.07±0.29 accuracy using Bayesian classifier. The results of this study provide important insight into human movement and its application for robotics research.

Keywords: electromyography, manifold learning, ISOMAP, Laplacian Eigenmaps, locally linear embedding

Procedia PDF Downloads 361
904 Soil Sensibility Characterization of Granular Soils Due to Suffusion

Authors: Abdul Rochim, Didier Marot, Luc Sibille

Abstract:

This paper studies the characterization of soil sensibility due to suffusion process by carrying out a series of one-dimensional downward seepage flow tests realized with an erodimeter. Tests were performed under controlled hydraulic gradient in sandy gravel soils. We propose the analysis based on energy induced by the seepage flow to characterize the hydraulic loading and the cumulative eroded dry mass to characterize the soil response. With this approach, the effect of hydraulic loading histories and initial fines contents to soil sensibility are presented. It is found that for given soils, erosion coefficients are different if tests are performed under different hydraulic loading histories. For given initial fines fraction contents, the sensibility may be grouped in the same classification. The lower fines content soils tend to require larger flow energy to the onset of erosion. These results demonstrate that this approach is effective to characterize suffusion sensibility for granular soils.

Keywords: erodimeter, sandy gravel, suffusion, water seepage energy

Procedia PDF Downloads 447
903 KSVD-SVM Approach for Spontaneous Facial Expression Recognition

Authors: Dawood Al Chanti, Alice Caplier

Abstract:

Sparse representations of signals have received a great deal of attention in recent years. In this paper, the interest of using sparse representation as a mean for performing sparse discriminative analysis between spontaneous facial expressions is demonstrated. An automatic facial expressions recognition system is presented. It uses a KSVD-SVM approach which is made of three main stages: A pre-processing and feature extraction stage, which solves the problem of shared subspace distribution based on the random projection theory, to obtain low dimensional discriminative and reconstructive features; A dictionary learning and sparse coding stage, which uses the KSVD model to learn discriminative under or over dictionaries for sparse coding; Finally a classification stage, which uses a SVM classifier for facial expressions recognition. Our main concern is to be able to recognize non-basic affective states and non-acted expressions. Extensive experiments on the JAFFE static acted facial expressions database but also on the DynEmo dynamic spontaneous facial expressions database exhibit very good recognition rates.

Keywords: dictionary learning, random projection, pose and spontaneous facial expression, sparse representation

Procedia PDF Downloads 305
902 The Best Prediction Data Mining Model for Breast Cancer Probability in Women Residents in Kabul

Authors: Mina Jafari, Kobra Hamraee, Saied Hossein Hosseini

Abstract:

The prediction of breast cancer disease is one of the challenges in medicine. In this paper we collected 528 records of women’s information who live in Kabul including demographic, life style, diet and pregnancy data. There are many classification algorithm in breast cancer prediction and tried to find the best model with most accurate result and lowest error rate. We evaluated some other common supervised algorithms in data mining to find the best model in prediction of breast cancer disease among afghan women living in Kabul regarding to momography result as target variable. For evaluating these algorithms we used Cross Validation which is an assured method for measuring the performance of models. After comparing error rate and accuracy of three models: Decision Tree, Naive Bays and Rule Induction, Decision Tree with accuracy of 94.06% and error rate of %15 is found the best model to predicting breast cancer disease based on the health care records.

Keywords: decision tree, breast cancer, probability, data mining

Procedia PDF Downloads 138
901 Spare Part Inventory Optimization Policy: A Study Literature

Authors: Zukhrof Romadhon, Nani Kurniati

Abstract:

Availability of Spare parts is critical to support maintenance tasks and the production system. Managing spare part inventory deals with some parameters and objective functions, as well as the tradeoff between inventory costs and spare parts availability. Several mathematical models and methods have been developed to optimize the spare part policy. Many researchers who proposed optimization models need to be considered to identify other potential models. This work presents a review of several pertinent literature on spare part inventory optimization and analyzes the gaps for future research. Initial investigation on scholars and many journal database systems under specific keywords related to spare parts found about 17K papers. Filtering was conducted based on five main aspects, i.e., replenishment policy, objective function, echelon network, lead time, model solving, and additional aspects of part classification. Future topics could be identified based on the number of papers that haven’t addressed specific aspects, including joint optimization of spare part inventory and maintenance.

Keywords: spare part, spare part inventory, inventory model, optimization, maintenance

Procedia PDF Downloads 62
900 Unseen Classes: The Paradigm Shift in Machine Learning

Authors: Vani Singhal, Jitendra Parmar, Satyendra Singh Chouhan

Abstract:

Unseen class discovery has now become an important part of a machine-learning algorithm to judge new classes. Unseen classes are the classes on which the machine learning model is not trained on. With the advancement in technology and AI replacing humans, the amount of data has increased to the next level. So while implementing a model on real-world examples, we come across unseen new classes. Our aim is to find the number of unseen classes by using a hierarchical-based active learning algorithm. The algorithm is based on hierarchical clustering as well as active sampling. The number of clusters that we will get in the end will give the number of unseen classes. The total clusters will also contain some clusters that have unseen classes. Instead of first discovering unseen classes and then finding their number, we directly calculated the number by applying the algorithm. The dataset used is for intent classification. The target data is the intent of the corresponding query. We conclude that when the machine learning model will encounter real-world data, it will automatically find the number of unseen classes. In the future, our next work would be to label these unseen classes correctly.

Keywords: active sampling, hierarchical clustering, open world learning, unseen class discovery

Procedia PDF Downloads 172
899 Using Trip Planners in Developing Proper Transportation Behavior

Authors: Grzegorz Sierpiński, Ireneusz Celiński, Marcin Staniek

Abstract:

The article discusses multi modal mobility in contemporary societies as a main planning and organization issue in the functioning of administrative bodies, a problem which really exists in the space of contemporary cities in terms of shaping modern transport systems. The article presents classification of available resources and initiatives undertaken for developing multi modal mobility. Solutions can be divided into three groups of measures–physical measures in the form of changes of the transport network infrastructure, organizational ones (including transport policy) and information measures. The latter ones include in particular direct support for people travelling in the transport network by providing information about ways of using available means of transport. A special measure contributing to this end is a trip planner. The article compares several selected planners. It includes a short description of the Green Travelling Project, which aims at developing a planner supporting environmentally friendly solutions in terms of transport network operation. The article summarizes preliminary findings of the project.

Keywords: mobility, modal split, multimodal trip, multimodal platforms, sustainable transport

Procedia PDF Downloads 411
898 Machine Learning-Driven Prediction of Cardiovascular Diseases: A Supervised Approach

Authors: Thota Sai Prakash, B. Yaswanth, Jhade Bhuvaneswar, Marreddy Divakar Reddy, Shyam Ji Gupta

Abstract:

Across the globe, there are a lot of chronic diseases, and heart disease stands out as one of the most perilous. Sadly, many lives are lost to this condition, even though early intervention could prevent such tragedies. However, identifying heart disease in its initial stages is not easy. To address this challenge, we propose an automated system aimed at predicting the presence of heart disease using advanced techniques. By doing so, we hope to empower individuals with the knowledge needed to take proactive measures against this potentially fatal illness. Our approach towards this problem involves meticulous data preprocessing and the development of predictive models utilizing classification algorithms such as Support Vector Machines (SVM), Decision Tree, and Random Forest. We assess the efficiency of every model based on metrics like accuracy, ensuring that we select the most reliable option. Additionally, we conduct thorough data analysis to reveal the importance of different attributes. Among the models considered, Random Forest emerges as the standout performer with an accuracy rate of 96.04% in our study.

Keywords: support vector machines, decision tree, random forest

Procedia PDF Downloads 40
897 A Geographical Framework for Studying the Territorial Sustainability Based on Land Use Change

Authors: Miguel Ramirez, Ivan Lizarazo

Abstract:

The emergence of various interpretations of sustainability, including weak and strong paradigms, can be traced back to the definition of sustainable development provided in the 1987 Brundtland report and the subsequent evolution of the sustainability concept. However, there has been limited scholarly attention given to clarifying the concept of sustainability within the theoretical and conceptual framework of geography. The discipline has predominantly been focused on understanding the diverse conceptions of sustainability within its epistemological boundaries, resulting in tensions between sustainability paradigms and their associated dimensions, including the incorporation of political perspectives, with particular emphasis on environmental geography's epistemology. In response to this gap, a conceptual framework for sustainability is proposed, effectively integrating spatial and territorial concepts. This framework aims to enhance geography's role in contributing to sustainability by utilizing the land system theory, which is based on the dynamics of land use change. Such an integrated conceptual framework enables incorporating methodological tools such as remote sensing, encompassing various earth observations and fusion methods, and supervised classification techniques. Additionally, it looks for better integration of socioecological information, thereby capturing essential population-related features.

Keywords: geography, sustainability, land change science, territorial sustainability

Procedia PDF Downloads 80
896 Meta-Instruction Theory in Mathematics Education and Critique of Bloom’s Theory

Authors: Abdollah Aliesmaeili

Abstract:

The purpose of this research is to present a different perspective on the basic math teaching method called meta-instruction, which reverses the learning path. Meta-instruction is a method of teaching in which the teaching trajectory starts from brain education into learning. This research focuses on the behavior of the mind during learning. In this method, students are not instructed in mathematics, but they are educated. Another goal of the research is to "criticize Bloom's classification in the cognitive domain and reverse it", because it cannot meet the educational and instructional needs of the new generation and "substituting math education instead of math teaching". This is an indirect method of teaching. The method of research is longitudinal through four years. Statistical samples included students ages 6 to 11. The research focuses on improving the mental abilities of children to explore mathematical rules and operations by playing only with eight measurements (any years 2 examinations). The results showed that there is a significant difference between groups in remembering, understanding, and applying. Moreover, educating math is more effective than instructing in overall learning abilities.

Keywords: applying, Bloom's taxonomy, brain education, mathematics teaching method, meta-instruction, remembering, starmath method, understanding

Procedia PDF Downloads 23
895 Designing Cultural-Creative Products with the Six Categories of Hanzi (Chinese Character Classification)

Authors: Pei-Jun Xue, Ming-Yu Hsiao

Abstract:

Chinese characters, or hanzi, represent a process of simplifying three-dimensional signs into plane signifiers. From pictograms at the beginning to logograms today, a Han linguist thus classified them into six categories known as the six categories of Chinese characters. Design is a process of signification, and cultural-creative design is a process translating ideas into design with creativity upon culture. Aiming to investigate the process of cultural-creative design transforming cultural text into cultural signs, this study analyzed existing cultural-creative products with the six categories of Chinese characters by treating such products as representations which accurately communicate the designer’s ideas to users through the categorization, simplification, and interpretation of sign features. This is a two-phase pilot study on designing cultural-creative products with the six categories of Chinese characters. Phase I reviews the related literature on the theory of the six categories of Chinese characters investigated and concludes with the process and principles of character evolution. Phase II analyzes the design of existing cultural-creative products with the six categories of Chinese characters and explores the conceptualization of product design.

Keywords: six categories of Chinese characters, cultural-creative product design, cultural signs, cultural product

Procedia PDF Downloads 341
894 Variation in the Morphology of Soft Palate

Authors: Hema Lattupalli

Abstract:

Introduction: The palate forms a partition between the oral cavity and nasal cavity. The palate is made up of two parts hard palate and soft palate. The Hard palate forms the anterior part of the palate, the soft palate forms a movable muscular fold covered by mucous membrane that is suspended from the posterior border of a hard palate. Aim and Objectives: Soft palate morphological variations have a great paucity in the literature. It’s also believed that the soft palate has no such important anatomical variations. There is a variable presentation of the soft palate morphology in the lateral cephalograms. The aim of this study is to identify the velar morphology. Materials and Methods: 100 normal subjects between the age group of 20 – 35 were taken for the study. Method: Lateral Cephalogram (radiologic study). Results: Different shapes of the soft palate were observed in the lateral cephalograms. The morphology of soft palate was classified into six types 1.Leaf like (50 cases) most common type, 2.Straight line (20 cases), 3.S shaped (4 cases) very rare, 4.Butt like (10 cases), 5. Rat tail (6 cases), 6. Hook shaped (10 cases). Conclusion: This classification helps us to understand the better diversity of the velar morphology in mid-sagittal plane. These findings help us to understand the etiology of OSAS.

Keywords: soft palate, cephalometric radiographs, morphology, cleft palate, obstructive sleep apnoea syndrome

Procedia PDF Downloads 363
893 Extraction of Urban Land Features from TM Landsat Image Using the Land Features Index and Tasseled Cap Transformation

Authors: R. Bouhennache, T. Bouden, A. A. Taleb, A. Chaddad

Abstract:

In this paper we propose a method to map the urban areas. The method uses an arithmetic calculation processed from the land features indexes and Tasseled cap transformation TC of multi spectral Thematic Mapper Landsat TM image. For this purpose the derived indexes image from the original image such SAVI the soil adjusted vegetation index, UI the urban Index, and EBBI the enhanced built up and bareness index were staked to form a new image and the bands were uncorrelated, also the Spectral Angle Mapper (SAM) and Spectral Information Divergence (SID) supervised classification approaches were first applied on the new image TM data using the reference spectra of the spectral library and subsequently the four urban, vegetation, water and soil land cover categories were extracted with their accuracy assessment.The urban features were represented using a logic calculation applied to the brightness, UI-SAVI, NDBI-greenness and EBBI- brightness data sets. The study applied to Blida and mentioned that the urban features can be mapped with an accuracy ranging from 92 % to 95%.

Keywords: EBBI, SAVI, Tasseled Cap Transformation, UI

Procedia PDF Downloads 482
892 Visual Thing Recognition with Binary Scale-Invariant Feature Transform and Support Vector Machine Classifiers Using Color Information

Authors: Wei-Jong Yang, Wei-Hau Du, Pau-Choo Chang, Jar-Ferr Yang, Pi-Hsia Hung

Abstract:

The demands of smart visual thing recognition in various devices have been increased rapidly for daily smart production, living and learning systems in recent years. This paper proposed a visual thing recognition system, which combines binary scale-invariant feature transform (SIFT), bag of words model (BoW), and support vector machine (SVM) by using color information. Since the traditional SIFT features and SVM classifiers only use the gray information, color information is still an important feature for visual thing recognition. With color-based SIFT features and SVM, we can discard unreliable matching pairs and increase the robustness of matching tasks. The experimental results show that the proposed object recognition system with color-assistant SIFT SVM classifier achieves higher recognition rate than that with the traditional gray SIFT and SVM classification in various situations.

Keywords: color moments, visual thing recognition system, SIFT, color SIFT

Procedia PDF Downloads 467
891 Hate Speech Detection in Tunisian Dialect

Authors: Helmi Baazaoui, Mounir Zrigui

Abstract:

This study addresses the challenge of hate speech detection in Tunisian Arabic text, a critical issue for online safety and moderation. Leveraging the strengths of the AraBERT model, we fine-tuned and evaluated its performance against the Bi-LSTM model across four distinct datasets: T-HSAB, TNHS, TUNIZI-Dataset, and a newly compiled dataset with diverse labels such as Offensive Language, Racism, and Religious Intolerance. Our experimental results demonstrate that AraBERT significantly outperforms Bi-LSTM in terms of Recall, Precision, F1-Score, and Accuracy across all datasets. The findings underline the robustness of AraBERT in capturing the nuanced features of Tunisian Arabic and its superior capability in classification tasks. This research not only advances the technology for hate speech detection but also provides practical implications for social media moderation and policy-making in Tunisia. Future work will focus on expanding the datasets and exploring more sophisticated architectures to further enhance detection accuracy, thus promoting safer online interactions.

Keywords: hate speech detection, Tunisian Arabic, AraBERT, Bi-LSTM, Gemini annotation tool, social media moderation

Procedia PDF Downloads 11
890 Adversarial Disentanglement Using Latent Classifier for Pose-Independent Representation

Authors: Hamed Alqahtani, Manolya Kavakli-Thorne

Abstract:

The large pose discrepancy is one of the critical challenges in face recognition during video surveillance. Due to the entanglement of pose attributes with identity information, the conventional approaches for pose-independent representation lack in providing quality results in recognizing largely posed faces. In this paper, we propose a practical approach to disentangle the pose attribute from the identity information followed by synthesis of a face using a classifier network in latent space. The proposed approach employs a modified generative adversarial network framework consisting of an encoder-decoder structure embedded with a classifier in manifold space for carrying out factorization on the latent encoding. It can be further generalized to other face and non-face attributes for real-life video frames containing faces with significant attribute variations. Experimental results and comparison with state of the art in the field prove that the learned representation of the proposed approach synthesizes more compelling perceptual images through a combination of adversarial and classification losses.

Keywords: disentanglement, face detection, generative adversarial networks, video surveillance

Procedia PDF Downloads 129
889 To Determine the Effects of Regulatory Food Safety Inspections on the Grades of Different Categories of Retail Food Establishments across the Dubai Region

Authors: Shugufta Mohammad Zubair

Abstract:

This study explores the Effect of the new food System Inspection system also called the new inspection color card scheme on reduction of critical & major food safety violations in Dubai. Data was collected from all retail food service establishments located in two zones in the city. Each establishment was visited twice, once before the launch of the new system and one after the launch of the system. In each visit, the Inspection checklist was used as the evaluation tool for observation of the critical and major violations. The old format of the inspection checklist was concerned with scores based on the violations; but the new format of the checklist for the new inspection color card scheme is divided into administrative, general major and critical which gives a better classification for the inspectors to identify the critical and major violations of concerned. The study found that there has been a better and clear marking of violations after the launch of new inspection system wherein the inspectors are able to mark and categories the violations effectively. There had been a 10% decrease in the number of food establishment that was previously given A grade. The B & C grading were also considerably dropped by 5%.

Keywords: food inspection, risk assessment, color card scheme, violations

Procedia PDF Downloads 323
888 Global Differences in Job Satisfaction of Healthcare Professionals

Authors: Jonathan H. Westover, Ruthann Cunningham, Jaron Harvey

Abstract:

Purpose: Job satisfaction is one of the most critical attitudes among employees. Understanding whether employees are satisfied with their jobs and what is driving that satisfaction is important for any employer, but particularly for healthcare organizations. This study looks at the question of job satisfaction and drivers of job satisfaction among healthcare professionals at a global scale, looking for trends that generalize across 37 countries. Study: This study analyzed job satisfaction responses to the 2015 Work Orientations IV wave of the International Social Survey Programme (ISSP) to understand differences in antecedents for and levels of job satisfaction among healthcare professionals. A total of 18,716 respondents from 37 countries participated in the annual survey. Findings: Respondents self-identified their occupational category based on corresponding International Standard Classification of Occupations (ISCO-08) codes. Results suggest that mean overall job satisfaction was highest among health service managers and generalist medical practitioners and lowest among environmental hygiene professionals and nursing professionals. Originality: Many studies have addressed the issue of job satisfaction in healthcare, examining small samples of specific healthcare workers. In this study, using a large international dataset, we are able to examine questions of job satisfaction across large groups of healthcare workers in different occupations within the healthcare field.

Keywords: job satisfaction, healthcare industry, global comparisons, workplace

Procedia PDF Downloads 145
887 Review and Classification of the Indicators and Trends Used in Bridge Performance Modeling

Authors: S. Rezaei, Z. Mirzaei, M. Khalighi, J. Bahrami

Abstract:

Bridges, as an essential part of road infrastructures, are affected by various deterioration mechanisms over time due to the changes in their performance. As changes in performance can have many negative impacts on society, it is essential to be able to evaluate and measure the performance of bridges throughout their life. This evaluation includes the development or the choice of the appropriate performance indicators, which, in turn, are measured based on the selection of appropriate models for the existing deterioration mechanism. The purpose of this article is a statistical study of indicators and deterioration mechanisms of bridges in order to discover further research capacities in bridges performance assessment. For this purpose, some of the most common indicators of bridge performance, including reliability, risk, vulnerability, robustness, and resilience, were selected. The researches performed on each index based on the desired deterioration mechanisms and hazards were comprehensively reviewed. In addition, the formulation of the indicators and their relationship with each other were studied. The research conducted on the mentioned indicators were classified from the point of view of deterministic or probabilistic method, the level of study (element level, object level, etc.), and the type of hazard and the deterioration mechanism of interest. For each of the indicators, a number of challenges and recommendations were presented according to the review of previous studies.

Keywords: bridge, deterioration mechanism, lifecycle, performance indicator

Procedia PDF Downloads 105