Search results for: material handling equipment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8494

Search results for: material handling equipment

6934 Mechanical Tests and Analyzes of Behaviors of High-Performance of Polyester Resins Reinforced With Unifilo Fiberglass

Authors: Băilă Diana Irinel, Păcurar Răzvan, Păcurar Ancuța

Abstract:

In the last years, composite materials are increasingly used in automotive, aeronautic, aerospace, construction applications. Composite materials have been used in aerospace in applications such as engine blades, brackets, interiors, nacelles, propellers/rotors, single aisle wings, wide body wings. The fields of use of composite materials have multiplied with the improvement of material properties, such as stability and adaptation to the environment, mechanical tests, wear resistance, moisture resistance, etc. The composite materials are classified concerning type of matrix materials, as metallic, polymeric and ceramic based composites and are grouped according to the reinforcement type as fibre, obtaining particulate and laminate composites. Production of a better material is made more likely by combining two or more materials with complementary properties. The best combination of strength and ductility may be accomplished in solids that consist of fibres embedded in a host material. Polyester is a suitable component for composite materials, as it adheres so readily to the particles, sheets, or fibres of the other components. The important properties of the reinforcing fibres are their high strength and high modulus of elasticity. For applications, as in automotive or in aeronautical domain, in which a high strength-to-weight ratio is important, non-metallic fibres such as fiberglass have a distinct advantage because of their low density. In general, the glass fibres content varied between 9 to 33% wt. in the composites. In this article, high-performance types of composite materials glass-epoxy and glass-polyester used in automotive domain will be analyzed, performing tensile and flexural tests and SEM analyzes.

Keywords: glass-polyester composite, glass fibre, traction and flexion tests, SEM analyzes

Procedia PDF Downloads 142
6933 Experimental and Numerical Study on Energy Absorption Characteristic of a Coupler Rubber Buffer Used in Rail Vehicles

Authors: Zhixiang Li, Shuguang Yao, Wen Ma

Abstract:

Coupler rubber buffer has been widely applied on the high-speed trains and the main function of the rubber buffer is dissipating the impact energy between vehicles. The rubber buffer consists of two groups of rubbers, which are both pre-compressed and then installed into the frame body. This work focuses on the energy absorption capacity of each group of buffers particularly. The quasi-static compression tests were carried out to obtain the pre-compression force and the load-defection response of the buffers. Then a finite element (FE) model was constructed using Ls_dyna program. The rubber material was modeled with a tabulated method easily, in which no more material constants need to be fitted. The simulation results agreed with the experimental results well. Numerical study of the buffers was performed using the validated FE model and the influence of the initial pressure on the buffers was obtained. In addition, the interaction between the two groups of buffers was also investigated and the optimum distribution of the two was found.

Keywords: initial pressure, rubber buffer, simulation, tabulated method

Procedia PDF Downloads 133
6932 Application of Multiwall Carbon Nanotubes with Anionic Surfactant to Cement Paste

Authors: Maciej Szelag

Abstract:

The discovery of the carbon nanotubes (CNT), has led to a breakthrough in the material engineering. The CNT is characterized by very large surface area, very high Young's modulus (about 2 TPa), unmatched durability, high tensile strength (about 50 GPa) and bending strength. Their diameter usually oscillates in the range from 1 to 100 nm, and the length from 10 nm to 10-2 m. The relatively new approach is the CNT’s application in the concrete technology. The biggest problem in the use of the CNT to cement composites is their uneven dispersion and low adhesion to the cement paste. Putting the nanotubes alone into the cement matrix does not produce any effect because they tend to agglomerate, due to their large surface area. Most often, the CNT is used as an aqueous suspension in the presence of a surfactant that has previously been sonicated. The paper presents the results of investigations of the basic physical properties (apparent density, shrinkage) and mechanical properties (compression and tensile strength) of cement paste with the addition of the multiwall carbon nanotubes (MWCNT). The studies were carried out on four series of specimens (made of two different Portland Cement). Within each series, samples were made with three w/c ratios – 0.4, 0.5, 0.6 (water/cement). Two series were an unmodified cement matrix. In the remaining two series, the MWCNT was added in amount of 0.1% by cement’s weight. The MWCNT was used as an aqueous dispersion in the presence of a surfactant – SDS – sodium dodecyl sulfate (C₁₂H₂₅OSO₂ONa). So prepared aqueous solution was sonicated for 30 minutes. Then the MWCNT aqueous dispersion and cement were mixed using a mechanical stirrer. The parameters were tested after 28 days of maturation. Additionally, the change of these parameters was determined after samples temperature loading at 250°C for 4 hours (thermal shock). Measurement of the apparent density indicated that cement paste with the MWCNT addition was about 30% lighter than conventional cement matrix. This is due to the fact that the use of the MWCNT water dispersion in the presence of surfactant in the form of SDS resulted in the formation of air pores, which were trapped in the volume of the material. SDS as an anionic surfactant exhibits characteristics specific to blowing agents – gaseous and foaming substances. Because of the increased porosity of the cement paste with the MWCNT, they have obtained lower compressive and tensile strengths compared to the cement paste without additive. It has been observed, however, that the smallest decreases in the compressive and tensile strength after exposure to the elevated temperature achieved samples with the MWCNT. The MWCNT (well dispersed in the cement matrix) can form bridges between hydrates in a nanoscale of the material’s structure. Thus, this may result in an increase in the coherent cohesion of the cement material subjected to a thermal shock. The obtained material could be used for the production of an aerated concrete or using lightweight aggregates for the production of a lightweight concrete.

Keywords: cement paste, elevated temperature, mechanical parameters, multiwall carbon nanotubes, physical parameters, SDS

Procedia PDF Downloads 337
6931 The Risk of Occupational Health in the Shipbuilding Industry in Bangladesh

Authors: Md. Rashel Sheikh

Abstract:

The shipbuilding industry in Bangladesh had become a fast-growing industry in recent years when it began to export newly built ships. The various activities of shipbuilding industries in their limited, confined spaces added occupational worker exposures to chemicals, dusts, and metal fumes. The aim of this literature search is to identify the potential sources of occupational health hazards in shipyards and to promote the regulation of appropriate personal protective equipment (PPE) for the workers. In shipyards, occupational workers are involved in various activities, such as the manufacture, repair, maintenance, dismantling of boats and ships, building small ocean-going vessels and ferries. The occupational workers in the shipbuilding industry suffer from a number of hazardous issues, such as asthma, dermatitis, hearing deficits, and musculoskeletal disorders. The use of modern technologies, such as underwater plasma welding, electron beam welding, and friction stir welding and laser cutting and welding, and appropriate PPE (i.e., long-sleeved shirt and long pants, shoes plus socks, safety masks, chemical resistant gloves, eyewear, face shield, and respirators) can help reduce the occupational exposure to environmental hazards created by different activities in the shipyards. However, most shipyards in Bangladesh use traditional methods, e.g., flame cutting and arc, that add hazardous waste and pollutants to the environment in and around the shipyard. The safety and security of occupational workers in the shipyard workplace are very important. It is the primary responsibility of employers to ensure the safety and security of occupational workers in the shipyards. Employers must use advanced technologies and supply adequate and appropriate PPE for the workers. There are a number of accidents and illnesses that happen daily in the shipyard industries in Bangladesh due to the negligence and lack of adequate technologies and appropriate PPE. In addition, there are no specific regulations and implementations available to use the PPE. It is essential to have PPE regulations and strict enforcement for the adoption of PPE in the shipbuilding industries in Bangladesh. Along with the adoption of PPE with regular health examinations, health education to the workers regarding occupational hazards and lifestyle diseases are also important and require reinforcement. Monitoring health and safety hazards in shipyards are essential to enhance worker protection, and ensure worker safety, and mitigate workplace injuries and illnesses.

Keywords: shipbuilding Industries, health education, occupational health hazards, personal protective equipment, shipyard workers, occupational workers, shipyards

Procedia PDF Downloads 153
6930 Novel Animal Drawn Wheel-Axle Mechanism Actuated Knapsack Boom Sprayer

Authors: Ibrahim O. Abdulmalik, Michael C. Amonye, Mahdi Makoyo

Abstract:

Manual knapsack sprayer is the most popular means of farm spraying in Nigeria. It has its limitations. Apart from the human fatigue, which leads to unsteady walking steps, their field capacities are small. They barely cover about 0.2hectare per hour. Their small swath implies that a sizeable farm would take several days to cover. Weather changes are erratic and often it is desired to spray a large farm within hours or few days for even effect, uniformity and to avoid adverse weather interference. It is also often required that a large farm be covered within a short period to avoid re-emergence of weeds before crop emergence. Deployment of many knapsack operators to large farms has not been successful. Human error in taking equally spaced swaths usually result in over dosage of overlaps and in unapplied areas due to error at edges overlaps. Large farm spraying require boom equipment with larger swath. Reduced error in swath overlaps and spraying within the shortest possible time are then assured. Tractor boom sprayers would readily overcome these problems and achieve greater coverage, but they are not available in the country. Tractor hire for cultivation is very costly with the attendant lack of spare parts and specialized technicians for maintenance wherefore farmers find it difficult to engage tractors for cultivation and would avoid considering the employment of a tractor boom sprayer. Animal traction in farming is predominant in Nigeria, especially in the Northern part of the country. Development of boom sprayers drawn by work animals surely implies the maximization of animal utilization in farming. The Hydraulic Equipment Development Institute, Kano, in keeping to its mandate of targeted R&D in hydraulic and pneumatic systems, has developed an Animal Drawn Knapsack Boom Sprayer with four nozzles using the axle mechanism of a two wheeled cart to actuate the piston pump of two knapsack sprayers in line with appropriate technology demand of the country. It is hoped that the introduction of this novel contrivance shall enhance crop protection practice and lead to greater crop and food production in Nigeria.

Keywords: boom, knapsack, farm, sprayer, wheel axle

Procedia PDF Downloads 271
6929 Optimizing Volume Fraction Variation Profile of Bidirectional Functionally Graded Circular Plate under Mechanical Loading to Minimize Its Stresses

Authors: Javad Jamali Khouei, Mohammadreza Khoshravan

Abstract:

Considering that application of functionally graded material is increasing in most industries, it seems necessary to present a methodology for designing optimal profile of structures such as plate under mechanical loading which is highly consumed in industries. Therefore, volume fraction variation profile of functionally graded circular plate which has been considered two-directional is optimized so that stress of structure is minimized. For this purpose, equilibrium equations of two-directional functionally graded circular plate are solved by applying semi analytical-numerical method under mechanical loading and support conditions. By solving equilibrium equations, deflections and stresses are obtained in terms of control variables of volume fraction variation profile. As a result, the problem formula can be defined as an optimization problem by aiming at minimization of critical von-mises stress under constraints of deflections, stress and a physical constraint relating to structure of material. Then, the related problem can be solved with help of one of the metaheuristic algorithms such as genetic algorithm. Results of optimization for the applied model under constraints and loadings and boundary conditions show that functionally graded plate should be graded only in radial direction and there is no need for volume fraction variation of the constituent particles in thickness direction. For validating results, optimal values of the obtained design variables are graphically evaluated.

Keywords: two-directional functionally graded material, single objective optimization, semi analytical-numerical solution, genetic algorithm, graphical solution with contour

Procedia PDF Downloads 264
6928 Design, Development and Evaluation of a Portable Recording System to Capture Dynamic Presentations using the Teacher´s Tablet PC

Authors: Enrique Barra, Abel Carril, Aldo Gordillo, Joaquin Salvachua, Juan Quemada

Abstract:

Computers and multimedia equipment have improved a lot in the last years. They have reduced costs and size while at the same time has increased their capabilities. These improvements allowed us to design and implement a portable recording system that also integrates the teacher´s tablet PC to capture what he/she writes on the slides and all that happens in it. This paper explains this system in detail and the validation of the recordings that we did after using it to record all the lectures of a course in our university called “Communications Software”. The results show that pupils used the recordings for different purposes and consider them useful for a variety of things, especially after missing a lecture.

Keywords: recording system, capture dynamic presentations, lecture recording

Procedia PDF Downloads 347
6927 Turbulent Flow Characteristics and Bed Morphology around Circular Bridge Pier

Authors: Pratik Acharya

Abstract:

Scour is the natural phenomenon brought about by erosive action of the flowing stream in alluvial channels. Frequent scouring around bridge piers may cause damage to the structures. In alluvial channels, a complex interaction between the streamflow and the bed particles results in scouring around piers. Thus, the study of characteristics of flow around piers can give sound knowledge about the scouring process. The present research has been done to investigate the turbulent flow characteristics around bridge piers and corresponding changes in bed morphology. Laboratory experiments were carried out in a tilting flume with a sand bed. The velocities around the pier are measured by Acoustic Doppler Velocimeter. Measurements show that at upstream of the pier velocity and Reynolds stresses are negative near the bed and near the free surface at downstream of the pier. At the downstream of the pier, Reynolds stresses changes rapidly due to the formation of wake vortices. Experimental results show that secondary currents are more predominant at the downstream of the pier. As the flowing stream hits the pier, the flow gets separated in the form of downflow along the face of the pier due to a strong pressure gradient and along the sides of the piers. Separation of flow around the pier leads to scour the bed material and develop the vortex. The downflow hits the bed and removes the bed material, which can be carried forward by the flow circulations along sides of the piers. Eroded bed material is deposited along the centerline at the rear side of the pier and produces hump in the downstream region. Initially, the rate of scouring is high and reduces gradually with increasing time. After a certain limit, equilibrium sets between the erosive capacity of the flowing stream and resistance to the motion by bed particles.

Keywords: acoustic doppler velocimeter, pier, Reynolds stress, scour depth, velocity

Procedia PDF Downloads 129
6926 Study of the Buckling of Sandwich Beams Consider Stretching Effect

Authors: R. Bennai, H. Ait Atmane, H. Fourne, B. Ayache

Abstract:

In this work, an analytical approach using a refined theory of hyperbolic shear deformation of a beam was developed to study the buckling of graduated sandwiches beams under different boundary conditions. The effects of transverse shear strains and the transverse normal deformation are considered. The constituent materials of the beam are supposed gradually variable depending on the height direction based on a simple power distribution law in terms of the volume fractions of the constituents; the two materials with which we worked are metals and ceramics. The core layer is taken homogeneous and made of an isotropic material; while the banks layers consist of functionally graded materials with a homogeneous fraction compared to the middle layer. In the end, illustrative examples are presented to show the effects of changes in different parameters such as (material graduation, the stretching effect of the thickness, boundary conditions and thickness ratio-length) on the vibration free of an FGM sandwich beams.

Keywords: FGM materials, refined shear deformation theory, stretching effect, buckling

Procedia PDF Downloads 165
6925 Virtual Metrology for Copper Clad Laminate Manufacturing

Authors: Misuk Kim, Seokho Kang, Jehyuk Lee, Hyunchang Cho, Sungzoon Cho

Abstract:

In semiconductor manufacturing, virtual metrology (VM) refers to methods to predict properties of a wafer based on machine parameters and sensor data of the production equipment, without performing the (costly) physical measurement of the wafer properties (Wikipedia). Additional benefits include avoidance of human bias and identification of important factors affecting the quality of the process which allow improving the process quality in the future. It is however rare to find VM applied to other areas of manufacturing. In this work, we propose to use VM to copper clad laminate (CCL) manufacturing. CCL is a core element of a printed circuit board (PCB) which is used in smartphones, tablets, digital cameras, and laptop computers. The manufacturing of CCL consists of three processes: Treating, lay-up, and pressing. Treating, the most important process among the three, puts resin on glass cloth, heat up in a drying oven, then produces prepreg for lay-up process. In this process, three important quality factors are inspected: Treated weight (T/W), Minimum Viscosity (M/V), and Gel Time (G/T). They are manually inspected, incurring heavy cost in terms of time and money, which makes it a good candidate for VM application. We developed prediction models of the three quality factors T/W, M/V, and G/T, respectively, with process variables, raw material, and environment variables. The actual process data was obtained from a CCL manufacturer. A variety of variable selection methods and learning algorithms were employed to find the best prediction model. We obtained prediction models of M/V and G/T with a high enough accuracy. They also provided us with information on “important” predictor variables, some of which the process engineers had been already aware and the rest of which they had not. They were quite excited to find new insights that the model revealed and set out to do further analysis on them to gain process control implications. T/W did not turn out to be possible to predict with a reasonable accuracy with given factors. The very fact indicates that the factors currently monitored may not affect T/W, thus an effort has to be made to find other factors which are not currently monitored in order to understand the process better and improve the quality of it. In conclusion, VM application to CCL’s treating process was quite successful. The newly built quality prediction model allowed one to reduce the cost associated with actual metrology as well as reveal some insights on the factors affecting the important quality factors and on the level of our less than perfect understanding of the treating process.

Keywords: copper clad laminate, predictive modeling, quality control, virtual metrology

Procedia PDF Downloads 342
6924 Assessment of Physical and Mechanical Properties of Perlite Mortars with Recycled Cement

Authors: Saca Nastasia, Radu Lidia, Dobre Daniela, Calotă Razvan

Abstract:

In order to achieve the European Union's sustainable and circular economy goals, strategies for reducing raw material consumption, reusing waste, and lowering CO₂ emissions have been developed. In this study, expanded perlite mortars with recycled cement (RC) were obtained and characterized. The recycled cement was obtained from demolition concrete waste. The concrete waste was crushed in a jaw and grinded in a horizontal ball mill to reduce the material's average grain size. Finally, the fine particles were sieved through a 125 µm sieve. The recycled cement was prepared by heating demolition concrete waste at 550°C for 3 hours. At this temperature, the decarbonization does not occur. The utilization of recycled cement can minimize the negative environmental effects of demolished concrete landfills as well as the demand for natural resources used in cement manufacturing. Commercial cement CEM II/A-LL 42.5R was substituted by 10%, 20%, and 30% recycled cement. By substituting reference cement (CEM II/A-LL 42.5R) by RC, a decrease in cement aqueous suspension pH, electrical conductivity, and Ca²⁺ concentration was observed for all measurements (2 hours, 6 hours, 24 hours, 4 days, and 7 days). After 2 hours, pH value was 12.42 for reference and conductivity of 2220 µS/cm and decreased to 12.27, respectively 1570 µS/cm for 30% RC. The concentration of Ca²⁺ estimated by complexometric titration was 20% lower in suspension with 30% RC in comparison to reference for 2 hours. The difference significantly diminishes over time. The mortars have cement: expanded perlite volume ratio of 1:3 and consistency between 140 mm and 200 mm. The density of fresh mortar was about 1400 kg/m3. The density, flexural and compressive strengths, water absorption, and thermal conductivity of hardened mortars were tested. Due to its properties, expanded perlite mortar is a good thermal insulation material.

Keywords: concrete waste, expanded perlite, mortar, recycled cement, thermal conductivity, mechanical strength

Procedia PDF Downloads 71
6923 The Introduction of Modern Diagnostic Techniques and It Impact on Local Garages

Authors: Mustapha Majid

Abstract:

Gone were the days when technicians/mechanics will have to spend too much time trying to identify a mechanical fault and rectify the problem. Now the emphasis is on the use of Automobile diagnosing Equipment through the use of computers and special software. An investigation conducted at Tamale Metropolis and Accra in the Northern and Greater Accra regions of Ghana, respectively. Methodology for data gathering were; questionnaires, physical observation, interviews, and newspaper. The study revealed that majority of mechanics lack computer skills which can enable them use diagnosis tools such as Exhaust Gas Analyzer, Scan Tools, Electronic Wheel Balancing machine, etc.

Keywords: diagnosing, local garages and modern garages, lack of knowledge of diagnosing posing an existential threat, training of local mechanics

Procedia PDF Downloads 141
6922 Sulfur-Doped Hierarchically Porous Boron Nitride Nanosheets as an Efficient Carbon Dioxide Adsorbent

Authors: Sreetama Ghosh, Sundara Ramaprabhu

Abstract:

Carbon dioxide gas has been a major cause for the worldwide increase in green house effect, which leads to climate change and global warming. So CO₂ capture & sequestration has become an effective way to reduce the concentration of CO₂ in the environment. One such way to capture CO₂ in porous materials is by adsorption process. A potential material in this aspect is porous hexagonal boron nitride or 'white graphene' which is a well-known two-dimensional layered material with very high thermal stability. It had been investigated that the sample with hierarchical pore structure and high specific surface area shows excellent performance in capturing carbon dioxide gas and thereby mitigating the problem of environmental pollution to the certain extent. Besides, the presence of sulfur as well as nitrogen in the sample synergistically helps in the increase in adsorption capacity. In this work, a cost effective single step synthesis of highly porous boron nitride nanosheets doped with sulfur had been demonstrated. Besides, the CO₂ adsorption-desorption studies were carried on using a pressure reduction technique. The studies show that the nanosheets exhibit excellent cyclic stability in storage performance. Thermodynamic studies suggest that the adsorption takes place mainly through physisorption. The studies show that the nanosheets exhibit excellent cyclic stability in storage performance. Further, the surface modification of the highly porous nano sheets carried out by incorporating ionic liquids had further enhanced the capturing capability of CO₂ gas in the nanocomposite, revealing that this particular material has the potential to be an excellent adsorbent of carbon dioxide gas.

Keywords: CO₂ capture, hexagonal boron nitride nanosheets, porous network, sulfur doping

Procedia PDF Downloads 229
6921 Development of Energy Management System Based on Internet of Things Technique

Authors: Wen-Jye Shyr, Chia-Ming Lin, Hung-Yun Feng

Abstract:

The purpose of this study was to develop an energy management system for university campuses based on the Internet of Things (IoT) technique. The proposed IoT technique based on WebAccess is used via network browser Internet Explore and applies TCP/IP protocol. The case study of IoT for lighting energy usage management system was proposed. Structure of proposed IoT technique included perception layer, equipment layer, control layer, application layer and network layer.

Keywords: energy management, IoT technique, sensor, WebAccess

Procedia PDF Downloads 317
6920 Design of Agricultural Machinery Factory Facility Layout

Authors: Nilda Tri Putri, Muhammad Taufik

Abstract:

Tools and agricultural machinery (Alsintan) is a tool used in agribusiness activities. Alsintan used to change the traditional farming systems generally use manual equipment into modern agriculture with mechanization. CV Nugraha Chakti Consultant make an action plan for industrial development Alsintan West Sumatra in 2012 to develop medium industries of Alsintan become a major industry of Alsintan, one of efforts made is increase the production capacity of the industry Alsintan. Production capacity for superior products as hydrotiller and threshers set each for 2.000 units per year. CV Citra Dragon as one of the medium industry alsintan in West Sumatra has a plan to relocate the existing plant to meet growing consumer demand each year. Increased production capacity and plant relocation plan has led to a change in the layout; therefore need to design the layout of the plant facility CV Citra Dragon. First step the to design of plant layout is design the layout of the production floor. The design of the production floor layout is done by applying group technology layout. The initial step is to do a machine grouping and part family using the Average Linkage Clustering (ALC) and Rank Order Clustering (ROC). Furthermore done independent work station design and layout design using the Modified Spanning Tree (MST). Alternative selection layout is done to select the best production floor layout between ALC and ROC cell grouping. Furthermore, to design the layout of warehouses, offices and other production support facilities. Activity Relationship Chart methods used to organize the placement of factory facilities has been designed. After structuring plan facilities, calculated cost manufacturing facility plant establishment. Type of layout is used on the production floor layout technology group. The production floor is composed of four cell machinery, assembly area and painting area. The total distance of the displacement of material in a single production amounted to 1120.16 m which means need 18,7minutes of transportation time for one time production. Alsintan Factory has designed a circular flow pattern with 11 facilities. The facilities were designed consisting of 10 rooms and 1 parking space. The measure of factory building is 84 m x 52 m.

Keywords: Average Linkage Clustering (ALC), Rank Order Clustering (ROC), Modified Spanning Tree (MST), Activity Relationship Chart (ARC)

Procedia PDF Downloads 480
6919 Failure Analysis of a Medium Duty Vehicle Leaf Spring

Authors: Gül Çevik

Abstract:

This paper summarizes the work conducted to assess the root cause of the failure of a medium commercial vehicle leaf spring failed in service. Macro- and micro-fractographic analyses by scanning electron microscope as well as material verification tests were conducted in order to understand the failure mechanisms and root cause of the failure. Findings from the fractographic analyses indicated that failure mechanism is fatigue. Crack initiation was identified to have occurred from a point on the top surface near to the front face and to the left side. Two other crack initiation points were also observed, however, these cracks did not propagate. The propagation mode of the fatigue crack revealed that the cyclic loads resulting in crack initiation and propagation were unidirectional bending. Fractographic analyses have also showed that the root cause of the fatigue crack initiation and propagation was loading the part above design stress. Material properties of the part were also verified by chemical composition analysis, microstructural analysis by optical microscopy and hardness tests.

Keywords: leaf spring, failure analysis, fatigue, fractography

Procedia PDF Downloads 121
6918 Quasi-Federal Structure of India: Fault-Lines Exposed in COVID-19 Pandemic

Authors: Shatakshi Garg

Abstract:

As the world continues to grapple with the COVID-19 pandemic, India, one of the most populous democratic federal developing nation, continues to report the highest active cases and deaths, as well as struggle to let its health infrastructure not succumb to the exponentially growing requirements of hospital beds, ventilators, oxygen to save thousands of lives daily at risk. In this context, the paper outlines the handling of the COVID-19 pandemic since it first hit India in January 2020 – the policy decisions taken by the Union and the State governments from the larger perspective of its federal structure. The Constitution of India adopted in 1950 enshrined the federal relations between the Union and the State governments by way of the constitutional division of revenue-raising and expenditure responsibilities. By way of the 72nd and 73rd Amendments in the Constitution, powers and functions were devolved further to the third tier, namely the local governments, with the intention of further strengthening the federal structure of the country. However, with time, several constitutional amendments have shifted the scales in favour of the union government. The paper briefly traces some of these major amendments as well as some policy decisions which made the federal relations asymmetrical. As a result, data on key fiscal parameters helps establish how the union government gained upper hand at the expense of weak state governments, reducing the local governments to mere constitutional bodies without adequate funds and fiscal autonomy to carry out the assigned functions. This quasi-federal structure of India with the union government amassing the majority of power in terms of ‘funds, functions and functionaries’ exposed the perils of weakening sub-national governments post COVID-19 pandemic. With a complex quasi-federal structure and a heterogeneous population of over 1.3 billion, the announcement of a sudden nationwide lockdown by the union government was followed by a plight of migrants struggling to reach homes safely in the absence of adequate arrangements for travel and safety-net made by the union government. With limited autonomy enjoyed by the states, they were mostly dictated by the union government on most aspects of handling the pandemic, including protocols for lockdown, re-opening post lockdown, and vaccination drive. The paper suggests that certain policy decisions like demonetization, the introduction of GST, etc., taken by the incumbent government since 2014 when they first came to power, have further weakened the states and local governments, which have amounted to catastrophic losses, both economic and human. The role of the executive, legislature and judiciary are explored to establish how all these three arms of the government have worked simultaneously to further weaken and expose the fault-lines of the federal structure of India, which has lent the nation incapacitated to handle this pandemic. The paper then suggests the urgency of re-looking at the federal structure of the country and undertaking measures that strengthen the sub-national governments and restore the federal spirit as was enshrined in the constitution to avoid mammoth human and economic losses from a pandemic of this sort.

Keywords: COVID-19 pandemic, India, federal structure, economic losses

Procedia PDF Downloads 159
6917 Electrochemical Properties of Li-Ion Batteries Anode Material: Li₃.₈Cu₀.₁Ni₀.₁Ti₅O₁₂

Authors: D. Olszewska, J. Niewiedzial

Abstract:

In some types of Li-ion batteries carbon in the form of graphite is used. Unfortunately, carbon materials, in particular graphite, have very good electrochemical properties, but increase their volume during charge/discharge cycles, which may even lead to an explosion of the cell. The cell element may be replaced by a composite material consisting of lithium-titanium oxide Li4Ti5O12 (LTO) modified with copper and nickel ions and carbon derived from sucrose. This way you can improve the conductivity of the material. LTO is appropriate only for applications which do not require high energy density because of its high operating voltage (ca. 1.5 V vs. Li/Li+). Specific capacity of Li4Ti5O12 is high enough for utilization in Li-ion batteries (theoretical capacity 175 mAh·g-1) but it is lower than capacity of graphite anodes. Materials based on Li4Ti5O12 do not change their volume during charging/discharging cycles, however, LTO has low conductivity. Another positive aspect of the use of sucrose in the carbon composite material is to eliminate the addition of carbon black from the anode of the battery. Therefore, the proposed materials contribute significantly to environmental protection and safety of selected lithium cells. New anode materials in order to obtain Li3.8Cu0.1Ni0.1Ti5O12 have been prepared by solid state synthesis using three-way: i) stoichiometric composition of Li2CO3, TiO2, CuO, NiO (A- Li3.8Cu0.1Ni0.1Ti5O12); ii) stoichiometric composition of Li2CO3, TiO2, Cu(NO3)2, Ni(NO3)2 (B-Li3.8Cu0.1Ni0.1Ti5O12); and iii) stoichiometric composition of Li2CO3, TiO2, CuO, NiO calcined with 10% of saccharose (Li3.8Cu0.1Ni0.1Ti5O12-C). Structure of materials was studied by X-ray diffraction (XRD). The electrochemical properties were performed using appropriately prepared cell Li|Li+|Li3.8Cu0.1Ni0.1Ti5O12 for cyclic voltammetry and discharge/charge measurements. The cells were periodically charged and discharged in the voltage range from 1.3 to 2.0 V applying constant charge/discharge current in order to determine the specific capacity of each electrode. Measurements at various values of the charge/discharge current (from C/10 to 5C) were carried out. Cyclic voltammetry investigation was carried out by applying to the cells a voltage linearly changing over time at a rate of 0.1 mV·s-1 (in the range from 2.0 to 1.3 V and from 1.3 to 2.0 V). The XRD method analyzes show that composite powders were obtained containing, in addition to the main phase, 4.78% and 4% TiO2 in A-Li3.8Cu0.1Ni0.1O12 and B-Li3.8Cu0.1Ni0.1O12, respectively. However, Li3.8Cu0.1Ni0.1O12-C material is three-phase: 63.84% of the main phase, 17.49 TiO2 and 18.67 Li2TiO3. Voltammograms of electrodes containing materials A-Li3.8Cu0.1Ni0.1O12 and B-Li3.8Cu0.1Ni0.1O12 are correct and repeatable. Peak cathode occurs for both samples at a potential approx. 1.52±0.01 V relative to a lithium electrode, while the anodic peak at potential approx. 1.65±0.05 V relative to a lithium electrode. Voltammogram of Li3.8Cu0.1Ni0.1Ti5O12-C (especially for the first measurement cycle) is not correct. There are large variations in values of specific current, which are not characteristic for materials LTO. From the point of view of safety and environmentally friendly production of Li-ion cells eliminating soot and applying Li3.8Cu0.1Ni0.1Ti5O12-C as an active material of an anode in lithium-ion batteries seems to be a good alternative to currently used materials.

Keywords: anode, Li-ion batteries, Li₄O₅O₁₂, spinel

Procedia PDF Downloads 138
6916 Estimating the Effect of Fluid in Pressing Process

Authors: A. Movaghar, R. A. Mahdavinejad

Abstract:

To analyze the effect of various parameters of fluid on the material properties such as surface and depth defects and/or cracks, it is possible to determine the affection of pressure field on these specifications. Stress tensor analysis is also able to determine the points in which the probability of defection creation is more. Besides, from pressure field, it is possible to analyze the affection of various fluid specifications such as viscosity and density on defect created in the material. In this research, the concerned boundary conditions are analyzed first. Then the solution network and stencil used are mentioned. With the determination of relevant equation on the fluid flow between notch and matrix and their discretion according to the governed boundary conditions, these equations can be solved. Finally, with the variation creations on fluid parameters such as density and viscosity, the affection of these variations can be determined on pressure field. In this direction, the flowchart and solution algorithm with their results as vortex and current function contours for two conditions with most applications in pressing process are introduced and discussed.

Keywords: pressing, notch, matrix, flow function, vortex

Procedia PDF Downloads 275
6915 The Impact of Ionic Strength on the Adsorption Behavior of Anionic and Cationic Dyes on Low Cost Biosorbent

Authors: Abdallah Bouguettoucha, Derradji Chebli, Sara Aga, Agueniou Fazia

Abstract:

The objective of this study was to looking for alternative materials (low cost) for the adsorption of textile dyes and optimizes the type which gives optimum adsorption and provides an explanation of the mechanism involved in the adsorption process. Adsorption of Orange II and Methylene blue on H2SO4 traited cone of Pinus brutia, was carried out at different initial concentrations of the dye (20, 50 and 100 mg / L) and at tow initial pH, pH 1 and 10 respectively. The models of Langmuir, Freundlich and Sips were used in this study to analyze the obtained results of the adsorption isotherm. PCB-0M had high adsorption capacities namely 32.8967 mg/g and 128.1651 mg/g, respectively for orange II and methylene blue and further indicated that the removal of dyes increased with increase in the ionic strength of solution, this was attributed to aggregation of dyes in solution. The potential of H2SO4 traited cone of Pinus brutia, an easily available and low cost material, to be used as an alternative biosorbent material for the removal of a dyes, Orange II and Methylene Bleu, from aqueous solutions was therefore confirmed.

Keywords: Methylene blue, orange II, cones of pinus brutia, adsorption

Procedia PDF Downloads 269
6914 Fabrication of Aluminum Nitride Thick Layers by Modified Reactive Plasma Spraying

Authors: Cécile Dufloux, Klaus Böttcher, Heike Oppermann, Jürgen Wollweber

Abstract:

Hexagonal aluminum nitride (AlN) is a promising candidate for several wide band gap semiconductor compound applications such as deep UV light emitting diodes (UVC LED) and fast power transistors (HEMTs). To date, bulk AlN single crystals are still commonly grown from the physical vapor transport (PVT). Single crystalline AlN wafers obtained from this process could offer suitable substrates for a defect-free growth of ultimately active AlGaN layers, however, these wafers still lack from small sizes, limited delivery quantities and high prices so far.Although there is already an increasing interest in the commercial availability of AlN wafers, comparatively cheap Si, SiC or sapphire are still predominantly used as substrate material for the deposition of active AlGaN layers. Nevertheless, due to a lattice mismatch up to 20%, the obtained material shows high defect densities and is, therefore, less suitable for high power devices as described above. Therefore, the use of AlN with specially adapted properties for optical and sensor applications could be promising for mass market products which seem to fulfill fewer requirements. To respond to the demand of suitable AlN target material for the growth of AlGaN layers, we have designed an innovative technology based on reactive plasma spraying. The goal is to produce coarse grained AlN boules with N-terminated columnar structure and high purity. In this process, aluminum is injected into a microwave stimulated nitrogen plasma. AlN, as the product of the reaction between aluminum powder and the plasma activated N2, is deposited onto the target. We used an aluminum filament as the initial material to minimize oxygen contamination during the process. The material was guided through the nitrogen plasma so that the mass turnover was 10g/h. To avoid any impurity contamination by an erosion of the electrodes, an electrode-less discharge was used for the plasma ignition. The pressure was maintained at 600-700 mbar, so the plasma reached a temperature high enough to vaporize the aluminum which subsequently was reacting with the surrounding plasma. The obtained products consist of thick polycrystalline AlN layers with a diameter of 2-3 cm. The crystallinity was determined by X-ray crystallography. The grain structure was systematically investigated by optical and scanning electron microscopy. Furthermore, we performed a Raman spectroscopy to provide evidence of stress in the layers. This paper will discuss the effects of process parameters such as microwave power and deposition geometry (specimen holder, radiation shields, ...) on the topography, crystallinity, and stress distribution of AlN.

Keywords: aluminum nitride, polycrystal, reactive plasma spraying, semiconductor

Procedia PDF Downloads 271
6913 A Genetic Algorithm Based Permutation and Non-Permutation Scheduling Heuristics for Finite Capacity Material Requirement Planning Problem

Authors: Watchara Songserm, Teeradej Wuttipornpun

Abstract:

This paper presents a genetic algorithm based permutation and non-permutation scheduling heuristics (GAPNP) to solve a multi-stage finite capacity material requirement planning (FCMRP) problem in automotive assembly flow shop with unrelated parallel machines. In the algorithm, the sequences of orders are iteratively improved by the GA characteristics, whereas the required operations are scheduled based on the presented permutation and non-permutation heuristics. Finally, a linear programming is applied to minimize the total cost. The presented GAPNP algorithm is evaluated by using real datasets from automotive companies. The required parameters for GAPNP are intently tuned to obtain a common parameter setting for all case studies. The results show that GAPNP significantly outperforms the benchmark algorithm about 30% on average.

Keywords: capacitated MRP, genetic algorithm, linear programming, automotive industries, flow shop, application in industry

Procedia PDF Downloads 478
6912 Process Optimisation for Internal Cylindrical Rough Turning of Nickel Alloy 625 Weld Overlay

Authors: Lydia Chan, Islam Shyha, Dale Dreyer, John Hamilton, Phil Hackney

Abstract:

Nickel-based superalloys are generally known to be difficult to cut due to their strength, low thermal conductivity, and high work hardening tendency. Superalloy such as alloy 625 is often used in the oil and gas industry as a surfacing material to provide wear and corrosion resistance to components. The material is typically applied onto a metallic substrate through weld overlay cladding, an arc welding technique. Cladded surfaces are always rugged and carry a tough skin; this creates further difficulties to the machining process. The present work utilised design of experiment to optimise the internal cylindrical rough turning for weld overlay surfaces. An L27 orthogonal array was used to assess effects of the four selected key process variables: cutting insert, depth of cut, feed rate, and cutting speed. The optimal cutting conditions were determined based on productivity and the level of tool wear.

Keywords: cylindrical turning, nickel superalloy, turning of overlay, weld overlay

Procedia PDF Downloads 358
6911 Computational Material Modeling for Mechanical Properties Prediction of Nanoscale Carbon Based Cementitious Materials

Authors: Maryam Kiani, Abdul Basit Kiani

Abstract:

At larger scales, the performance of cementitious materials is impacted by processes occurring at the nanometer scale. These materials boast intricate hierarchical structures with random features that span from the nanometer to millimeter scale. It is fascinating to observe how the nanoscale processes influence the overall behavior and characteristics of these materials. By delving into and manipulating these processes, scientists and engineers can unlock the potential to create more durable and sustainable infrastructure and construction materials. It's like unraveling a hidden tapestry of secrets that hold the key to building stronger and more resilient structures. The present work employs simulations as the computational modeling methodology to predict mechanical properties for carbon/silica based cementitious materials at the molecular/nano scale level. Studies focused on understanding the effect of higher mechanical properties of cementitious materials with carbon silica nanoparticles via Material Studio materials modeling.

Keywords: nanomaterials, SiO₂, carbon black, mechanical properties

Procedia PDF Downloads 119
6910 Performance of Modified Wedge Anchorage System for Pre-Stressed FRP Bars

Authors: Othman S. Alsheraida, Sherif El-Gamal

Abstract:

Fiber Reinforced Polymers (FRP) is a composite material with exceptional properties that are capable of replacing conventional steel reinforcement in reinforced and pre-stressed concrete structures. However, the main obstacle for their wide use in the pre-stressed concrete application is the anchorage system. Due to the weakness of FRP in the transverse direction, the pre-stressing capacity of FRP bars is limited. This paper investigates the modification of the conventional wedge anchorage system to be used for stressing of FRP bars in pre-stressed applications. Epoxy adhesive material with glass FRP (GFRP) bars and conventional steel wedge were used in this paper. The GFRP bars are encased with epoxy at the anchor zone and the wedge system was used in the pull-out test. The results showed a loading capacity of 47.6 kN which is 69% of the bar ultimate capacity. Additionally, nylon wedge was made with the same dimensions of the steel wedge and tested for GFRP bars without epoxy layer. The nylon wedge showed a loading capacity of 19.7 kN which is only 28.5% of the ultimate bar capacity.

Keywords: anchorage, concrete, epoxy, frp, pre-stressed

Procedia PDF Downloads 280
6909 Applying Personel Resilence and Emotional Agitation in Occupational, Health and Safety Education and Training

Authors: M. Jayandran

Abstract:

Continual professional development is an important concept for safety professionals to strengthen the knowledge base and to achieve the required qualifications or international memberships in a given time. But the main problems which have observed among most of the safety aspirants are as follows: lack of focus, inferiority complex, superiority complex, lack of interest and lethargy, family and off job stress, health issues, usage of drugs and alcohol, and absenteeism. A HSE trainer should be an expert in soft skills and other stress, emotional handling techniques, so as to manage the above aspirants during training. To do this practice, a trainer has to brainstorm himself of few of the soft skills like personnel resilience, mnemonic techniques, mind healing, and subconscious suggestion techniques by integrating with an emotional intelligence quotient of the aspirants. By adopting these techniques, a trainer can successfully deliver the course and influence the different types of audience to achieve success in training.

Keywords: personnel resilience, mnemonic techniques, mind healing, sub conscious suggestion techniques

Procedia PDF Downloads 288
6908 An Investigation on Material Removal Rate of EDM Process: A Response Surface Methodology Approach

Authors: Azhar Equbal, Anoop Kumar Sood, M. Asif Equbal, M. Israr Equbal

Abstract:

In the present work response surface methodology (RSM) based central composite design (CCD) is used for analyzing the electrical discharge machining (EDM) process. For experimentation, mild steel is selected as work piece and copper is used as electrode. Three machining parameters namely current (I), spark on time (Ton) and spark off time (Toff) are selected as the input variables. The output or response chosen is material removal rate (MRR) which is to be maximized. To reduce the number of runs face centered central composite design (FCCCD) was used. ANOVA was used to determine the significance of parameter and interactions. The suitability of model is tested using Anderson darling (AD) plot. The results conclude that different parameters considered i.e. current, pulse on and pulse off time; all have dominant effect on the MRR. At last, the optimized parameter setting for maximizing MRR is found through main effect plot analysis.

Keywords: EDM, electrode, MRR, RSM, ANOVA

Procedia PDF Downloads 288
6907 Influence of Raw Material Composition on Microstructure and Mechanical Properties of Nodular Cast Iron

Authors: Alan Vaško, Juraj Belan, Lenka Hurtalová, Eva Tillová

Abstract:

The aim of this study is to evaluate the influence of raw material composition on the microstructure, mechanical and fatigue properties and micromechanisms of failure of nodular cast iron. In order to evaluate the influence of charge composition, the structural analysis, mechanical and fatigue tests and micro fractographic analysis were carried out on specimens of ten melts with different charge compositions. The basic charge of individual melts was formed by a different ratio of pig iron and steel scrap and by different additive for regulation of chemical composition (silicon carbide or ferrosilicon). The results show differences in mechanical and fatigue properties, which are connected with the microstructure. SiC additive positively influences microstructure. Consequently, mechanical and fatigue properties of nodular cast iron are improved, especially in the melts with the higher ratio of steel scrap in the charge.

Keywords: nodular cast iron, silicon carbide, microstructure, mechanical properties

Procedia PDF Downloads 566
6906 Machinability Analysis in Drilling Flax Fiber-Reinforced Polylactic Acid Bio-Composite Laminates

Authors: Amirhossein Lotfi, Huaizhong Li, Dzung Viet Dao

Abstract:

Interest in natural fiber-reinforced composites (NFRC) is progressively growing both in terms of academia research and industrial applications thanks to their abundant advantages such as low cost, biodegradability, eco-friendly nature and relatively good mechanical properties. However, their widespread use is still presumed as challenging because of the specificity of their non-homogeneous structure, limited knowledge on their machinability characteristics and parameter settings, to avoid defects associated with the machining process. The present work is aimed to investigate the effect of the cutting tool geometry and material on the drilling-induced delamination, thrust force and hole quality produced when drilling a fully biodegradable flax/poly (lactic acid) composite laminate. Three drills with different geometries and material were used at different drilling conditions to evaluate the machinability of the fabricated composites. The experimental results indicated that the choice of cutting tool, in terms of material and geometry, has a noticeable influence on the cutting thrust force and subsequently drilling-induced damages. The lower value of thrust force and better hole quality was observed using high-speed steel (HSS) drill, whereas Carbide drill (with point angle of 130o) resulted in the highest value of thrust force. Carbide drill presented higher wear resistance and stability in variation of thrust force with a number of holes drilled, while HSS drill showed the lower value of thrust force during the drilling process. Finally, within the selected cutting range, the delamination damage increased noticeably with feed rate and moderately with spindle speed.

Keywords: natural fiber reinforced composites, delamination, thrust force, machinability

Procedia PDF Downloads 120
6905 Rapid Method for the Determination of Acid Dyes by Capillary Electrophoresis

Authors: Can Hu, Huixia Shi, Hongcheng Mei, Jun Zhu, Hongling Guo

Abstract:

Textile fibers are important trace evidence and frequently encountered in criminal investigations. A significant aspect of fiber evidence examination is the determination of fiber dyes. Although several instrumental methods have been developed for dyes detection, the analysis speed is not fast enough yet. A rapid dye analysis method is still needed to further improve the efficiency of case handling. Capillary electrophoresis has the advantages of high separation speed and high separation efficiency and is an ideal method for the rapid analysis of fiber dyes. In this paper, acid dyes used for protein fiber dyeing were determined by a developed short-end injection capillary electrophoresis technique. Five acid red dyes with similar structures were successfully baseline separated within 5 min. The separation reproducibility is fairly good for the relative standard deviation of retention time is 0.51%. The established method is rapid and accurate which has great potential to be applied in forensic setting.

Keywords: acid dyes, capillary electrophoresis, fiber evidence, rapid determination

Procedia PDF Downloads 130