Search results for: heterogeneous wireless networks
2362 Machine Learning Approaches Based on Recency, Frequency, Monetary (RFM) and K-Means for Predicting Electrical Failures and Voltage Reliability in Smart Cities
Authors: Panaya Sudta, Wanchalerm Patanacharoenwong, Prachya Bumrungkun
Abstract:
As With the evolution of smart grids, ensuring the reliability and efficiency of electrical systems in smart cities has become crucial. This paper proposes a distinct approach that combines advanced machine learning techniques to accurately predict electrical failures and address voltage reliability issues. This approach aims to improve the accuracy and efficiency of reliability evaluations in smart cities. The aim of this research is to develop a comprehensive predictive model that accurately predicts electrical failures and voltage reliability in smart cities. This model integrates RFM analysis, K-means clustering, and LSTM networks to achieve this objective. The research utilizes RFM analysis, traditionally used in customer value assessment, to categorize and analyze electrical components based on their failure recency, frequency, and monetary impact. K-means clustering is employed to segment electrical components into distinct groups with similar characteristics and failure patterns. LSTM networks are used to capture the temporal dependencies and patterns in customer data. This integration of RFM, K-means, and LSTM results in a robust predictive tool for electrical failures and voltage reliability. The proposed model has been tested and validated on diverse electrical utility datasets. The results show a significant improvement in prediction accuracy and reliability compared to traditional methods, achieving an accuracy of 92.78% and an F1-score of 0.83. This research contributes to the proactive maintenance and optimization of electrical infrastructures in smart cities. It also enhances overall energy management and sustainability. The integration of advanced machine learning techniques in the predictive model demonstrates the potential for transforming the landscape of electrical system management within smart cities. The research utilizes diverse electrical utility datasets to develop and validate the predictive model. RFM analysis, K-means clustering, and LSTM networks are applied to these datasets to analyze and predict electrical failures and voltage reliability. The research addresses the question of how accurately electrical failures and voltage reliability can be predicted in smart cities. It also investigates the effectiveness of integrating RFM analysis, K-means clustering, and LSTM networks in achieving this goal. The proposed approach presents a distinct, efficient, and effective solution for predicting and mitigating electrical failures and voltage issues in smart cities. It significantly improves prediction accuracy and reliability compared to traditional methods. This advancement contributes to the proactive maintenance and optimization of electrical infrastructures, overall energy management, and sustainability in smart cities.Keywords: electrical state prediction, smart grids, data-driven method, long short-term memory, RFM, k-means, machine learning
Procedia PDF Downloads 562361 A Parallel Poromechanics Finite Element Method (FEM) Model for Reservoir Analyses
Authors: Henrique C. C. Andrade, Ana Beatriz C. G. Silva, Fernando Luiz B. Ribeiro, Samir Maghous, Jose Claudio F. Telles, Eduardo M. R. Fairbairn
Abstract:
The present paper aims at developing a parallel computational model for numerical simulation of poromechanics analyses of heterogeneous reservoirs. In the context of macroscopic poroelastoplasticity, the hydromechanical coupling between the skeleton deformation and the fluid pressure is addressed by means of two constitutive equations. The first state equation relates the stress to skeleton strain and pore pressure, while the second state equation relates the Lagrangian porosity change to skeleton volume strain and pore pressure. A specific algorithm for local plastic integration using a tangent operator is devised. A modified Cam-clay type yield surface with associated plastic flow rule is adopted to account for both contractive and dilative behavior.Keywords: finite element method, poromechanics, poroplasticity, reservoir analysis
Procedia PDF Downloads 3912360 Sign Language Recognition of Static Gestures Using Kinect™ and Convolutional Neural Networks
Authors: Rohit Semwal, Shivam Arora, Saurav, Sangita Roy
Abstract:
This work proposes a supervised framework with deep convolutional neural networks (CNNs) for vision-based sign language recognition of static gestures. Our approach addresses the acquisition and segmentation of correct inputs for the CNN-based classifier. Microsoft Kinect™ sensor, despite complex environmental conditions, can track hands efficiently. Skin Colour based segmentation is applied on cropped images of hands in different poses, used to depict different sign language gestures. The segmented hand images are used as an input for our classifier. The CNN classifier proposed in the paper is able to classify the input images with a high degree of accuracy. The system was trained and tested on 39 static sign language gestures, including 26 letters of the alphabet and 13 commonly used words. This paper includes a problem definition for building the proposed system, which acts as a sign language translator between deaf/mute and the rest of the society. It is then followed by a focus on reviewing existing knowledge in the area and work done by other researchers. It also describes the working principles behind different components of CNNs in brief. The architecture and system design specifications of the proposed system are discussed in the subsequent sections of the paper to give the reader a clear picture of the system in terms of the capability required. The design then gives the top-level details of how the proposed system meets the requirements.Keywords: sign language, CNN, HCI, segmentation
Procedia PDF Downloads 1572359 Improving Binding Selectivity in Molecularly Imprinted Polymers from Templates of Higher Biomolecular Weight: An Application in Cancer Targeting and Drug Delivery
Authors: Ben Otange, Wolfgang Parak, Florian Schulz, Michael Alexander Rubhausen
Abstract:
The feasibility of extending the usage of molecular imprinting technique in complex biomolecules is demonstrated in this research. This technique is promising in diverse applications in areas such as drug delivery, diagnosis of diseases, catalysts, and impurities detection as well as treatment of various complications. While molecularly imprinted polymers MIP remain robust in the synthesis of molecules with remarkable binding sites that have high affinities to specific molecules of interest, extending the usage to complex biomolecules remains futile. This work reports on the successful synthesis of MIP from complex proteins: BSA, Transferrin, and MUC1. We show in this research that despite the heterogeneous binding sites and higher conformational flexibility of the chosen proteins, relying on their respective epitopes and motifs rather than the whole template produces highly sensitive and selective MIPs for specific molecular binding. Introduction: Proteins are vital in most biological processes, ranging from cell structure and structural integrity to complex functions such as transport and immunity in biological systems. Unlike other imprinting templates, proteins have heterogeneous binding sites in their complex long-chain structure, which makes their imprinting to be marred by challenges. In addressing this challenge, our attention is inclined toward the targeted delivery, which will use molecular imprinting on the particle surface so that these particles may recognize overexpressed proteins on the target cells. Our goal is thus to make surfaces of nanoparticles that specifically bind to the target cells. Results and Discussions: Using epitopes of BSA and MUC1 proteins and motifs with conserved receptors of transferrin as the respective templates for MIPs, significant improvement in the MIP sensitivity to the binding of complex protein templates was noted. Through the Fluorescence Correlation Spectroscopy FCS measurements on the size of protein corona after incubation of the synthesized nanoparticles with proteins, we noted a high affinity of MIPs to the binding of their respective complex proteins. In addition, quantitative analysis of hard corona using SDS-PAGE showed that only a specific protein was strongly bound on the respective MIPs when incubated with similar concentrations of the protein mixture. Conclusion: Our findings have shown that the merits of MIPs can be extended to complex molecules of higher biomolecular mass. As such, the unique merits of the technique, including high sensitivity and selectivity, relative ease of synthesis, production of materials with higher physical robustness, and higher stability, can be extended to more templates that were previously not suitable candidates despite their abundance and usage within the body.Keywords: molecularly imprinted polymers, specific binding, drug delivery, high biomolecular mass-templates
Procedia PDF Downloads 552358 An AI-Based Dynamical Resource Allocation Calculation Algorithm for Unmanned Aerial Vehicle
Authors: Zhou Luchen, Wu Yubing, Burra Venkata Durga Kumar
Abstract:
As the scale of the network becomes larger and more complex than before, the density of user devices is also increasing. The development of Unmanned Aerial Vehicle (UAV) networks is able to collect and transform data in an efficient way by using software-defined networks (SDN) technology. This paper proposed a three-layer distributed and dynamic cluster architecture to manage UAVs by using an AI-based resource allocation calculation algorithm to address the overloading network problem. Through separating services of each UAV, the UAV hierarchical cluster system performs the main function of reducing the network load and transferring user requests, with three sub-tasks including data collection, communication channel organization, and data relaying. In this cluster, a head node and a vice head node UAV are selected considering the Central Processing Unit (CPU), operational (RAM), and permanent (ROM) memory of devices, battery charge, and capacity. The vice head node acts as a backup that stores all the data in the head node. The k-means clustering algorithm is used in order to detect high load regions and form the UAV layered clusters. The whole process of detecting high load areas, forming and selecting UAV clusters, and moving the selected UAV cluster to that area is proposed as offloading traffic algorithm.Keywords: k-means, resource allocation, SDN, UAV network, unmanned aerial vehicles
Procedia PDF Downloads 1112357 A Highly Efficient Broadcast Algorithm for Computer Networks
Authors: Ganesh Nandakumaran, Mehmet Karaata
Abstract:
A wave is a distributed execution, often made up of a broadcast phase followed by a feedback phase, requiring the participation of all the system processes before a particular event called decision is taken. Wave algorithms with one initiator such as the 1-wave algorithm have been shown to be very efficient for broadcasting messages in tree networks. Extensions of this algorithm broadcasting a sequence of waves using a single initiator have been implemented in algorithms such as the m-wave algorithm. However as the network size increases, having a single initiator adversely affects the message delivery times to nodes further away from the initiator. As a remedy, broadcast waves can be allowed to be initiated by multiple initiator nodes distributed across the network to reduce the completion time of broadcasts. These waves initiated by one or more initiator processes form a collection of waves covering the entire network. Solutions to global-snapshots, distributed broadcast and various synchronization problems can be solved efficiently using waves with multiple concurrent initiators. In this paper, we propose the first stabilizing multi-wave sequence algorithm implementing waves started by multiple initiator processes such that every process in the network receives at least one sequence of broadcasts. Due to being stabilizing, the proposed algorithm can withstand transient faults and do not require initialization. We view a fault as a transient fault if it perturbs the configuration of the system but not its program.Keywords: distributed computing, multi-node broadcast, propagation of information with feedback and cleaning (PFC), stabilization, wave algorithms
Procedia PDF Downloads 5042356 A Network Economic Analysis of Friendship, Cultural Activity, and Homophily
Authors: Siming Xie
Abstract:
In social networks, the term homophily refers to the tendency of agents with similar characteristics to link with one another and is so robustly observed across many contexts and dimensions. The starting point of my research is the observation that the “type” of agents is not a single exogenous variable. Agents, despite their differences in race, religion, and other hard to alter characteristics, may share interests and engage in activities that cut across those predetermined lines. This research aims to capture the interactions of homophily effects in a model where agents have two-dimension characteristics (i.e., race and personal hobbies such as basketball, which one either likes or dislikes) and with biases in meeting opportunities and in favor of same-type friendships. A novel feature of my model is providing a matching process with biased meeting probability on different dimensions, which could help to understand the structuring process in multidimensional networks without missing layer interdependencies. The main contribution of this study is providing a welfare based matching process for agents with multi-dimensional characteristics. In particular, this research shows that the biases in meeting opportunities on one dimension would lead to the emergence of homophily on the other dimension. The objective of this research is to determine the pattern of homophily in network formations, which will shed light on our understanding of segregation and its remedies. By constructing a two-dimension matching process, this study explores a method to describe agents’ homophilous behavior in a social network with multidimension and construct a game in which the minorities and majorities play different strategies in a society. It also shows that the optimal strategy is determined by the relative group size, where society would suffer more from social segregation if the two racial groups have a similar size. The research also has political implications—cultivating the same characteristics among agents helps diminishing social segregation, but only if the minority group is small enough. This research includes both theoretical models and empirical analysis. Providing the friendship formation model, the author first uses MATLAB to perform iteration calculations, then derives corresponding mathematical proof on previous results, and last shows that the model is consistent with empirical evidence from high school friendships. The anonymous data comes from The National Longitudinal Study of Adolescent Health (Add Health).Keywords: homophily, multidimension, social networks, friendships
Procedia PDF Downloads 1702355 The Latency-Amplitude Binomial of Waves Resulting from the Application of Evoked Potentials for the Diagnosis of Dyscalculia
Authors: Maria Isabel Garcia-Planas, Maria Victoria Garcia-Camba
Abstract:
Recent advances in cognitive neuroscience have allowed a step forward in perceiving the processes involved in learning from the point of view of the acquisition of new information or the modification of existing mental content. The evoked potentials technique reveals how basic brain processes interact to achieve adequate and flexible behaviours. The objective of this work, using evoked potentials, is to study if it is possible to distinguish if a patient suffers a specific type of learning disorder to decide the possible therapies to follow. The methodology used, is the analysis of the dynamics of different areas of the brain during a cognitive activity to find the relationships between the different areas analyzed in order to better understand the functioning of neural networks. Also, the latest advances in neuroscience have revealed the existence of different brain activity in the learning process that can be highlighted through the use of non-invasive, innocuous, low-cost and easy-access techniques such as, among others, the evoked potentials that can help to detect early possible neuro-developmental difficulties for their subsequent assessment and cure. From the study of the amplitudes and latencies of the evoked potentials, it is possible to detect brain alterations in the learning process specifically in dyscalculia, to achieve specific corrective measures for the application of personalized psycho pedagogical plans that allow obtaining an optimal integral development of the affected people.Keywords: dyscalculia, neurodevelopment, evoked potentials, Learning disabilities, neural networks
Procedia PDF Downloads 1402354 Combline Cavity Bandpass Filter Design and Implementation Using EM Simulation Tool
Authors: Taha Ahmed Özbey, Sedat Nazlıbilek, Alparslan Çağrı Yapıcı
Abstract:
Combline cavity filters have gained significant attention in recent years due to their exceptional narrowband characteristics, high unloaded Q, remarkable out-of-band rejection, and versatile post-manufacturing tuning capabilities. These filters play a vital role in various wireless communication systems, radar applications, and other advanced technologies where stringent frequency selectivity and superior performance are required. This paper represents combined cavity filter design and implementation by coupling matrix synthesis. Limited filter length, 50 dB out-of-band rejection, and agile design were aimed. To do so, CAD tools and intuitive methods were used.Keywords: cavity, band pass filter, cavity combline filter, coupling matrix synthesis
Procedia PDF Downloads 722353 Biosignal Measurement System Based on Ultra-Wide Band Human Body Communication
Authors: Jonghoon Kim, Gilwon Yoon
Abstract:
A wrist-band type biosignal measurement system and its data transfer through human body communication (HBC) were investigated. An HBC method based on pulses of ultra-wide band instead of using frequency or amplitude modulations was studied and implemented since the system became very compact and it was more suited for personal or mobile health monitoring. Our system measured photo-plethysmogram (PPG) and measured PPG signals were transmitted through a finger to a monitoring PC system. The device was compact and low-power consuming. HBC communication has very strong security measures since it does not use wireless network. Furthermore, biosignal monitoring system becomes handy because it does not need to have wire connections.Keywords: biosignal, human body communication, mobile health, PPG, ultrawide band
Procedia PDF Downloads 4762352 Comparative Connectionism: Study of the Biological Constraints of Learning Through the Manipulation of Various Architectures in a Neural Network Model under the Biological Principle of the Correlation Between Structure and Function
Authors: Giselle Maggie-Fer Castañeda Lozano
Abstract:
The main objective of this research was to explore the role of neural network architectures in simulating behavioral phenomena as a potential explanation for selective associations, specifically related to biological constraints on learning. Biological constraints on learning refer to the limitations observed in conditioning procedures, where learning is expected to occur. The study involved simulations of five different experiments exploring various phenomena and sources of biological constraints in learning. These simulations included the interaction between response and reinforcer, stimulus and reinforcer, specificity of stimulus-reinforcer associations, species differences, neuroanatomical constraints, and learning in uncontrolled conditions. The overall results demonstrated that by manipulating neural network architectures, conditions can be created to model and explain diverse biological constraints frequently reported in comparative psychology literature as learning typicities. Additionally, the simulations offer predictive content worthy of experimental testing in the pursuit of new discoveries regarding the specificity of learning. The implications and limitations of these findings are discussed. Finally, it is suggested that this research could inaugurate a line of inquiry involving the use of neural networks to study biological factors in behavior, fostering the development of more ethical and precise research practices.Keywords: comparative psychology, connectionism, conditioning, experimental analysis of behavior, neural networks
Procedia PDF Downloads 712351 The Impact of Artificial Intelligence on Agricultural Machines and Plant Nutrition
Authors: Kirolos Gerges Yakoub Gerges
Abstract:
Self-sustaining agricultural machines act in stochastic surroundings and therefore, should be capable of perceive the surroundings in real time. This notion can be done using image sensors blended with superior device learning, mainly Deep mastering. Deep convolutional neural networks excel in labeling and perceiving colour pix and since the fee of RGB-cameras is low, the hardware cost of accurate notion relies upon heavily on memory and computation power. This paper investigates the opportunity of designing lightweight convolutional neural networks for semantic segmentation (pixel clever class) with reduced hardware requirements, to allow for embedded usage in self-reliant agricultural machines. The usage of compression techniques, a lightweight convolutional neural community is designed to carry out actual-time semantic segmentation on an embedded platform. The community is skilled on two big datasets, ImageNet and Pascal Context, to apprehend as much as four hundred man or woman instructions. The 400 training are remapped into agricultural superclasses (e.g. human, animal, sky, road, area, shelterbelt and impediment) and the capacity to provide correct actual-time perception of agricultural environment is studied. The network is carried out to the case of self-sufficient grass mowing the usage of the NVIDIA Tegra X1 embedded platform. Feeding case-unique pics to the community consequences in a fully segmented map of the superclasses within the picture. As the network remains being designed and optimized, handiest a qualitative analysis of the technique is entire on the abstract submission deadline. intending this cut-off date, the finalized layout is quantitatively evaluated on 20 annotated grass mowing pictures. Light-weight convolutional neural networks for semantic segmentation can be implemented on an embedded platform and show aggressive performance on the subject of accuracy and speed. It’s miles viable to offer value-efficient perceptive capabilities related to semantic segmentation for autonomous agricultural machines.Keywords: centrifuge pump, hydraulic energy, agricultural applications, irrigationaxial flux machines, axial flux applications, coreless machines, PM machinesautonomous agricultural machines, deep learning, safety, visual perception
Procedia PDF Downloads 262350 Determining the Target Level of Knowledge of English as a Foreign Language in Higher Education
Authors: Zorana Z. Jurinjak, Nataša B. Lukić, Christos G. Alexopoulos
Abstract:
Although in the last few decades, English as a foreign language has been a compulsory subject in almost all colleges and universities in Serbia, students who enter the first year come with different levels of knowledge, which is immense task and a burden on teachers not only which literature and how to conduct classes in heterogeneous groups but also how to evaluate and assess the progress.This paper aims to discuss the issue of determining the target level of knowledge of English as a foreign language in higher education in Serbia due to the great need for these levels to equalize. The research was conducted at several colleges and universities where first-year students took a placement test, and we also carried out a review and comparison of the literature used in teaching English in those schools. We hope that this research will not only raise the awareness of those in charge when making curriculums, but also that ways will be found to assimilate these differences in knowledge and establish the criteria in assessment.Keywords: higher education, EFL, levels of knowledge, evaluation, assessment
Procedia PDF Downloads 112349 Multiband Prefractal Microstrip Antenna for Wireless Applications
Authors: Yadwinder Kumar, Priyanka Rani Amandeep Singh
Abstract:
In this paper the design of a multiband pre-fractal micro strip antenna with proximity coupling feed is presented. The proposed antenna resonates on seven different frequencies that are 2.6 GHz, 5.1 GHz, 9.4 GHz, 11.5 GHz, 13.8 GHz, 16.3 GHz, and 18.6 GHz. Simulated results presented here shows that the minimum return loss is achieved at the 16.3 GHz frequency which is up to 37 dB. Also the maximum band width of 700 MHz is achieved by the frequency bands 13.4 GHz to 14.1 GHz, 15.9 GHz to 16.6 GHz and 18.2 GHz to 18.9 GHz. The proposed feed line is sandwiched between two substrate layers and increases in the bandwidth of antenna has been observed up to 13% in comparison of micro strip feed line. Effect of key design parameters such as variation in substrate material, substrate height and feeding technique on antenna S-parameter have been investigated and discussed.Keywords: fractal antenna, pre-fractals, micro strip antenna, ISM band, electromagnetic coupling, VSWR
Procedia PDF Downloads 5882348 An Agent-Based Approach to Examine Interactions of Firms for Investment Revival
Authors: Ichiro Takahashi
Abstract:
One conundrum that macroeconomic theory faces is to explain how an economy can revive from depression, in which the aggregate demand has fallen substantially below its productive capacity. This paper examines an autonomous stabilizing mechanism using an agent-based Wicksell-Keynes macroeconomic model. This paper focuses on the effects of the number of firms and the length of the gestation period for investment that are often assumed to be one in a mainstream macroeconomic model. The simulations found the virtual economy was highly unstable, or more precisely, collapsing when these parameters are fixed at one. This finding may even suggest us to question the legitimacy of these common assumptions. A perpetual decline in capital stock will eventually encourage investment if the capital stock is short-lived because an inactive investment will result in insufficient productive capacity. However, for an economy characterized by a roundabout production method, a gradual decline in productive capacity may not be able to fall below the aggregate demand that is also shrinking. Naturally, one would then ask if our economy cannot rely on an external stimulus such as population growth and technological progress to revive investment, what factors would provide such a buoyancy for stimulating investments? The current paper attempts to answer this question by employing the artificial macroeconomic model mentioned above. The baseline model has the following three features: (1) the multi-period gestation for investment, (2) a large number of heterogeneous firms, (3) demand-constrained firms. The instability is a consequence of the following dynamic interactions. (a) A multiple-period gestation period means that once a firm starts a new investment, it continues to invest over some subsequent periods. During these gestation periods, the excess demand created by the investing firm will spill over to ignite new investment of other firms that are supplying investment goods: the presence of multi-period gestation for investment provides a field for investment interactions. Conversely, the excess demand for investment goods tends to fade away before it develops into a full-fledged boom if the gestation period of investment is short. (b) A strong demand in the goods market tends to raise the price level, thereby lowering real wages. This reduction of real wages creates two opposing effects on the aggregate demand through the following two channels: (1) a reduction in the real labor income, and (2) an increase in the labor demand due to the principle of equality between the marginal labor productivity and real wage (referred as the Walrasian labor demand). If there is only a single firm, a lower real wage will increase its Walrasian labor demand, thereby an actual labor demand tends to be determined by the derived labor demand. Thus, the second positive effect would not work effectively. In contrast, for an economy with a large number of firms, Walrasian firms will increase employment. This interaction among heterogeneous firms is a key for stability. A single firm cannot expect the benefit of such an increased aggregate demand from other firms.Keywords: agent-based macroeconomic model, business cycle, demand constraint, gestation period, representative agent model, stability
Procedia PDF Downloads 1622347 The Investigation of Niobium Addition on Mechanical Properties of Al11Si alloy
Authors: Kerem Can Dizdar, Semih Ateş, Ozan Güler, Gökhan Basman, Derya Dışpınar, Cevat Fahir Arısoy
Abstract:
Grain refinement and obtaining homogeneous microstructure is the key parameter in casting of aluminum alloys. Ti has been traditionally used as grain refiner, however, inconsistency and heterogeneous dendrite arms, as well as fading efficiency, have been the drawbacks of Ti. Alternatively, Nb (Niobium) has gained attention. In this work, the effect of Nb was investigated in case of both as cast and T6 heat treated conditions. Different ratios of Nb (0.0, 0.03, 0.05, 0.07, 0.1 weight%) were added to AlSi11 alloy, mechanical properties were examined statistically, and relationship was established between microstructure and mechanical properties by examining the grain size and dendrite characteristics before and after heat treatment. Results indicate that in the case of as cast state; with the increasing addition of Nb has no significant effect on yield strength, however, it increases the tensile strength and elongation starting with 0.05wt% ratio, and it remains constant up to 0.1wt%. For the heat-treated condition; Nb addition provides increment at yield strength and tensile strength up to 0.05wt%, but it leads to decrementfrom 0.05 to 0.1wt%. The opposite is valid for the elongation; It decreases in between 0-0.05wt% then rises in range of 0.05-0.1wt%. Highest yield strength and ultimate tensile strength were found T6 heat treated 0.05wt% Nb addition. 0.05wt% was found as critical Nbaddition ratio for mechanical properties of Al-11Si alloys. Grain refinement and obtaining homogeneous microstructure is the key parameter in casting of aluminum alloys. Ti has been traditionally used as grain refiner, however, inconsistency and heterogeneous dendrite arms, as well as fading efficiency, have been the drawbacks of Ti. Alternatively, Nb (Niobium) has gained attention. In this work, the effect of Nb was investigated in case of both as cast and T6 heat treated conditions. Different ratios of Nb (0.0, 0.03, 0.05, 0.07, 0.1 weight%) were added to AlSi11 alloy, mechanical properties were examined statistically, and relationship was established between microstructure and mechanical properties by examining the grain size and dendrite characteristics before and after heat treatment. Results indicate that in the case of as cast state; with the increasing addition of Nb has no significant effect on yield strength, however, it increases the tensile strength and elongation starting with 0.05wt% ratio, and it remains constant up to 0.1wt%. For the heat-treated condition; Nb addition provides increment at yield strength and tensile strength up to 0.05wt%, but it leads to decrement from 0.05 to 0.1wt%. The opposite is valid for the elongation; It decreases in between 0-0.05wt% then rises in range of 0.05-0.1wt%. Highest yield strength and ultimate tensile strength were found T6 heat treated 0.05wt% Nb addition. 0.05wt% was found as critical Nbaddition ratio for mechanical properties of Al-11Si alloys.Keywords: al-si alloy, grain refinement, heat treatment, mechanical properties, microstructure, niobium, sand casting
Procedia PDF Downloads 1482346 A Real-Time Snore Detector Using Neural Networks and Selected Sound Features
Authors: Stelios A. Mitilineos, Nicolas-Alexander Tatlas, Georgia Korompili, Lampros Kokkalas, Stelios M. Potirakis
Abstract:
Obstructive Sleep Apnea Hypopnea Syndrome (OSAHS) is a widespread chronic disease that mostly remains undetected, mainly due to the fact that it is diagnosed via polysomnography which is a time and resource-intensive procedure. Screening the disease’s symptoms at home could be used as an alternative approach in order to alert individuals that potentially suffer from OSAHS without compromising their everyday routine. Since snoring is usually linked to OSAHS, developing a snore detector is appealing as an enabling technology for screening OSAHS at home using ubiquitous equipment like commodity microphones (included in, e.g., smartphones). In this context, this study developed a snore detection tool and herein present the approach and selection of specific sound features that discriminate snoring vs. environmental sounds, as well as the performance of the proposed tool. Furthermore, a Real-Time Snore Detector (RTSD) is built upon the snore detection tool and employed in whole-night sleep sound recordings resulting to a large dataset of snoring sound excerpts that are made freely available to the public. The RTSD may be used either as a stand-alone tool that offers insight to an individual’s sleep quality or as an independent component of OSAHS screening applications in future developments.Keywords: obstructive sleep apnea hypopnea syndrome, apnea screening, snoring detection, machine learning, neural networks
Procedia PDF Downloads 2072345 Assessing Finance by Ethnic Entrepreneurs in United Kingdom and Policy Implication
Authors: Aliyu Aminu Baba
Abstract:
Ethnic entrepreneurship is defined as a set of connections and regular patterns of interaction among people sharing common national background or migration experience. The disadvantage faced by ethnic minority on paid labour induced them to become self-employed. Also, enclaves motivates trading, creativity, innovation are all to provide specific service or products to certain people. These ethnic minorities are African –Caribbean, Indians, Pakistanis, Banghaladashi and Chinese. For policy development ethnic diversity was among the problem of developing policy in United Kingdom. The study finds that there is a danger in treating all ethnic minority businesses as homogeneous rather than heterogeneous. The diversity is due to religious beliefs, culture and race. This indicates that there is a wide range have shortfall in addressing the peculiarities of ethnic minority businesses in policy formulation. Also, there are differences between ethnic minorities in accessing finance. It is recommended that diversity and peculiarities between ethnic minorities should be considered in policy formulation.Keywords: ethnic entrepreneurship, finance, policy implication, diversity
Procedia PDF Downloads 3682344 Comparative Evaluation of Accuracy of Selected Machine Learning Classification Techniques for Diagnosis of Cancer: A Data Mining Approach
Authors: Rajvir Kaur, Jeewani Anupama Ginige
Abstract:
With recent trends in Big Data and advancements in Information and Communication Technologies, the healthcare industry is at the stage of its transition from clinician oriented to technology oriented. Many people around the world die of cancer because the diagnosis of disease was not done at an early stage. Nowadays, the computational methods in the form of Machine Learning (ML) are used to develop automated decision support systems that can diagnose cancer with high confidence in a timely manner. This paper aims to carry out the comparative evaluation of a selected set of ML classifiers on two existing datasets: breast cancer and cervical cancer. The ML classifiers compared in this study are Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression, Ensemble (Bagged Tree) and Artificial Neural Networks (ANN). The evaluation is carried out based on standard evaluation metrics Precision (P), Recall (R), F1-score and Accuracy. The experimental results based on the evaluation metrics show that ANN showed the highest-level accuracy (99.4%) when tested with breast cancer dataset. On the other hand, when these ML classifiers are tested with the cervical cancer dataset, Ensemble (Bagged Tree) technique gave better accuracy (93.1%) in comparison to other classifiers.Keywords: artificial neural networks, breast cancer, classifiers, cervical cancer, f-score, machine learning, precision, recall
Procedia PDF Downloads 2772343 Testing the Capital Structure Behavior of Malaysian Firms: Shariah vs. Non-Shariah Compliant
Authors: Asyraf Abdul Halim, Mohd Edil Abd Sukor, Obiyathulla Ismath Bacha
Abstract:
This paper attempts to investigate the capital structure behavior of Shariah compliant firms of various levels as well those firms who are consistently Shariah non-compliant in Malaysia. The paper utilizes a unique dataset of firms of the heterogeneous level of Shariah-compliancy status over a 20 year period from the year 1997 to 2016. The paper focuses on the effects of dynamic forces behind capital structure variation such as the optimal capital structure behavior based on the trade-off, pecking order, market timing and firmly fixed effect models of capital structure. This study documents significant evidence in support of the trade-off theory with a high speed of adjustment (SOA) as well as for the time-invariant firm fixed effects across all Shariah compliance group.Keywords: capital structure, market timing, trade-off theory, equity risk premium, Shariah-compliant firms
Procedia PDF Downloads 3122342 Detailed Analysis of Multi-Mode Optical Fiber Infrastructures for Data Centers
Authors: Matej Komanec, Jan Bohata, Stanislav Zvanovec, Tomas Nemecek, Jan Broucek, Josef Beran
Abstract:
With the exponential growth of social networks, video streaming and increasing demands on data rates, the number of newly built data centers rises proportionately. The data centers, however, have to adjust to the rapidly increased amount of data that has to be processed. For this purpose, multi-mode (MM) fiber based infrastructures are often employed. It stems from the fact, the connections in data centers are typically realized within a short distance, and the application of MM fibers and components considerably reduces costs. On the other hand, the usage of MM components brings specific requirements for installation service conditions. Moreover, it has to be taken into account that MM fiber components have a higher production tolerance for parameters like core and cladding diameters, eccentricity, etc. Due to the high demands for the reliability of data center components, the determination of properly excited optical field inside the MM fiber core belongs to the key parameters while designing such an MM optical system architecture. Appropriately excited mode field of the MM fiber provides optimal power budget in connections, leads to the decrease of insertion losses (IL) and achieves effective modal bandwidth (EMB). The main parameter, in this case, is the encircled flux (EF), which should be properly defined for variable optical sources and consequent different mode-field distribution. In this paper, we present detailed investigation and measurements of the mode field distribution for short MM links purposed in particular for data centers with the emphasis on reliability and safety. These measurements are essential for large MM network design. The various scenarios, containing different fibers and connectors, were tested in terms of IL and mode-field distribution to reveal potential challenges. Furthermore, we focused on estimation of particular defects and errors, which can realistically occur like eccentricity, connector shifting or dust, were simulated and measured, and their dependence to EF statistics and functionality of data center infrastructure was evaluated. The experimental tests were performed at two wavelengths, commonly used in MM networks, of 850 nm and 1310 nm to verify EF statistics. Finally, we provide recommendations for data center systems and networks, using OM3 and OM4 MM fiber connections.Keywords: optical fiber, multi-mode, data centers, encircled flux
Procedia PDF Downloads 3752341 The Wage Differential between Migrant and Native Workers in Australia: Decomposition Approach
Authors: Sabrina Tabassum
Abstract:
Using Census Data for Housing and Population of Australia 2001, 2006, 2011, and 2016, this paper shows the existence of wage differences between natives and immigrants in Australia. Addressing the heterogeneous nature of immigrants, this study group the immigrants in three broad categories- migrants from English speaking countries and migrants from India and China. Migrants from English speaking countries and India earn more than the natives per week, whereas migrants from China earn far less than the natives per week. Oaxaca decomposition suggests that major part of this differential is unexplained. Using the occupational segregation concept and Brown decomposition, this study indicates that migrants from India and China would have been earned more than the natives if they had the same occupation distribution as natives due to their individual characteristics. Within occupation, wage differences are more prominent than inter-occupation wage differences for immigrants from China and India.Keywords: Australia, labour, migration, wage
Procedia PDF Downloads 1262340 An Active Rectifier with Time-Domain Delay Compensation to Enhance the Power Conversion Efficiency
Authors: Shao-Ku Kao
Abstract:
This paper presents an active rectifier with time-domain delay compensation to enhance the efficiency. A delay calibration circuit is designed to convert delay time to voltage and adaptive control on/off delay in variable input voltage. This circuit is designed in 0.18 mm CMOS process. The input voltage range is from 2 V to 3.6 V with the output voltage from 1.8 V to 3.4 V. The efficiency can maintain more than 85% when the load from 50 Ω ~ 1500 Ω for 3.6 V input voltage. The maximum efficiency is 92.4 % at output power to be 38.6 mW for 3.6 V input voltage.Keywords: wireless power transfer, active diode, delay compensation, time to voltage converter, PCE
Procedia PDF Downloads 2822339 Telemedicine for Telerehabilitation in Areas Affected by Social Conflicts in Colombia
Authors: Lilia Edit Aparicio Pico, Paulo Cesar Coronado Sánchez, Roberto Ferro Escobar
Abstract:
This paper presents the implementation of telemedicine services for physiotherapy, occupational therapy, and speech therapy rehabilitation, utilizing telebroadcasting of audiovisual content to enhance comprehensive patient recovery in rural areas of San Vicente del Caguán municipality, characterized by high levels of social conflict in Colombia. The region faces challenges such as dysfunctional problems, physical rehabilitation needs, and a high prevalence of hearing diseases, leading to neglect and substandard health services. Limited access to healthcare due to communication barriers and transportation difficulties exacerbates these issues. To address these challenges, a research initiative was undertaken to leverage information and communication technologies (ICTs) to improve healthcare quality and accessibility for this vulnerable population. The primary objective was to develop a tele-rehabilitation system to provide asynchronous online therapies and teleconsultation services for patient follow-up during the recovery process. The project comprises two components: Communication systems and human development. A technological component involving the establishment of a wireless network connecting rural centers and the development of a mobile application for video-based therapy delivery. Communications systems will be provided by a radio link that utilizes internet provided by the Colombian government, located in the municipality of San Vicente del Caguán to connect two rural centers (Pozos and Tres Esquinas) and a mobile application for managing videos for asynchronous broadcasting in sidewalks and patients' homes. This component constitutes an operational model integrating information and telecommunications technologies. The second component involves pedagogical and human development. The primary focus is on the patient, where performance indicators and the efficiency of therapy support were evaluated for the assessment and monitoring of telerehabilitation results in physical, occupational, and speech therapy. They wanted to implement a wireless network to ensure audiovisual content transmission for tele-rehabilitation, design audiovisual content for tele-rehabilitation based on services provided by the ESE Hospital San Rafael in physiotherapy, occupational therapy, and speech therapy, develop a software application for fixed and mobile devices enabling access to tele-rehabilitation audiovisual content for healthcare personnel and patients and finally to evaluate the technological solution's contribution to the ESE Hospital San Rafael community. The research comprised four phases: wireless network implementation, audiovisual content design, software application development, and evaluation of the technological solution's impact. Key findings include the successful implementation of virtual teletherapy, both synchronously and asynchronously, and the assessment of technological performance indicators, patient evolution, timeliness, acceptance, and service quality of tele-rehabilitation therapies. The study demonstrated improved service coverage, increased care supply, enhanced access to timely therapies for patients, and positive acceptance of teletherapy modalities. Additionally, the project generated new knowledge for potential replication in other regions and proposed strategies for short- and medium-term improvement of service quality and care indicatorsKeywords: e-health, medical informatics, telemedicine, telerehabilitation, virtual therapy
Procedia PDF Downloads 542338 New Heterogenous α-Diimine Nickel (II)/ MWCNT Catalysts for Ethylene Polymerization
Authors: Sasan Talebnezhad, Saeed Pormahdian, Naghi Assali
Abstract:
Homogeneous α-diimine nickel (II) catalyst complexes, with and without amino para-aryl position functionality, were synthesized. These complexes were immobilized on carboxyl, hydroxyl, and acyl chloride functionalized multi-walled carbon nanotubes to form five novel heterogeneous α-diiminonickel catalysts. Immobilization was performed by covalent or electrostatic bonding via methylaluminoxane (MAO) linker or amide linkage. Both the nature of α-diimine ligands and the kind of interaction between anchored catalyst complexes and multi-walled carbon nanotube surface influenced the catalytic performance, microstructure, and morphology of obtained polyethylenes. The catalyst prepared by amide bonding showed lowest relative weight loss in thermogravimetry analysis and highest activities up to 5863 gr PE mmol-1Ni.hr-1. This catalyst produced polyethylene with dense botryoidal morphology.Keywords: α-diimine nickel (II) complexes, immobilization, multi-walled carbon nanotubes, ethylene polymerization
Procedia PDF Downloads 4072337 New Heterogenous α-Diimine Nickel (II)/MWCNT Catalysts for Ethylene Polymerization
Authors: Sasan Talebnezhad, Saeed Pourmahdian, Naghi Assali
Abstract:
Homogeneous α-diimine nickel (II) catalyst complexes, with and without amino para-aryl position functionality, were synthesized. These complexes were immobilized on carboxyl, hydroxyl and acyl chloride functionalized multi-walled carbon nanotubes to form five novel heterogeneous α diiminonickel catalysts. Immobilization was performed by covalent or electrostatic bonding via methylaluminoxane (MAO) linker or amide linkage. Both the nature of α-diimine ligands and the kind of interaction between anchored catalyst complexes and multi-walled carbon nanotube surface influenced the catalytic performance, microstructure, and morphology of obtained polyethylenes. The catalyst prepared by amide bonding showed lowest relative weight loss in thermogravimetry analysis and highest activities up to 5863 gr PE mmol-1Ni.hr-1. This catalyst produced polyethylene with dense botryoidal morphology.Keywords: α-diimine nickel (II) complexes, immobilization, multi-walled carbon nanotubes, ethylene polymerization
Procedia PDF Downloads 4992336 Coordinated Interference Canceling Algorithm for Uplink Massive Multiple Input Multiple Output Systems
Authors: Messaoud Eljamai, Sami Hidouri
Abstract:
Massive multiple-input multiple-output (MIMO) is an emerging technology for new cellular networks such as 5G systems. Its principle is to use many antennas per cell in order to maximize the network's spectral efficiency. Inter-cellular interference remains a fundamental problem. The use of massive MIMO will not derogate from the rule. It improves performances only when the number of antennas is significantly greater than the number of users. This, considerably, limits the networks spectral efficiency. In this paper, a coordinated detector for an uplink massive MIMO system is proposed in order to mitigate the inter-cellular interference. The proposed scheme combines the coordinated multipoint technique with an interference-cancelling algorithm. It requires the serving cell to send their received symbols, after processing, decision and error detection, to the interfered cells via a backhaul link. Each interfered cell is capable of eliminating intercellular interferences by generating and subtracting the user’s contribution from the received signal. The resulting signal is more reliable than the original received signal. This allows the uplink massive MIMO system to improve their performances dramatically. Simulation results show that the proposed detector improves system spectral efficiency compared to classical linear detectors.Keywords: massive MIMO, COMP, interference canceling algorithm, spectral efficiency
Procedia PDF Downloads 1472335 Extreme Temperature Response to Solar Radiation Management in Southeast Asia
Authors: Heri Kuswanto, Brina Miftahurrohmah, Fatkhurokhman Fauzi
Abstract:
Southeast Asia has experienced rising temperatures and is predicted to reach a 1.5°C increase by 2030, which is earlier than the Paris Agreement target. Solar Radiation Management (SRM) has been proposed as an alternative to combat global warming. This research investigates changes in the annual maximum temperature (TXx) with and without SRM over southeast Asia. We examined outputs from three ensemble members of the Geoengineering Large Ensemble Project (GLENS) experiment for the period 2051 to 2080. One ensemble member generated outputs that significantly deviated from the others, leading to the removal of ensemble 3 from the impact analysis. Our observations indicate that the magnitude of TXx changes with SRM is heterogeneous across countries. We found that SRM significantly reduces TXx levels compared to historical periods. Furthermore, SRM can reduce temperatures by up to 5°C compared to scenarios without SRM, with even more pronounced effects in Thailand, Cambodia, Laos, and Myanmar. This indicates that SRM can mitigate climate change by lowering future TXx levels.Keywords: solar radiation management, GLENS, extreme, temperature, ensemble
Procedia PDF Downloads 142334 Speech Detection Model Based on Deep Neural Networks Classifier for Speech Emotions Recognition
Authors: A. Shoiynbek, K. Kozhakhmet, P. Menezes, D. Kuanyshbay, D. Bayazitov
Abstract:
Speech emotion recognition has received increasing research interest all through current years. There was used emotional speech that was collected under controlled conditions in most research work. Actors imitating and artificially producing emotions in front of a microphone noted those records. There are four issues related to that approach, namely, (1) emotions are not natural, and it means that machines are learning to recognize fake emotions. (2) Emotions are very limited by quantity and poor in their variety of speaking. (3) There is language dependency on SER. (4) Consequently, each time when researchers want to start work with SER, they need to find a good emotional database on their language. In this paper, we propose the approach to create an automatic tool for speech emotion extraction based on facial emotion recognition and describe the sequence of actions of the proposed approach. One of the first objectives of the sequence of actions is a speech detection issue. The paper gives a detailed description of the speech detection model based on a fully connected deep neural network for Kazakh and Russian languages. Despite the high results in speech detection for Kazakh and Russian, the described process is suitable for any language. To illustrate the working capacity of the developed model, we have performed an analysis of speech detection and extraction from real tasks.Keywords: deep neural networks, speech detection, speech emotion recognition, Mel-frequency cepstrum coefficients, collecting speech emotion corpus, collecting speech emotion dataset, Kazakh speech dataset
Procedia PDF Downloads 1012333 Analysis of Fixed Beamforming Algorithms for Smart Antenna Systems
Authors: Muhammad Umair Shahid, Abdul Rehman, Mudassir Mukhtar, Muhammad Nauman
Abstract:
The smart antenna is the prominent technology that has become known in recent years to meet the growing demands of wireless communications. In an overcrowded atmosphere, its application is growing gradually. A methodical evaluation of the performance of Fixed Beamforming algorithms for smart antennas such as Multiple Sidelobe Canceller (MSC), Maximum Signal-to-interference ratio (MSIR) and minimum variance (MVDR) has been comprehensively presented in this paper. Simulation results show that beamforming is helpful in providing optimized response towards desired directions. MVDR beamformer provides the most optimal solution.Keywords: fixed weight beamforming, array pattern, signal to interference ratio, power efficiency, element spacing, array elements, optimum weight vector
Procedia PDF Downloads 183