Search results for: hazardous waste (HW)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3033

Search results for: hazardous waste (HW)

1473 Improving Tower Grounding and Insulation Level vs. Line Surge Arresters for Protection of Subtransmission Lines

Authors: Navid Eghtedarpour, Mohammad Reza Hasani

Abstract:

Since renewable wind power plants are usually installed in mountain regions and high-level lands, they are often prone to lightning strikes and their hazardous effects. Although the transmission line is protected using guard wires in order to prevent the lightning surges to strike the phase conductors, the back-flashover may also occur due to tower footing resistance. A combination of back-flashover corrective methods, tower-footing resistance reduction, insulation level improvement, and line arrester installation, are analyzed in this paper for back-flashover rate reduction of a double-circuit 63 kV line in the south region of Fars province. The line crosses a mountain region in some sections with a moderate keraunic level, whereas tower-footing resistance is substantially high at some towers. Consequently, an exceptionally high back-flashover rate is recorded. A new method for insulation improvement is studied and employed in the current study. The method consists of using a composite-type creepage extender in the string. The effectiveness of this method for insulation improvement of the string is evaluated through the experimental test. Simulation results besides monitoring the one-year operation of the 63-kV line show that due to technical, practical, and economic restrictions in operated sub-transmission lines, a combination of corrective methods can lead to an effective solution for the protection of transmission lines against lightning.

Keywords: lightning protection, BF rate, grounding system, insulation level, line surge arrester

Procedia PDF Downloads 130
1472 Enhanced Methane Yield from Organic Fraction of Municipal Solid Waste with Coconut Biochar as Syntrophic Metabolism Biostimulant

Authors: Maria Altamirano, Alfonso Duran

Abstract:

Biostimulation has recently become important in order to improve the stability and performance of the anaerobic digestion (AD) process. This strategy involves the addition of nutrients or supplements to improve the rate of degradation of a native microbial consortium. With the aim of biostimulate sytrophism between secondary fermenting bacteria and methanogenic archaea, improving metabolite degradation and efficient conversion to methane, the addition of conductive materials, mainly carbon based have been studied. This research seeks to highlight the effect that coconut biochar (CBC) has on the metanogenic conversion of the organic fraction of municipal solid waste (OFMSW), analyzing the surface chemistry properties that give biochar its capacity to serve as a redox mediator in the anaerobic digestion process. The biochar characterization techniques were electrical conductivity (EC) scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier Transform Infrared Transmission Spectroscopy (FTIR) and Cyclic Voltammetry (CV). Effect of coconut biochar addition was studied using Authomatic Methane Potential Test System (AMPTS II) applying a one-way variance analysis to determine the dose that leads to higher methane performance. The surface chemistry of the CBC could confer properties that enhance the AD process, such as the presence of alkaline and alkaline earth metals and their hydrophobicity that may be related to their buffering capacity and the adsorption of polar and non-polar compounds, such as NH4+ and CO2. It also has aromatic functional groups, just as quinones, whose potential as a redox mediator has been demonstrated and its morphology allows it to form an immobilizing matrix that favors a closer activity among the syntrophic microorganisms, which directly contributed in the oxidation of secondary metabolites and the final reduction to methane, whose yield is increased by 39% compared to controls, with a CBC dose of 1 g/L.

Keywords: anaerobic digestion, biochar, biostimulation, syntrophic metabolism

Procedia PDF Downloads 191
1471 The Effect of Electrical Discharge Plasma on Inactivation of Escherichia Coli MG 1655 in Pure Culture

Authors: Zoran Herceg, Višnja Stulić, Anet Režek Jambrak, Tomislava Vukušić

Abstract:

Electrical discharge plasma is a new non-thermal processing technique which is used for the inactivation of contaminating and hazardous microbes in liquids. Plasma is a source of different antimicrobial species including UV photons, charged particles, and reactive species such as superoxide, hydroxyl radicals, nitric oxide and ozone. Escherichia coli was studied as foodborne pathogen. The aim of this work was to examine inactivation effects of electrical discharge plasma treatment on the Escherichia coli MG 1655 in pure culture. Two types of plasma configuration and polarity were used. First configuration was with titanium wire as high voltage needle and another with medical stainless steel needle used to form bubbles in treated volume and titanium wire as high voltage needle. Model solution samples were inoculated with Escerichia coli MG 1655 and treated by electrical discharge plasma at treatment time of 5 and 10 min, and frequency of 60, 90 and 120 Hz. With the first configuration after 5 minutes of treatment at frequency of 120 Hz the inactivation rate was 1.3 log₁₀ reduction and after 10 minutes of treatment the inactivation rate was 3.0 log₁₀ reduction. At the frequency of 90 Hz after 10 minutes inactivation rate was 1.3 log₁₀ reduction. With the second configuration after 5 minutes of treatment at frequency of 120 Hz the inactivation rate was 1.2 log₁₀ reduction and after 10 minutes of treatment the inactivation rate was also 3.0 log₁₀ reduction. In this work it was also examined the formation of biofilm, nucleotide and protein leakage at 260/280 nm, before and after treatment and recuperation of treated samples. Further optimization of method is needed to understand mechanism of inactivation.

Keywords: electrical discharge plasma, escherichia coli MG 1655, inactivation, point-to-plate electrode configuration

Procedia PDF Downloads 432
1470 Experimental Study of the Efficacy and Emission Properties of a Compression Ignition Engine Running on Fuel Additives with Varying Engine Loads

Authors: Faisal Mahroogi, Mahmoud Bady, Yaser H. Alahmadi, Ahmed Alsisi, Sunny Narayan, Muhammad Usman Kaisan

Abstract:

The Kingdom of Saudi Arabia established Saudi Vision 2030, an initiative of the government with the goal of promoting more socioeconomic as well as cultural diversity. The kingdom, which is dedicated to sustainable development and clean energy, uses cutting-edge approaches to address energy-related issues, including the circular carbon economy (CCE) and a more varied energy mix. In order for Saudi Arabia to achieve its Vision 2030 goal of having a net zero future by 2060, sustainability is essential. By addressing the energy and climate issues of the modern world with responsibility and innovation, Vision 2030 is turning into a global role model for the transition to a sustainable future. As per the Ambitions of the National Environment Strategy of the Saudi Ministry of Environment, Agriculture, and Water (MEWA), raising environmental compliance across all sectors and reducing pollution and adverse environmental impacts are critical focus areas. As a result, the current study presents an experimental analysis of the performance and exhaust emissions of a diesel engine running mostly on waste cooking oil (WCO). A one-cylinder direct-injection diesel engine with constant speed and natural aspiration is the engine type utilized. Research was done on how the engine performed and emission parameters when fueled with a mixture of 10% butanol, 10% diesel, 10% WCO, and 10% diethyl ether (D70B10W10DD10). The study's findings demonstrated that engine emissions of nitrogen oxides (NOX) and carbon monoxide (CO) varied significantly depending on the load being applied. The brake thermal efficiency, cylinder pressure, and the brake power of the engine were all impacted by load change.

Keywords: ICE, waste cooking oil, fuel additives, butanol, combustion, emission characteristics

Procedia PDF Downloads 61
1469 Auditory Effects among 18-45 Years Old Workers of a Textile Plant in Seeduwa, Sri Lanka

Authors: P. G. S. Madushani, L. D. Illeperuma

Abstract:

Abstract Noise is one of the most common physical hazards in industrial settings. The prevalence of Noise Induced Hearing Loss (NIHL) is on the rise with increasedduration of exposure and the increase in the severity of hearing loss. The purpose of the study was to determine auditory effects among textile workers and to establish associations between the degree of hearing loss and exposure duration, degree of hearing loss and noise level and the proportion of hearing related complaints. A cross sectional descriptive study using purposive sampling was carried out. An interviewer administered questionnaire and Distortion Product Oto Acoustic Emission (DPOAE) hearing screening on 127 (72 female and 55 male) textile workers of the selected textile plant in Seeduwa, Sri Lanka was done (Age: M= 31.16, SD=7.75). Noise measurements were done in six sections of the factory and average noise levels were obtained. Diagnostic hearing evaluations were done for 60 (57.75%) subjects, referred from the DPOAE hearing screening test. The degree of hearing loss and the exposure duration had a significant association in the high frequency region of 4 kHz to 8 kHz (p < 0.05). Noise levels fluctuated between 90.3±0.8 dBA and 50.6. ±0.52 dBA. 30.83% of workers reported having NIHL. Most of the workers (33.9%) complained difficulty in conversing in noisy backgrounds. Other complaints as tinnitus, dizziness, ear fullness and headache were reported in less than 30%. workers who were exposed to noise for more than 15 years were affected with NIHL in the high frequency region. Administrative controls and engineering controls need to be implemented to manage hazardous noise levels in industrial settings. Hearing Conservation Programs should be initiated and implemented for textile workers.

Keywords: textile industry, NIHL, degree of hearing loss, noise levels, auditory effects

Procedia PDF Downloads 141
1468 Human Activities Damaging the Ecosystem of Isheri Ogun River, South West Nigeria

Authors: N. B. Ikenweiwe, A. A. Alimi, N. A. Bamidele, O. A. Ewumi, K. Fasina, S. O. Otubusin

Abstract:

A study on the physical, chemical and biological parameters of the lower course of Ogun River, Isheri-Olofin was carried out between January and December 2014 in order to determine the effects of the anthropogenic activities of the Kara abattoir and domestic waste depositions on the quality of the water. Water samples were taken twice each month at three selected stations A, B and C (based on characteristic features or activity levels) along the water course. Samples were analysed using standard methods for chemical and biological parameters the same day in the laboratory while physical parameters were determined in-situ with water parameters kit. Generally, results of Transparency, Dissolved Oxygen, Nitrates, TDS and Alkalinity fall below the permissible limits of WHO and FEPA standards for drinking and fish production. Results of phosphates, lead and cadmium were also low but still within the permissible limit. Only Temperature and pH were within limit. Low plankton community, (phytoplankton, zooplankton), which ranges from 3, 5 to 40, 23 were as a result of low levels of DO, transparency and phosphate. The presence of coliform bacteria of public health importance like Escherichia coli, Proteus vulgaris, Aeromonas sp., Shigella sp, Enterobacter aerogenes as well as gram negative bacteria Proteus morganii are mainly indicators of faecal pollution. Fish and other resources obtained from this water stand the risk of being contaminated with these organisms and man is at the receiving end. The results of the physical, chemical and some biological parameters of Isheri, Ogun River, according to this study showed that the live forms of aquatic and fisheries resources there are dwelling under stress as a result of deposition of bones, horns, faecal components, slurry of suspended solids, fat and blood into the water. Government should therefore establish good monitoring system against illegal waste depositions and create education programmes that will enlighten the community on the social, ecological and economic values of the river.

Keywords: damage, ecosystem, human activities, Isheri ogun river

Procedia PDF Downloads 544
1467 Factors Associated with Rural-Urban Migration and Its Associated Health Hazards on the Female Adolescents in Kumasi Metropolis

Authors: Freda Adomaa, Samuel Oppong Boampong, Charles Gyamfi Rahman

Abstract:

The living and working environment of migrants and their access to healthcare services induce good or poor health. This study was conducted to assess the factors associated with rural-urban migration and its associated health hazards among female adolescents. A sample size of two hundred (200) was chosen in which all responded to questionnaires comprising closed-ended questions, which were distributed to gather data from the respondents, after which it was analyzed using the Statistical Package for Social Sciences (SPSS) version 20. The utilized three causes of rural-urban migration thus political, economic and socio-cultural. The study revealed that political situations such as regional inequality (65.4%) and ethnic conflicts (78.2%) whereas economic factors such as lack of amenities (82.3%), lack of employment in rural communities (77.4%), lack of education (74%), and poverty (85.3%) as well as socio-cultural factors such as divorced parents (65.6%), media influence (79.1%), family conflicts (59.4%) and appealing urban informal sector (65.2%) are major causes of migration. Respondents’ encountered challenges such as poor remuneration for services (87.2%), being maltreated by a colleague or worker (69%), sleeping in open space (73.3%), and harassment by the task force (71.4%) and teenage pregnancies (58.5%). The study concluded that the three variables play a key role in adolescent migration and when they travel they end up getting involved in serious health hazardous behaviors such as rapes as well as physical and psychological harassments’. The study, therefore, recommends that vocational training of the rural people on small scale industries (non-farm) activities that could generate an income for the rural household should be introduced.

Keywords: rural, urban, migration, female health hazards

Procedia PDF Downloads 132
1466 In-Silico Fusion of Bacillus Licheniformis Chitin Deacetylase with Chitin Binding Domains from Chitinases

Authors: Keyur Raval, Steffen Krohn, Bruno Moerschbacher

Abstract:

Chitin, the biopolymer of the N-acetylglucosamine, is the most abundant biopolymer on the planet after cellulose. Industrially, chitin is isolated and purified from the shell residues of shrimps. A deacetylated derivative of chitin i.e. chitosan has more market value and applications owing to it solubility and overall cationic charge compared to the parent polymer. This deacetylation on an industrial scale is performed chemically using alkalis like sodium hydroxide. This reaction not only is hazardous to the environment owing to negative impact on the marine ecosystem. A greener option to this process is the enzymatic process. In nature, the naïve chitin is converted to chitosan by chitin deacetylase (CDA). This enzymatic conversion on the industrial scale is however hampered by the crystallinity of chitin. Thus, this enzymatic action requires the substrate i.e. chitin to be soluble which is technically difficult and an energy consuming process. We in this project wanted to address this shortcoming of CDA. In lieu of this, we have modeled a fusion protein with CDA and an auxiliary protein. The main interest being to increase the accessibility of the enzyme towards crystalline chitin. A similar fusion work with chitinases had improved the catalytic ability towards insoluble chitin. In the first step, suitable partners were searched through the protein data bank (PDB) wherein the domain architecture were sought. The next step was to create the models of the fused product using various in silico techniques. The models were created by MODELLER and evaluated for properties such as the energy or the impairment of the binding sites. A fusion PCR has been designed based on the linker sequences generated by MODELLER and would be tested for its activity towards insoluble chitin.

Keywords: chitin deacetylase, modeling, chitin binding domain, chitinases

Procedia PDF Downloads 242
1465 Urban Ethical Fashion Networks of Design, Production and Retail in Taiwan

Authors: WenYing Claire Shih, Konstantinos Agrafiotis

Abstract:

The circular economy has become one of the seven fundamental pillars of Taiwan’s economic development, as this is promulgated by the government. The model of the circular economy, with its fundamental premise of waste elimination, can transform the textile and clothing sectors from major pollutant industries to a much cleaner alternative for a better quality of all citizens’ lives. In a related vein, the notion of the creative economy and more specifically the fashion industry can prompt similar results in terms of jobs and wealth creation. The combining forces of the circular and creative economies and their beneficial output have resulted in the configuration of ethical urban networks which potentially may lead to sources of competitive advantage. All actors involved in the configuration of this urban ethical fashion network from public authorities to private enterprise can bring about positive changes in the urban setting. Preliminary results through action research show that this configuration is an attainable task in terms of circularity by reducing fabric waste produced from local textile mills and through innovative methods of design, production and retail around urban spaces where the network has managed to generate a stream of jobs and financial revenues for all participants. The municipal authorities as the facilitating platform have been of paramount importance in this public-private partnership. In the explorative pilot study conducted about a network of production, consumption in terms of circularity of fashion products, we have experienced a positive disposition. As the network will be fully functional by attracting more participant firms from the textile and clothing sectors, it can be beneficial to Taiwan’s soft power in the region and simultaneously elevate citizens’ awareness on circular methods of fashion production, consumption and disposal which can also lead to the betterment of urban lifestyle and may open export horizons for the firms.

Keywords: the circular economy, the creative economy, ethical urban networks, action research

Procedia PDF Downloads 136
1464 Valorization of Argan Residuals for the Treatment of Industrial Effluents

Authors: Salim Ahmed

Abstract:

The aim of this study was to recover a natural residue in the form of activated carbon prepared from Moroccan "argan pits and date pits" plant waste. After preparing the raw material for manufacture, the carbon was carbonised at 300°C and chemically activated with phosphoric acid of purity 85. The various characterisation results (moisture and ash content, specific surface area, pore volume, etc.) showed that the carbons obtained are comparable to those manufactured industrially and could therefore be tested, for example, in water treatment processes and especially for the depollution of effluents used in the agri-food and textile industries.

Keywords: activated carbon, water treatment, adsorption, argan

Procedia PDF Downloads 65
1463 Prospective Use of Rice Husk Ash to Produce Concrete in India

Authors: Kalyan Kumar Moulick

Abstract:

In this paper the author studied the possibilities of using Rice Husk Ash (RHA) available in India; to produce concrete. The effect of RHA on concrete discussed. Traditional uses of Rice Husk in India pointed out and the advantages of using RHA in making concrete highlighted. Suggestion provided regarding prospective application of RHA concrete in India which in turn will definitely reduce the cost of concrete and environmental friendly due to utilization of waste and replacement of Cement.

Keywords: cement replacement, concrete, environmental friendly, rice husk ash

Procedia PDF Downloads 516
1462 The Sensitivity of Electrical Geophysical Methods for Mapping Salt Stores within the Soil Profile

Authors: Fathi Ali Swaid

Abstract:

Soil salinization is one of the most hazardous phenomenons accelerating the land degradation processes. It either occurs naturally or is human-induced. High levels of soil salinity negatively affect crop growth and productivity leading land degradation ultimately. Thus, it is important to monitor and map soil salinity at an early stage to enact effective soil reclamation program that helps lessen or prevent future increase in soil salinity. Geophysical method has outperformed the traditional method for assessing soil salinity offering more informative and professional rapid assessment techniques for monitoring and mapping soil salinity. Soil sampling, EM38 and 2D conductivity imaging have been evaluated for their ability to delineate and map the level of salinity variations at Second Ponds Creek. The three methods have shown that the subsoil in the study area is saline. Salt variations were successfully observed under either method. However, EM38 reading and 2D inversion data show a clear spatial structure comparing to EC1:5 of soil samples in spite of that all soil samples, EM38 and 2D imaging were collected from the same location. Because EM38 readings and 2D imaging data are a weighted average of electrical soil conductance, it is more representative of soil properties than the soil samples method. The mapping of subsurface soil at the study area has been successful and the resistivity imaging has proven to be an advantage. The soil salinity analysis (EC1:5) correspond well to the true resistivity bringing together a good result of soil salinity. Soil salinity clearly indicated by previous investigation EM38 have been confirmed by the interpretation of the true resistivity at study area.

Keywords: 2D conductivity imaging, EM38 readings, soil salinization, true resistivity, urban salinity

Procedia PDF Downloads 376
1461 An MIPSSTWM-based Emergency Vehicle Routing Approach for Quick Response to Highway Incidents

Authors: Siliang Luan, Zhongtai Jiang

Abstract:

The risk of highway incidents is commonly recognized as a major concern for transportation authorities due to the hazardous consequences and negative influence. It is crucial to respond to these unpredictable events as soon as possible faced by emergency management decision makers. In this paper, we focus on path planning for emergency vehicles, one of the most significant processes to avoid congestion and reduce rescue time. A Mixed-Integer Linear Programming with Semi-Soft Time Windows Model (MIPSSTWM) is conducted to plan an optimal routing respectively considering the time consumption of arcs and nodes of the urban road network and the highway network, especially in developing countries with an enormous population. Here, the arcs indicate the road segments and the nodes include the intersections of the urban road network and the on-ramp and off-ramp of the highway networks. An attempt in this research has been made to develop a comprehensive and executive strategy for emergency vehicle routing in heavy traffic conditions. The proposed Cuckoo Search (CS) algorithm is designed by imitating obligate brood parasitic behaviors of cuckoos and Lévy Flights (LF) to solve this hard and combinatorial problem. Using a Chinese city as our case study, the numerical results demonstrate the approach we applied in this paper outperforms the previous method without considering the nodes of the road network for a real-world situation. Meanwhile, the accuracy and validity of the CS algorithm also show better performances than the traditional algorithm.

Keywords: emergency vehicle, path planning, cs algorithm, urban traffic management and urban planning

Procedia PDF Downloads 80
1460 High Heating Value Bio-Chars from a Bio-Oil Upgrading Process

Authors: Julius K. Gane, Mohamad N. Nahil, Paul T. Williams

Abstract:

In today’s world of rapid population growth and a changing climate, one way to mitigate various negative effects is via renewable energy solutions. Energy and power as basic requirements in almost all human endeavours are also the banes of the changing climate and the impacts thereof. Thus it is crucial to develop innovative and environmentally friendly energy options to ameliorate various negative repercussions. Upgrading of fast pyrolysis bio-oil via hydro-treatment offers such opportunities, as quality renewable liquid transportation fuels can be produced. The process, however, is typically accompanied by bio-char formation as a by-product. The goal of this work was to study the yield and some properties of bio-chars formed from a hydrotreatment process, with an overall aim to promote the valuable utilization of wastes or by-products from renewable energy technologies. It is assumed that bio-chars that have comparable energy contents with coals will be more desirable as solid energy materials due to renewability and environmental friendliness. Therefore, the analytical work in this study focused mainly on determining the higher heating value (HHV) of the chars. The method involved the reaction of bio-oil in an autoclave supplied by the Parr Instrument Company, IL, USA. Two main parameters (different temperatures and resident times) were investigated. The chars were characterized using a Thermo EA2000 CHNS analyser, then oxygen contents and HHVs computed based on the literature. From the results, these bio-chars can readily serve as feedstocks for the production of renewable solid fuels. Their HHVs ranged between 29.26-39.18 MJ/kg, affected by different temperatures and retention times. There was an inverse relationship between the oxygen content and the HHVs of the chars. It can, therefore, be concluded that it is possible to optimize the process efficiency of the hydrotreatment process used through the production of renewable energy materials from the 'waste’ char by-products. Future work should consider developing a suitable balance between the primary objective of bio-oil upgrading processes (which is to improve the quality of the liquid fuels) and the conversion of its solid wastes into value-added products such as smokeless briquettes.

Keywords: bio-char, renewable solid biofuels, valorisation, waste-to-energy

Procedia PDF Downloads 128
1459 Mapping of Geological Structures Using Aerial Photography

Authors: Ankit Sharma, Mudit Sachan, Anurag Prakash

Abstract:

Rapid growth in data acquisition technologies through drones, have led to advances and interests in collecting high-resolution images of geological fields. Being advantageous in capturing high volume of data in short flights, a number of challenges have to overcome for efficient analysis of this data, especially while data acquisition, image interpretation and processing. We introduce a method that allows effective mapping of geological fields using photogrammetric data of surfaces, drainage area, water bodies etc, which will be captured by airborne vehicles like UAVs, we are not taking satellite images because of problems in adequate resolution, time when it is captured may be 1 yr back, availability problem, difficult to capture exact image, then night vision etc. This method includes advanced automated image interpretation technology and human data interaction to model structures and. First Geological structures will be detected from the primary photographic dataset and the equivalent three dimensional structures would then be identified by digital elevation model. We can calculate dip and its direction by using the above information. The structural map will be generated by adopting a specified methodology starting from choosing the appropriate camera, camera’s mounting system, UAVs design ( based on the area and application), Challenge in air borne systems like Errors in image orientation, payload problem, mosaicing and geo referencing and registering of different images to applying DEM. The paper shows the potential of using our method for accurate and efficient modeling of geological structures, capture particularly from remote, of inaccessible and hazardous sites.

Keywords: digital elevation model, mapping, photogrammetric data analysis, geological structures

Procedia PDF Downloads 686
1458 Integrated Planning, Designing, Development and Management of Eco-Friendly Human Settlements for Sustainable Development of Environment, Economic, Peace and Society of All Economies

Authors: Indra Bahadur Chand

Abstract:

This paper will focus on the need for development and application of global protocols and policy in planning, designing, development, and management of systems of eco-towns and eco-villages so that sustainable development will be assured from the perspective of environmental, economical, peace, and harmonized social dynamics. This perspective is essential for the development of civilized and eco-friendly human settlements in the town and rural areas of the nation that will be a milestone for developing a happy and sustainable lifestyle of rural and urban communities of the nation. The urban population of most of the town of developing economies has been tremendously increasing, whereas rural people have been tremendously migrating for the past three decades. Consequently, the urban lifestyle in most towns has stressed in terms of environmental pollution, water crisis, congested traffic, energy crisis, food crisis, and unemployment. Eco-towns and villages should be developed where lifestyle of all residents is sustainable and happy. Built up environment of settlement should reduce and minimize the problems of non ecological CO2 emissions, unbalanced utilization of natural resources, environmental degradation, natural calamities, ecological imbalance, energy crisis, water scarcity, waste management, food crisis, unemployment, deterioration of cultural heritage, social, the ratio among the public and private land ownership, ratio of land covered with vegetation and area of settlement, the ratio of people in the vehicles and foot, the ratio of people employed outside of town and village, ratio of resources recycling of waste materials, water consumption level, the ratio of people and vehicles, ratio of the length of the road network and area of town/villages, a ratio of renewable energy consumption with total energy, a ratio of religious/recreational area out of the total built-up area, the ratio of annual suicide case out of total people, a ratio of annual injured and death out of total people from a traffic accident, a ratio of production of agro foods within town out of total food consumption will be used to assist in designing and monitoring of each eco-towns and villages. An eco-town and villages should be planned and developed to offer sustainable infrastructure and utilities that maintain CO2 level in individual homes and settlements, home energy use, transport, food and consumer goods, water supply, waste management, conservation of historical heritages, healthy neighborhood, conservation of natural landscape, conserving bio-diversity and developing green infrastructures. Eco-towns and villages should be developed on the basis of master planning and architecture that affect and define the settlement and its form. Master planning and engineering should focus in delivering the sustainability criteria of eco towns and eco village. This will involve working with specific landscape and natural resources of locality.

Keywords: eco-town, ecological habitation, master plan, sustainable development

Procedia PDF Downloads 179
1457 The Influence of Characteristics of Waste Water on Properties of Sewage Sludge

Authors: Catalina Iticescu, Lucian P. Georgescu, Mihaela Timofti, Gabriel Murariu, Catalina Topa

Abstract:

In the field of environmental protection in the EU and also in Romania, strict and clear rules are imposed that are respected. Among those, mandatory municipal wastewater treatment is included. Our study involved Municipal Wastewater Treatment Plant (MWWTP) of Galati. MWWTP began its activity by the end of 2011 and technology is one of the most modern used in the EU. Moreover, to our knowledge, it is the first technology of this kind used in the region. Until commissioning, municipal wastewater was discharged directly into the Danube without any treatment. Besides the benefits of depollution, a new problem has arisen: the accumulation of increasingly large sewage sludge. Therefore, it is extremely important to find economically feasible and environmentally friendly solutions. One of the most feasible methods of disposing of sewage sludge is their use on agricultural land. Sewage sludge can be used in agriculture if monitored in terms of physicochemical properties (pH, nutrients, heavy metals, etc.), in order not to contribute to pollution in soils and not to affect chemical and biological balances, which are relatively fragile. In this paper, 16 physico-chemical parameters were monitored. Experimental testings were realised on waste water samples, sewage sludge results and treated water samples. Testing was conducted with electrochemichal methods (pH, conductivity, TDS); parameters N-total (mg/L), P-total (mg/L), N-NH4 (mg/L), N-NO2 (mg/L), N-NO3 (mg/L), Fe-total (mg/L), Cr-total (mg/L), Cu (mg/L), Zn (mg/L), Cd (mg/L), Pb (mg/L), Ni (mg/L) were determined by spectrophotometric methods using a spectrophotometer NOVA 60 and specific kits. Analyzing the results, we concluded that Sewage sludges, although containing heavy metals, are in small quantities and will not affect the land on which they will be deposited. Also, the amount of nutrients contained are appreciable. These features indicate that the sludge can be safely used in agriculture, with the advantage that they represent a cheap fertilizer. Acknowledgement: This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation – UEFISCDI, PNCDI III project, 79BG/2017, Efficiency of the technological process for obtaining of sewage sludge usable in agriculture, Efficient.

Keywords: municipal wastewater, physico-chemical properties, sewage sludge, technology

Procedia PDF Downloads 209
1456 Advanced Bio-Fuels for Biorefineries: Incorporation of Waste Tires and Calcium-Based Catalysts to the Pyrolysis of Biomass

Authors: Alberto Veses, Olga Sanhauja, María Soledad Callén, Tomás García

Abstract:

The appropriate use of renewable sources emerges as a decisive point to minimize the environmental impact caused by fossil fuels use. Particularly, the use of lignocellulosic biomass becomes one of the best promising alternatives since it is the only carbon-containing renewable source that can produce bioproducts similar to fossil fuels and it does not compete with food market. Among all the processes that can valorize lignocellulosic biomass, pyrolysis is an attractive alternative because it is the only thermochemical process that can produce a liquid biofuel (bio-oil) in a simple way and solid and gas fractions that can be used as energy sources to support the process. However, in order to incorporate bio-oils in current infrastructures and further process in future biorefineries, their quality needs to be improved. Introducing different low-cost catalysts and/or incorporating different polymer residues to the process are some of the new, simple and low-cost strategies that allow the user to directly obtain advanced bio-oils to be used in future biorefineries in an economic way. In this manner, from previous thermogravimetric analyses, local agricultural wastes such as grape seeds (GS) were selected as lignocellulosic biomass while, waste tires (WT) were selected as polymer residue. On the other hand, CaO was selected as low-cost catalyst based on previous experiences by the group. To reach this aim, a specially-designed fixed bed reactor using N₂ as a carrier gas was used. This reactor has the peculiarity to incorporate a vertical mobile liner that allows the user to introduce the feedstock in the oven once the selected temperature (550 ºC) is reached, ensuring higher heating rates needed for the process. Obtaining a well-defined phase distribution in the resulting bio-oil is crucial to ensure the viability to the process. Thus, once experiments were carried out, not only a well-defined two layers was observed introducing several mixtures (reaching values up to 40 wt.% of WT) but also, an upgraded organic phase, which is the one considered to be processed in further biorefineries. Radical interactions between GS and WT released during the pyrolysis process and dehydration reactions enhanced by CaO can promote the formation of better-quality bio-oils. The latter was reflected in a reduction of water and oxygen content of bio-oil and hence, a substantial increase of its heating value and its stability. Moreover, not only sulphur content was reduced from solely WT pyrolysis but also potential and negative issues related to a strong acidic environment of conventional bio-oils were minimized due to its basic pH and lower total acid numbers. Therefore, acidic compounds obtained in the pyrolysis such as CO₂-like substances can react with the CaO and minimize acidic problems related to lignocellulosic bio-oils. Moreover, this CO₂ capture promotes H₂ production from water gas shift reaction favoring hydrogen-transfer reactions, improving the final quality of the bio-oil. These results show the great potential of grapes seeds to carry out the catalytic co-pyrolysis process with different plastic residues in order to produce a liquid bio-oil that can be considered as a high-quality renewable vector.

Keywords: advanced bio-oils, biorefinery, catalytic co-pyrolysis of biomass and waste tires, lignocellulosic biomass

Procedia PDF Downloads 235
1455 An Investigation into the Impacts of High-Frequency Electromagnetic Fields Utilized in the 5G Technology on Insects

Authors: Veriko Jeladze, Besarion Partsvania, Levan Shoshiashvili

Abstract:

This paper addresses a very topical issue today. The frequency range 2.5-100 GHz contains frequencies that have already been used or will be used in modern 5G technologies. The wavelengths used in 5G systems will be close to the body dimensions of small size biological objects, particularly insects. Because the body and body parts dimensions of insects at these frequencies are comparable with the wavelength, the high absorption of EMF energy in the body tissues can occur(body resonance) and therefore can cause harmful effects, possibly the extinction of some of them. An investigation into the impact of radio-frequency nonionizing electromagnetic field (EMF) utilized in the future 5G on insects is of great importance as a very high number of 5G network components will increase the total EMF exposure in the environment. All ecosystems of the earth are interconnected. If one component of an ecosystem is disrupted, the whole system will be affected (which could cause cascading effects). The study of these problems is an important challenge for scientists today because the existing studies are incomplete and insufficient. Consequently, the purpose of this proposed research is to investigate the possible hazardous impact of RF-EMFs (including 5G EMFs) on insects. The project will study the effects of these EMFs on various insects that have different body sizes through computer modeling at frequencies from 2.5 to 100 GHz. The selected insects are honey bee, wasp, and ladybug. For this purpose, the detailed 3D discrete models of insects are created for EM and thermal modeling through FDTD and will be evaluated whole-body Specific Absorption Rates (SAR) at selected frequencies. All these studies represent a novelty. The proposed study will promote new investigations about the bio-effects of 5G-EMFs and will contribute to the harmonization of safe exposure levels and frequencies of 5G-EMFs'.

Keywords: electromagnetic field, insect, FDTD, specific absorption rate (SAR)

Procedia PDF Downloads 91
1454 Prioritizing the Most Important Information from Contractors’ BIM Handover for Firefighters’ Responsibilities

Authors: Akram Mahdaviparsa, Tamera McCuen, Vahideh Karimimansoob

Abstract:

Fire service is responsible for protecting life, assets, and natural resources from fire and other hazardous incidents. Search and rescue in unfamiliar buildings is a vital part of firefighters’ responsibilities. Providing firefighters with precise building information in an easy-to-understand format is a potential solution for mitigating the negative consequences of fire hazards. The negative effect of insufficient knowledge about a building’s indoor environment impedes firefighters’ capabilities and leads to lost property. A data rich building information modeling (BIM) is a potentially useful source in three-dimensional (3D) visualization and data/information storage for fire emergency response. Therefore, this research’s purpose is prioritizing the required information for firefighters from the most important information to the least important. A survey was carried out with firefighters working in the Norman Fire Department to obtain the importance of each building information item. The results show that “the location of exit doors, windows, corridors, elevators, and stairs”, “material of building elements”, and “building data” are the three most important information specified by firefighters. The results also implied that the 2D model of architectural, structural and way finding is more understandable in comparison with the 3D model, while the 3D model of MEP system could convey more information than the 2D model. Furthermore, color in visualization can help firefighters to understand the building information easier and quicker. Sufficient internal consistency of all responses was proven through developing the Pearson Correlation Matrix and obtaining Cronbach’s alpha of 0.916. Therefore, the results of this study are reliable and could be applied to the population.

Keywords: BIM, building fire response, ranking, visualization

Procedia PDF Downloads 133
1453 Cotton Transplantation as a Practice to Escape Infection with Some Soil-Borne Pathogens

Authors: E. M. H. Maggie, M. N. A. Nazmey, M. A. Abdel-Sattar, S. A. Saied

Abstract:

A successful trial of transplanting cotton is reported. Seeds grown in trays for 4-5 weeks in an easily prepared supporting medium such as peat moss or similar plant waste are tried. Careful transplanting of seedlings, with root system as intact as possible, is being made in the permanent field. The practice reduced damping-off incidence rate and allowed full winter crop revenues. Further work is needed to evaluate certain parameters such as growth curve, flowering curve, and yield at economic bases.

Keywords: cotton, transplanting cotton, damping-off diseases, environment sciences

Procedia PDF Downloads 366
1452 Production of Medicinal Bio-active Amino Acid Gamma-Aminobutyric Acid In Dairy Sludge Medium

Authors: Farideh Tabatabaee Yazdi, Fereshteh Falah, Alireza Vasiee

Abstract:

Introduction: Gamma-aminobutyric acid (GABA) is a non-protein amino acid that is widely present in organisms. GABA is a kind of pharmacological and biological component and its application is wide and useful. Several important physiological functions of GABA have been characterized, such as neurotransmission and induction of hypotension. GABA is also a strong secretagogue of insulin from the pancreas and effectively inhibits small airway-derived lung adenocarcinoma and tranquilizer. Many microorganisms can produce GABA, and lactic acid bacteria have been a focus of research in recent years because lactic acid bacteria possess special physiological activities and are generally regarded as safe. Among them, the Lb. Brevis produced the highest amount of GABA. The major factors affecting GABA production have been characterized, including carbon sources and glutamate concentration. The use of food industry waste to produce valuable products such as amino acids seems to be a good way to reduce production costs and prevent the waste of food resources. In a dairy factory, a high volume of sludge is produced from a separator that contains useful compounds such as growth factors, carbon, nitrogen, and organic matter that can be used by different microorganisms such as Lb.brevis as carbon and nitrogen sources. Therefore, it is a good source of GABA production. GABA is primarily formed by the irreversible α-decarboxylation reaction of L-glutamic acid or its salts, catalysed by the GAD enzyme. In the present study, this aim was achieved for the fast-growing of Lb.brevis and producing GABA, using the dairy industry sludge as a suitable growth medium. Lactobacillus Brevis strains obtained from Microbial Type Culture Collection (MTCC) were used as model strains. In order to prepare dairy sludge as a medium, sterilization should be done at 121 ° C for 15 minutes. Lb. Brevis was inoculated to the sludge media at pH=6 and incubated for 120 hours at 30 ° C. After fermentation, the supernatant solution is centrifuged and then, the GABA produced was analyzed by the Thin Layer chromatography (TLC) method qualitatively and by the high-performance liquid chromatography (HPLC) method quantitatively. By increasing the percentage of dairy sludge in the culture medium, the amount of GABA increased. Also, evaluated the growth of bacteria in this medium showed the positive effect of dairy sludge on the growth of Lb.brevis, which resulted in the production of more GABA. GABA-producing LAB offers the opportunity of developing naturally fermented health-oriented products. Although some GABA-producing LAB has been isolated to find strains suitable for different fermentations, further screening of various GABA-producing strains from LAB, especially high-yielding strains, is necessary. The production of lactic acid, bacterial gamma-aminobutyric acid, is safe and eco-friendly. The use of dairy industry waste causes enhanced environmental safety. Also provides the possibility of producing valuable compounds such as GABA. In general, dairy sludge is a suitable medium for the growth of Lactic Acid Bacteria and produce this amino acid that can reduce the final cost of it by providing carbon and nitrogen source.

Keywords: GABA, Lactobacillus, HPLC, dairy sludge

Procedia PDF Downloads 144
1451 Application and Limitation of Heavy Metal Pollution Indicators in Coastal Environment of Pakistan

Authors: Noor Us Saher

Abstract:

Oceans and Marine areas have a great importance, mainly regarding food resources, fishery products and reliance of livelihood. Aquatic pollution is common due to the incorporation of various chemicals mainly entering from urbanization, industrial and commercial facilities, such as oil and chemical spills. Many hazardous wastes and industrial effluents contaminate the nearby areas and initiate to affect the marine environment. These contaminated conditions may become worse in those aquatic environments situated besides the world’s largest cities, which are hubs of various commercial activities. Heavy metal contamination is one of the most important predicaments for marine environments and during past decades this problem has intensified due to an increase in urbanization and industrialization. Coastal regions of Pakistan are facing severe threats from various organic and inorganic pollutants, especially the estuarine and coastal areas of Karachi city, the most populated and industrialized city situated along the coastline. Metal contamination causes severe toxicity in biota resulting the degradation of Marine environments and depletion of fishery resources and sustainability. There are several abiotic (air, water and sediment) and biotic (fauna and flora) indicators that indicate metal contamination. However, all these indicators have certain limitations and complexities, which delay their implementation for rehabilitation and conservation in the marine environment. The inadequate evidences have presented on this significant topic till the time and this study discussed metal pollution and its consequences along the marine environment of Pakistan. This study further helps in identification of possible hazards for the ecological system and allied resources for management strategies and decision making for sustainable approaches.

Keywords: coastal and estuarine environment, heavy metals pollution, pollution indicators, Pakistan

Procedia PDF Downloads 249
1450 Purification and Characterization of a Novel Extracellular Chitinase from Bacillus licheniformis LHH100

Authors: Laribi-Habchi Hasiba, Bouanane-Darenfed Amel, Drouiche Nadjib, Pausse André, Mameri Nabil

Abstract:

Chitin, a linear 1, 4-linked N-acetyl-d-glucosamine (GlcNAc) polysaccharide is the major structural component of fungal cell walls, insect exoskeletons and shells of crustaceans. It is one of the most abundant naturally occurring polysaccharides and has attracted tremendous attention in the fields of agriculture, pharmacology and biotechnology. Each year, a vast amount of chitin waste is released from the aquatic food industry, where crustaceans (prawn, crab, Shrimp and lobster) constitute one of the main agricultural products. This creates a serious environmental problem. This linear polymer can be hydrolyzed by bases, acids or enzymes such as chitinase. In this context an extracellular chitinase (ChiA-65) was produced and purified from a newly isolated LHH100. Pure protein was obtained after heat treatment and ammonium sulphate precipitation followed by Sephacryl S-200 chromatography. Based on matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis, the purified enzyme is a monomer with a molecular mass of 65,195.13 Da. The sequence of the 27 N-terminal residues of the mature ChiA-65 showed high homology with family-18 chitinases. Optimal activity was achieved at pH 4 and 75◦C. Among the inhibitors and metals tested p-chloromercuribenzoic acid, N-ethylmaleimide, Hg2+ and Hg + completelyinhibited enzyme activity. Chitinase activity was high on colloidal chitin, glycol chitin, glycol chitosane, chitotriose and chitooligosaccharide. Chitinase activity towards synthetic substrates in the order of p-NP-(GlcNAc) n (n = 2–4) was p-NP-(GlcNAc)2> p-NP-(GlcNAc)4> p-NP-(GlcNAc)3. Our results suggest that ChiA-65 preferentially hydrolyzed the second glycosidic link from the non-reducing end of (GlcNAc) n. ChiA-65 obeyed Michaelis Menten kinetics the Km and kcat values being 0.385 mg, colloidal chitin/ml and5000 s−1, respectively. ChiA-65 exhibited remarkable biochemical properties suggesting that this enzyme is suitable for bioconversion of chitin waste.

Keywords: Bacillus licheniformis LHH100, characterization, extracellular chitinase, purification

Procedia PDF Downloads 437
1449 Doped and Co-doped ZnO Based Nanoparticles and their Photocatalytic and Gas Sensing Property

Authors: Neha Verma, Manik Rakhra

Abstract:

Statement of the Problem: Nowadays, a tremendous increase in population and advanced industrialization augment the problems related to air and water pollutions. Growing industries promoting environmental danger, which is an alarming threat to the ecosystem. For safeguard, the environment, detection of perilous gases and release of colored wastewater is required for eutrophication pollution. Researchers around the globe are trying their best efforts to save the environment. For this remediation advanced oxidation process is used for potential applications. ZnO is an important semiconductor photocatalyst with high photocatalytic and gas sensing activities. For efficient photocatalytic and gas sensing properties, it is necessary to prepare a doped/co-doped ZnO compound to decrease the electron-hole recombination rates. However, lanthanide doped and co-doped metal oxide is seldom studied for photocatalytic and gas sensing applications. The purpose of this study is to describe the best photocatalyst for the photodegradation of dyes and gas sensing properties. Methodology & Theoretical Orientation: Economical framework has to be used for the synthesis of ZnO. In the depth literature survey, a simple combustion method is utilized for gas sensing and photocatalytic activities. Findings: Rare earth doped and co-doped ZnO nanoparticles were the best photocatalysts for photodegradation of organic dyes and different gas sensing applications by varying various factors such as pH, aging time, and different concentrations of doping and codoping metals in ZnO. Complete degradation of dye was observed only in min. Gas sensing nanodevice showed a better response and quick recovery time for doped/co-doped ZnO. Conclusion & Significance: In order to prevent air and water pollution, well crystalline ZnO nanoparticles were synthesized by rapid and economic method, which is used as photocatalyst for photodegradation of organic dyes and gas sensing applications to sense the release of hazardous gases from the environment.

Keywords: ZnO, photocatalyst, photodegradation of dye, gas sensor

Procedia PDF Downloads 155
1448 A Furniture Industry Concept for a Sustainable Generative Design Platform Employing Robot Based Additive Manufacturing

Authors: Andrew Fox, Tao Zhang, Yuanhong Zhao, Qingping Yang

Abstract:

The furniture manufacturing industry has been slow in general to adopt the latest manufacturing technologies, historically relying heavily upon specialised conventional machinery. This approach not only requires high levels of specialist process knowledge, training, and capital investment but also suffers from significant subtractive manufacturing waste and high logistics costs due to the requirement for centralised manufacturing, with high levels of furniture product not re-cycled or re-used. This paper aims to address the problems by introducing suitable digital manufacturing technologies to create step changes in furniture manufacturing design, as the traditional design practices have been reported as building in 80% of environmental impact. In this paper, a 3D printing robot for furniture manufacturing is reported. The 3D printing robot mainly comprises a KUKA industrial robot, an Arduino microprocessor, and a self-assembled screw fed extruder. Compared to traditional 3D printer, the 3D printing robot has larger motion range and can be easily upgraded to enlarge the maximum size of the printed object. Generative design is also investigated in this paper, aiming to establish a combined design methodology that allows assessment of goals, constraints, materials, and manufacturing processes simultaneously. ‘Matrixing’ for part amalgamation and product performance optimisation is enabled. The generative design goals of integrated waste reduction increased manufacturing efficiency, optimised product performance, and reduced environmental impact institute a truly lean and innovative future design methodology. In addition, there is massive future potential to leverage Single Minute Exchange of Die (SMED) theory through generative design post-processing of geometry for robot manufacture, resulting in ‘mass customised’ furniture with virtually no setup requirements. These generatively designed products can be manufactured using the robot based additive manufacturing. Essentially, the 3D printing robot is already functional; some initial goals have been achieved and are also presented in this paper.

Keywords: additive manufacturing, generative design, robot, sustainability

Procedia PDF Downloads 131
1447 Usage of Crude Glycerol for Biological Hydrogen Production, Experiments and Analysis

Authors: Ilze Dimanta, Zane Rutkovska, Vizma Nikolajeva, Janis Kleperis, Indrikis Muiznieks

Abstract:

Majority of word’s steadily increasing energy consumption is provided by non-renewable fossil resources. Need to find an alternative energy resource is essential for further socio-economic development. Hydrogen is renewable, clean energy carrier with high energy density (142 MJ/kg, accordingly – oil has 42 MJ/kg). Biological hydrogen production is an alternative way to produce hydrogen from renewable resources, e.g. using organic waste material resource fermentation that facilitate recycling of sewage and are environmentally benign. Hydrogen gas is produced during the fermentation process of bacteria in anaerobic conditions. Bacteria are producing hydrogen in the liquid phase and when thermodynamic equilibrium is reached, hydrogen is diffusing from liquid to gaseous phase. Because of large quantities of available crude glycerol and the highly reduced nature of carbon in glycerol per se, microbial conversion of it seems to be economically and environmentally viable possibility. Such industrial organic waste product as crude glycerol is perspective for usage in feedstock for hydrogen producing bacteria. The process of biodiesel production results in 41% (w/w) of crude glycerol. The developed lab-scale test system (experimental bioreactor) with hydrogen micro-electrode (Unisense, Denmark) was used to determine hydrogen production yield and rate in the liquid phase. For hydrogen analysis in the gas phase the RGAPro-100 mass-spectrometer connected to the experimental test-system was used. Fermentative bacteria strains were tested for hydrogen gas production rates. The presence of hydrogen in gaseous phase was measured using mass spectrometer but registered concentrations were comparatively small. To decrease the hydrogen partial pressure in liquid phase reactor with a system for continuous bubbling with inert gas was developed. H2 production rate for the best producer in liquid phase reached 0,40 mmol H2/l, in gaseous phase - 1,32 mmol H2/l. Hydrogen production rate is time dependent – higher rate of hydrogen production is at the fermentation process beginning when concentration increases, but after three hours of fermentation, it decreases.

Keywords: bio-hydrogen, fermentation, experimental bioreactor, crude glycerol

Procedia PDF Downloads 522
1446 Sun-Light Driven Photocatalytic Degradation of Tetracycline Antibiotics Employing Hydrothermally Synthesized sno₂/mnv₂o₆ Heterojunction

Authors: Sandeep Kaushal

Abstract:

Tetracycline (TC) is a widespread antibiotic that is utilised in a multitude of countries, particularly China, India, and the United States of America, due to its low cost and potency in boosting livestock production. Unfortunately, certain antibiotics can be hazardous to living beings due to metal complexation and aggregation, which can lead to teratogenicity and carcinogenicity. Heterojunction photocatalysts are promising for the effective removal of pollutants like antibiotics. Herein, a simple, economical, and pollution-less hydrothermal technique was used to construct SnO₂/MnV₂O₆heterojunction with varying amounts of tin dioxide (SO₂). Various sophisticated techniques like XRD, FTIR, XPS, FESEM, HRTEM, and PLand Raman spectroscopy demonstrated the successful synthesis of SnO₂/MnV₂O₆ heterojunction photocatalysts.BET surface area analysis revealed that the as-synthesized heterojunction has a favorable surface area and surface properties for efficacious degradation of tetracycline. Under the direct sunlight exposure, the SnO₂/MnV₂O₆ heterojunction possessed superior photodegradation activity toward TC than the pristine SnO₂ and MnV2O6owing to their excellent adsorption abilities suitable band positions, large surface areas along with the effective charge-transfer ability of the heterojunction. The SnO₂/MnV₂O₆ heterojunction possessed extraordinary efficiency for the photocatalytic degradation of TC antibiotic (98% in 60 min) with an apparent rate constant of 0.092 min–1. In the degradation experiments, photocatalytic activities of as-synthesized heterojunction were studied by varying different factors such as time contact, catalyst dose, and solution pH. The role of reactive species in antibiotics was validated by radical scavenging studies, which indicated that.OH, radical has a critical role in photocatalytic degradation. Moreover, liquid chromatography-mass spectrometry (LC-MS) investigations were employed to anticipate a plausible mechanism for TC degradation.

Keywords: photocatalytic degradation, tetracycline, heterojunction, LC-MS

Procedia PDF Downloads 106
1445 Impact of Fischer-Tropsch Wax on Ethylene Vinyl Acetate/Waste Crumb Rubber Modified Bitumen: An Energy-Sustainability Nexus

Authors: Keith D. Nare, Mohau J. Phiri, James Carson, Chris D. Woolard, Shanganyane P. Hlangothi

Abstract:

In an energy-intensive world, minimizing energy consumption is paramount to cost saving and reducing the carbon footprint. Improving mixture procedures utilizing warm mix additive Fischer-Tropsch (FT) wax in ethylene vinyl acetate (EVA) and modified bitumen highlights a greener and sustainable approach to modified bitumen. In this study, the impact of FT wax on optimized EVA/waste crumb rubber modified bitumen is assayed with a maximum loading of 2.5%. The rationale of the FT wax loading is to maintain the original maximum loading of EVA in the optimized mixture. The phase change abilities of FT wax enable EVA co-crystallization with the support of the elastomeric backbone of crumb rubber. Less than 1% loading of FT wax worked in the EVA/crumb rubber modified bitumen energy-sustainability nexus. Response surface methodology approach to the mixture design is implemented amongst the different loadings of FT wax, EVA for a consistent amount of crumb rubber and bitumen. Rheological parameters (complex shear modulus, phase angle and rutting parameter) were the factors used as performance indicators of the different optimized mixtures. The low temperature chemistry of the optimized mixtures is analyzed using elementary beam theory and the elastic-viscoelastic correspondence principle. Master curves and black space diagrams are developed and used to predict age-induced cracking of the different long term aged mixtures. Modified binder rheology reveals that the strain response is not linear and that there is substantial re-arrangement of polymer chains as stress is increased, this is based on the age state of the mixture and the FT wax and EVA loadings. Dominance of individual effects is evident over effects of synergy in co-interaction of EVA and FT wax. All-inclusive FT wax and EVA formulations were best optimized in mixture 4 with mixture 7 reflecting increase in ease of workability. Findings show that interaction chemistry of bitumen, crumb rubber EVA, and FT wax is first and second order in all cases involving individual contributions and co-interaction amongst the components of the mixture.

Keywords: bitumen, crumb rubber, ethylene vinyl acetate, FT wax

Procedia PDF Downloads 173
1444 Study of the Protective Effects of Summer Savory against Multiple Organ Damage Induced by Lead Acetate in Rats

Authors: Bassant M. M. Ibrahim, Doha H. Abou Baker, Ahmed Abd Elghafour

Abstract:

Excessive exposure to heavy metals contributes to the occurrence of deleterious health problems that affect vital organs like the brain, liver, kidneys, and heart. The use of natural products that have antioxidant capabilities may contribute to the protection of these organs. In the present study, the essential oil of summer savory (Satureja hortensis) was used to evaluate its protective effects against lead acetate induced damaging effect on rats’ vital organs, due to its high contents of carvacrol, y-terpinene, and p-cymene. Forty female Wister Albino rats were classified into five equal groups, the 1st served as normal group, the 2nd served as positive control group was given lead acetate (60 mg/kg) intra-peritoneal (IP), the third to fifth groups were treated with calcium disodium (EDTA) as chelating agent and summer savory essential oil in doses of (50 and 100mg/kg) respectively. All treatments were given IP concomitant with lead acetate for ten successive days. At the end of the experiment duration electrocardiogram (ECG), an open field test for the evaluation of psychological state, rotarod test as for the evaluation of locomotor coordination ability as well as anti-inflammatory and oxidative stress biomarkers in serum and histopathology of vital organs were performed. The investigations in this study show that the protective effect of high dose of summer savory essential oil is more than the low dose and that the essential oil of summer savory is a promising agent that can contribute to the protection of vital organs against the hazardous damaging effects of lead acetate.

Keywords: brain, heart, kidneys, lead acetate, liver, protective, summer savory

Procedia PDF Downloads 123